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Abstract

We introduce backoff processes, an idealized stochastic model of browsing on the world-wide
web, which incorporates both hyperlink traversals and use of the “back button.” With some
probability the next state is generated by a distribution over out-edges from the current state,
as in a traditional Markov chain. With the remaining probability, however, the next state is
generated by clicking on the back button, and returning to the state from which the current
state was entered. Repeated clicks on the back button require access to increasingly distant
history.

We show that this process has fascinating similarities to and differences from Markov chains.
In particular, we prove that like Markov chains, backoff processes always have a limiting distri-
bution, and we give algorithms to compute this distribution. Unlike Markov chains, the limiting
distribution may depend on the initial state.
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1 Introduction

Consider a modification of a Markov chain in which at each step, with some probability, we undo
the last forward transition of the chain. For intuition, the reader may wish to think of a user using
a browser on the world-wide web where he is following a Markov chain on the pages of the web,
and occasionally hitting the “back button”. We model such phenomena by discrete-time stochastic
processes of the following form: we are given a Markov chain M on aset V' = {1,2,...,n} of states,
together with an n-dimensional vector & of backoff probabilities. The process evolves as follows: at
each time step £ = 0,1,2,..., the process is in a state X; € V, and in addition has a history Hy,
which is a stack whose items are states from V. Let top(H) denote the top of the stack H. At ¢t =0
the process starts at some state Xy € V, with the history Hy containing only the single element
Xo. At each subsequent step the process makes either a forward step or a backward step, by the
following rules: (i) if H; consists of the singleton X it makes a forward step; (ii) otherwise, with
probability apfr,) it makes a backward step, and with probability 1 — a;op(gr,) it makes a forward
step. The forward and backward steps at time ¢ are as follows:

1. In a forward step, X; is distributed according to the successor state of X; ; under M; the
state X; is then pushed onto the history stack H;_; to create H;.

2. In a backward step, the process pops top(H;—1) from H; 1 to create Hy; it then moves to
top(H;) (i.e., the new state X; = top(H;).)"!

Under what conditions do such processes have limiting distributions, and how do they differ from
traditional Markov chains? We focus in this paper on the time-averaged limit distribution, usually

called the “Cesaro limit distribution”.?

Motivation. Our work is broadly motivated by user modeling for scenarios in which a user
with an “undo” capability performs a sequence of actions. A simple concrete setting is that of
browsing on the world-wide web. We view the pages of the web as states in a Markov chain, with
the transition probabilities denoting the distribution over new pages to which the user can move
forward, and the backoff vector denoting for each state the probability that a user enters the state
and elects to click the browser’s back button rather than continuing to browse forward from that
state.

A number of research projects [1, 7, 9] have designed and implemented web intermediaries and
learning agents that build simple user models, and used them to personalize the user experience.
On the commercial side, user models are exploited to better target advertising on the web based
on a user’s browsing patterns; see [2] and references therein for theoretical results on these and
related problems. Understanding more sophisticated models such as ours is interesting in its own
right, but could also lead to better user modeling.

!Note that the condition X; = top(H;) holds for all , independent of whether the step is a forward step or
backward step.

2The Cesaro limit of a sequence ao, a1, ... is lim;_, % Zi;ll ar, if the limit exists. For example, the sequence
0,1,0,1,... has Cesaro limit 1/2. The Cesaro limit distribution is lims— % Zt;:ll Pr[X; = 1], if the limit exists. By
contrast, the stationary distribution is limy_, o Pr[X; = 4], if the limit exists. Of course, a stationary distribution is
always a Cesaro limit distribution. We shall sometimes refer simply to either a stationary distribution or a Cesaro
limit distribution as a limiting distribution.



Overview of Results

For the remainder of this paper we assume a finite number of states. We assume also that the
backoff process is irreducible (i.e., it is possible, with positive probability, to eventually reach each
state from each other state). We now give the reader a preview of some interesting and arguably
unexpected phenomena that emerge in such “back-button” random walks, as the backoff vector &
varies on a fixed Markov chain M. Our primary focus is on the Cesaro limit distribution.

Intuitively, if the history stack H; grows unboundedly with time, then the process “forgets”
the start state X (as happens in a traditional Markov process, where & is identically zero). On
the other hand, if the elements of @ are all very close to 1, the reader may envision the process
repeatedly “falling back” to the start state Xy, so that H; does not tend to grow unboundedly.
What happens between these extremes?

One of our main results is that there is always a Cesaro limit distribution, although there may
not be a stationary distribution. Consider first the case when all entries of @ are equal, so that there
is a single backoff probability a that is independent of the state. In this case we give a remarkably
simple characterization of the history and the limiting distribution provided oo < 1/2: the history
grows unboundedly with time, and the limiting distribution of the process converges to that of the
underlying Markov chain M.

On the other hand, if & > 1/2 then the process returns to the start state X infinitely often,
the expected history length is finite, and the limiting distribution differs in general from that of M,
and depends on the start state Xy. Thus, unlike ergodic Markov chains, the limiting distribution
depends on the starting state.

More generally, consider starting the backoff process in a probability distribution over the states
of M; then the limiting distribution depends on this initial distribution. As the initial distribution
varies over the unit simplex, the set of limiting distributions forms a simplex. As « converges to
1/2 from above, these simplices converge to a single point, which is the limiting distribution of the
underlying Markov chain.

The transition case a = 1/2 is fascinating: the process returns to the start state infinitely
often, but the history grows with time and the distribution of the process reaches the stationary
distribution of M. These results are described in Section 3.

We have distinguished three cases: o < 1/2, @ = 1/2, and a > 1/2. In Section 4, we show
that these three cases can be generalized to backoff probabilities that vary from state to state.
The generalization depends on whether a certain infinite Markov process (whose states correspond
to possible histories) is transient, null, or ergodic respectively (see Section 4 for definitions). It
is intuitively clear in the constant « case, for example, that when o < 1/2, the history will grow
unboundedly. But what happens when some states have backoff probabilities greater than 1/2 and
others have backoff probabilities less than 1/2?7 When does the history grow, and how does the
limiting distribution depend on M and &? Even when all the backoff probabilities are less than
1/2, why should there be a limiting distribution?

We resolve these questions by showing that there exists a potential function of the history
that is expected to grow in the transient case (where the history grows unboundedly), is expected
to shrink in the ergodic case (where the expected size of the history stack remains bounded),
and is expected to remain constant if the process is null. The potential function is a bounded
difference martingale, which allows us to use martingale tail inequalities to prove these equivalences.
Somewhat surprisingly, we can use this relatively simple characterization of the backoff process to
obtain an efficient algorithm to decide, given M and «, whether or not the given process is transient,
null or ergodic. We show that in all cases the process attains a Cesaro limit distribution (though the



proofs are quite different for the different cases). We also give algorithms to compute the limiting
probabilities. If the process is either ergodic or null then the limiting probabilities are computed
exactly by solving certain systems of linear inequalities. However, if the process is transient, then
the limiting probabilities need not be rational numbers, even if all entries of M and & are rational.
We show that in this case, the limiting probabilities can be obtained by solving a linear system,
where the entries of the linear system are themselves the solution to a semidefinite program. This
gives us an algorithm to approximate the limiting probability vector.

2 Definitions and notation

We use (M, @, 1) to denote the backoff process on an underlying Markov chain M, with backoff vector
@, starting from state 7. This process is an (infinite) Markov chain on the space of all histories.
Formally, a history stack (which we may refer to as simply a history) & is a sequence (09,071, ..., 07)
of states of V, for [ > 0. For a history ¢ = (09, 01,...,0;), its length, denoted £(7), is [ (since the
initial state oy is special, we do not count it in the length). If £() = 0, then we say that it is an initial
history. For a history ¢ = (0g,01,...,07), then its top, denoted top(a), is 0;. We also associate
the standard stack operations pop and push with histories. For a history ¢ = (09, 01,...,07) and
j € {1l,...,n}, we have pop(s) = (09,01,...,01-1), and push(a,j) = (0g,01,...,071,5). We let S
denote the space of all finite attainable histories.

For a Markov chain M, backoff vector @&, and history & with top(g) = j, define the successor
(or next state) succ(o) to take on values from S with the following distribution:

pop(a) with probability «; if () > 1
succ(o) = § push(a,k) with probability (1 —a;)M;, if £(6) > 1
push(a, k) with probability My if £(6) =0

For a Markov chain M, backoff vector @ and state i € {1,...,n}, the (M, &,1i)-Markov chain
is the sequence (Hy, Hy, Ho,...) taking values from the set S of histories, with Hy = (i) and
H, .y distributed as succ(H;). We refer to the sequence (Xg, X1, Xo, ...}, with X; = top(H;) as the
(M, &, 1)-backoff process. Several properties of the (M, @, i)-backoff process are actually independent
of the start state 4, and to stress this aspect we will sometimes use simply the term “(M, &)-backoff
process”.

Note that the (M, &, i)-backoff process does not completely give the (M, d,7)-Markov chain,
because it does not specify whether each step results from a “forward” or “backward” operation.
To complete the correspondence we define an auzxiliary sequence: Let Sy, ..., S, ... be the sequence
with Sy taking on values from the set {F, B}, with S; = F if ¢(H;) = ¢(H;—1)+ 1 and S; = B
if /(H;)) = ¢(Hi—1) — 1. (Intuitively, F stands for “forward” and B for “backward”.) Notice
that sequence Xy, ..., Xy, ... together with the sequence S1,...,S;, ... does completely specify the
sequence Hy, ..., Hy,....

We study the distribution of the states X; as the backoff process evolves over time. We shall
show that there is always a Cesaro limit distribution (although there is not necessarily a stationary
distribution). We shall also study the question of efficiently computing the Cesaro limit distribution.

For simplicity, throughout this paper, we shall restrict our attention to cases where both the
(M, @)-backoff process and the underlying Markov chain M are irreducible and aperiodic. In
particular, M has a stationary distribution, and not just a Cesaro limit distribution.



3 Constant «

The case in which the backoff probability takes the same value « for every state has a very clean
characterization, and it will give us insight into some of the arguments to come.

We fix a specific (M, d,1)-backoff process throughout this section. Suppose we generate a
sequence Xg, Xq,...,Xy,... of steps together with an auxiliary sequence Si,...,S;,.... To begin
with, we wish to view this sequence of steps as being “equivalent” (in a sense) to one in which only
forward steps are taken. In this way, we can relate the behavior of the (M, &, i)-backoff process to
that of the underlying (finite) Markov process M beginning in state 7, which we understand much
more accurately. We write ¢;(j) to denote the probability that M, starting in state 4, is in state j
after ¢ steps.

When the backoff probability takes the same value « for every state, we have the following basic
relation between these two processes.

Theorem 3.1 For given natural numbers X and t, and a state j, we have Pr[X; = j | £(H;) = \] =
a(7)-

The proof of this theorem is given in Appendix B.

In addition to the sequences {X;} and {S;}, consider the sequence {Y; : ¢ > 0}, where Y; is
the history length ¢(H;). Now Y; is simply the position after ¢ steps of a random walk on the
natural numbers, with a reflecting barrier at 0, in which the probability of moving left is o and the
probability of moving right is 1 — a. This correspondence will be crucial for our analysis.

In terms of these notions, we mention one additional technical lemma. Its proof follows simply
by conditioning on the value of Y; and applying Theorem 3.1.

Lemma 3.2 For all natural numbers t and states j, we have Pr[X; = j] =3, ¢-(j) - Pr[Y: =r].

We are now ready to consider the two cases where o < 1 5 and where a > 5, and show that in
each case there is a Cesaro limit distribution.
The case of a < % Let the stationary distribution of the underlying Markov chain M be
(1, ...,%y,). By our assumptions about M, this distribution is independent of the start state i.

When a < %, we show that the (M, @, )-backoff process converges to (11,...,%,).

Theorem 3.3 For all states j of the (M,d,1)-backoff process, we have lim; o Pr[X; = j] = ;.
Thus, the limiting probability is independent of the start state i.

Proof. Fix € > 0, and choose t; large enough that for all states j of M and all ¢ > t3, we have
lg:(7) — ;] < €/2. Since a < 1/2, we can also choose t; > o large enough that for each ¢ > ¢, we
have Pr[Y; > t9] > 1 —¢/2. Then for ¢ > ¢; we have

Pr[Xy =] — 4] = qu )-PrlY, =r] - ¢jZPr[Y2=T]
< Zlqr — ;|- Pr[Y; =]
_ Z|qr — |- PriYy=r]+ Y |g-(j) — |- Pr(¥; =r]
r<ty r>ty
< D PrlYy=r]+ > /2 PrYi=1]
r<ty r>t;
< €/2+€/2=¢.



Although the proof above applies to each o < %, we note a qualitative difference between the
case of a < % and the “threshold case” a = % In the former case, for every r, there are almost
surely only finitely many ¢ for which Y; < r; the largest such ¢ is a step on which the process pushes
a state that is never popped in the future. In the latter case, Y; almost surely returns to 0 infinitely

often, and yet the process still converges to the stationary distribution of M.

The case of a > % When a > %, the (M, d,1)-backoff process retains positive probability on
short histories as ¢ increases, and hence retains memory of its start state i. Nevertheless, the
process has a Cesaro limit distribution; but this distribution may be different from the stationary
distribution of M.

Theorem 3.4 When a > %, the (M, a,1)-backoff process has a Cesaro limit distribution.

Proof.  For all natural numbers ¢ and states j we have Pr[X; =j] = Y, ¢.(j) - Pr[Y; =] by
Lemma 3.2. Viewing Y; as a random walk on the natural numbers, one can compute the Cesaro
limit of Pr [Y; = r] to be (, = Ba when r = 0, and ¢, = 82"~! when r > 0, where 8 = (2a—1)/(2a?)
and z = (1 — «)/a. (Note that Y; does not have a stationary distribution, because it is even only
on even steps.) A standard argument then shows that Pr[X; = j] has the Cesaro limit Y, (;¢-(7).
|

Note that the proof shows only a Cesaro limit distribution, rather than a stationary distribution.
In fact, it is not hard to show that if a > %, then there is not necessarily a stationary distribution.

Now, more generally, suppose that the process starts from an initial distribution over states; we
are given a vector zg, choose a state j with probability zy(j), and begin the process from j. As zj
ranges over all possible probability vectors, what are the possible vectors of limiting distributions?
Let us again assume a fixed underlying Markov chain M, and denote this set of limiting distributions
by Sq.

Theorem 3.5 FEach S, is a simplex. As a converges to % from above, these simplices converge to
the single vector that is the stationary distribution of the underlying Markov chain.

4 Varying a’s

Recall that the state space S of the (M, &, 1)-Markov chain contains all finite attainable histories of
the backoff process. Let us refer to the transition probability matrix of the (M, @, i)-Markov chain
as the Polish matriz with starting state i, or simply the Polish matriz if 4 is implicit or irrelevant.
Note that even though the backoff process has only finitely many states, the Polish matrix has a
countably infinite number of states.

Our analysis in the rest of the paper will branch, depending on whether the Polish matrix
is transient, null, or ergodic. We now define these concepts, which are standard notions in the
study of denumerable Markov chains (see e.g., [6]). A Markov chain (and its matrix P) are called
transient if, started in some state 7, the probability of eventually returning to state ¢ is strictly less
than 1. For every irreducible? non-transient Markov chain P, the sequence of powers of P has a

3Note that the assumption that the (M, &)-backoff process is irreducible implies that the Polish matrix is irreducible
ezxcept if some ar; = 0. We will see later that whenever some «; = 0, then the Polish matrix is transient. So all recurrent
chains we encounter are irreducible.



Cesaro limit L (that is, 1 Y-%_; P" converges to L). An irreducible non-transient chain is null if L
is identically 0, and otherwise is ergodic. For an ergodic chain, every entry of L is strictly positive.
For each state i of an ergodic chain, the expected time, starting in state 7, to return to 7 is finite.
For each state i of a null chain, the expected time, starting in state 4, to return to 7 is infinite. We
note that no finite Markov chain is null.

For example, consider a random walk on the semi-infinite line, with a reflecting barrier at 0,
where the probability of moving left (except at 0) is p, of moving right (except at 0) is 1 — p, and
of moving right at 0 is 1. If p < 1/2, then the walk is transient; if p = 1/2, then the walk is null;
and if p > 1/2, then the walk is ergodic.

We say that the backoff process (M, &, 1) is transient (resp., null, ergodic) if the Polish matrix
is transient (resp., null, ergodic). In the constant « case (Section 3), if & < 1/2, then the backoff
process is transient; if « = 1/2, then the backoff process is null; and if & > 1/2, then the backoff
process is recurrent. The next proposition says that the classification does not depend on the start
state and therefore we may refer to the backoff process (M, @) as being transient, ergodic, or null.
Its proof may be found in Appendix C.1.

Proposition 4.1 The backoff process (M, d,1) is transient (resp., ergodic, null) precisely if the
backoff process (M, d,j) is transient (resp., ergodic, null).

Theorem 4.2 If (M, d) is irreducible then the task of classifying the (M, &)-backoff process as
transient or ergodic or null is solvable in polynomial time.

Theorem 4.3 For every irreducible (M, &) and for every i € V, the (M, &,1i)-backoff process has a
Cesaro limit distribution. This limiting distribution is independent of i if the (M, &)-backoff process
1s transient or null. Furthermore, the limiting distribution is computable exactly in polynomial time
if the process is ergodic or null.

When the (M, d)-backoff process is transient, the limiting probabilities are not necessarily
rational in the entries of M and & and therefore we cannot hope to compute them exactly. In
Section 4.2, we give an algorithm for approximating these limiting probabilities.

4.1 Classifying the backoff process

In this section we show how it is possible to classify, in polynomial time, the behavior of any
(M, @)-backoff process as transient or ergodic or null. In Section 3 (where the backoff probability
is independent of the state), we showed that the length of the history is either always expected
to grow or always expected to shrink (except for initial histories), independent of the top state in
the history stack. To see that this argument cannot carry over to this section, consider a simple
Markov chain M on two states with M;; = 1/2 for every pair 4,5 and &; = (.99,.01). Tt is clear
that if the top state is 1, then the history is expected to shrink while if the top state is 2, then the
history is expected to grow. To deal with this imbalance between the states, we associate a weight
w; with every state ¢+ and consider the weighted sum of states on the stack. Our goal is to find a
weight vector with the property that the weighted sum of states on the stack is expected to grow
(resp. shrink) if and only if the history is expected to grow unboundedly (resp. remain bounded).
This hope motivates our next few definitions.

Definition 4.4 For a nonnegative vector 1 = (wy,...,wy), and a history ¢ = (0g,...,07) of an
(M, @)-backoff process on n states define the w-potential of &, denoted ®5(7), to be 25:1 we, (i-e.,
it is the weighted sum of the states in the history, except the initial state, with state i weighted by

wi).



Definition 4.5 For a nonnegative vector , and a history o of an (M, &)-backoff process on n
states define the w-differential of &, denoted A®3(5), to be E[Pgz(succ(d))] — ®y(a). (Here E
represents the expected value over the distribution given by succ(a).)

The following proposition is immediate from the definition.

Proposition 4.6 If 5 and &' are non-initial histories with the same top state j, then
n
ADy(0) = APy(0') = —ajwj + (1 —ay) D Mjgwy.
k=1

The above proposition motivates the following definition.

Definition 4.7 For an (M, &)-backoff process, nonnegative vector i, and state j € {1,...,n}, let
Ady i = Ady(a), where & is any history with j = top(d) and £(5) > 0. Let A®y denote the vector
(ADg1,...,ADyg,).

For intuition, consider the constant « case with weight vector w; = 1 for all 4. In this case
®,;(0), the w-potential of 7, is precisely £(5), and A®;(7), the w-differential of 7, is the expected
change in the size of the stack, which is 1 — 2. When o < 1/2 (resp., a = 1/2, a > 1/2), so that
the expected change in the size of the stack is positive (resp., 0, negative), the process is transient
(resp., null, ergodic).

Similarly, in the non-constant « case we would like to associate a positive weight with every
state so that (1) the expected change in potential in every step has the same sign independent of
the top state (i.e., @ is positive and A® is either positive or zero or negative), and (2) this sign
can be used to categorize the process as either transient, null or ergodic precisely as it did in the
constant « case.

In general, this will not be possible, say, if some a; = 1 and some other o; = 0. Therefore, we
relax this requirement slightly and define the notion of an “admissible” vector (applicable to both
the vector of weights and also the vector of changes in potential).

Definition 4.8 We say that an n-dimensional vector v is admissible for a vector & if ¥ is non-
negative and v; = 0 only if a; = 1. (We will drop the suffiz, admissible for &, and simply say
admissible, if the latter vector is named &.)

In Appendix C.3 we prove three very natural lemmas that combine to show the following.
Given (M, @) and an admissible vector w: (1) If A®,, is admissible then the process is transient.
(2) If A®,, is zero then the process is null. (3) If —A®,, is admissible then the process is ergodic.
Roughly speaking, we show that ®;(5) is a bounded-difference martingale. This enables us to use
martingale tail inequalities to analyze the long-term behavior of the process.

This explains what could happen if we are lucky with the choice of w. It does not explain how
to find 4, or even why the three cases above are exhaustive. Our next lemma shows that the cases
are indeed exhaustive and gives a efficient algorithm to compute .

Lemma 4.9 For every irreducible (M, &)-backoff process, there exists an admissible vector W such
that exactly one of the following holds: (1) A®y is admissible, (2) A®g is zero, or (3) —A®y is

admissible. Furthermore such a vector can be computed in polynomial time, given (M, &).

Proof. We first get rid of an easy case, namely if some «; = 0.



Claim 4.10 Suppose there exists j such that oj = 0. Let d(k,j) denote the length of a shortest
path (of non-zero probability) from k to j in M. Let Mpn be the smallest non-zero entry of M,
and let amax be the largest entry of & that is strictly smaller than 1. Let v = % - My, - E50max | Lot

Qmax
W be defined as follows.
0 if ap =1
Wk =1 ~dk.j)

otherwise.

Then w and A®; are admissible.

We defer the proof of the claim to Appendix C.2.

Let A be the n x n diagonal matrix with the A;; = a;. Let I be the n x n identity matrix. Then
notice that A®; = —Ad + (I — A) M.

Let H = (I — A)MA~'. Notice that since none of the ;’s are zero, A~! exists. The matrix
H is nonnegative. Let H|z be the restriction of H to rows and columns corresponding to o < 1.
Notice that H|s is irreducible. (This is equivalent to M|z being irreducible, which is implied by
the irreducibility of the backoff process.) By the Perron-Frobenius theorem (Theorem A.1), there
exists a (unique) positive vector ¥' and a (unique) positive real p such that H|z0' = pt’. Let ¥
be an n-dimensional vector obtained by padding " with zeroes in the columns corresponding to
a; = 1. Notice then that H7 = pif and ¥ is admissible for &. Now let @ = A~'#. Notice that & is
also admissible, and satisfies (I — A)M& = pAw. Equivalently, —Aw + (I — A)Mw@ = (p — 1) AW,
and thus A®; = (p — 1) Awl. Thus, for this choice of w, (1) if p > 1, then A®; is admissible; (2) if
p =1, then Ad; =0; (3) if p < 1, then —A®; is admissible.

Thus we have proved the existence part of the result. But it also follows that the vector
can be computed efficiently (since this amounts to computing an eigenvalue and the corresponding
eigenvector of a given matrix). W

It is easy to see that the results we have discussed combine to prove Theorem 4.2.

4.2 Cesaro limit distributions

We begin the section by sketching the proof that the (M, &, 1)-backoff process always has a Cesaro
limit distribution. The proof is quite different in each of the cases (transient, ergodic and null).
More details appear in Appendix C.4. We conclude the section by showing how the limiting
distribution may be computed.

The easiest case is the ergodic case. Since the Polish matrix is ergodic, the corresponding
Markov process has a Cesaro limit. This gives us a Cesaro limit in the backoff process, where the
probability of state 4 is the sum of the probabilities of the stacks in the Polish matrix with top
state 1.

We now consider the transient case. When the backoff process is in a state (with a given
stack), and that state is never popped off of the stack (by taking a backedge), then we refer to this
(occurrence of the) state as irrevocable. Let us fix a state 7, and consider a renewal process (see
Definition A.7), where each new epoch begins when the process has an irrevocable occurrence of
state 4. Since the Polish matrix is transient, the expected length of an epoch is finite. The limiting
probability distribution of state j is the expected number of times that the process is in state j in
an epoch, divided by the expected length of an epoch. This is a sketch of a proof of the existence of
a Cesaro limit distribution. A more careful argument (given in Appendix C.4) shows the existence
of a stationary distribution.

Finally, we consider the null case. We select a state j where a; # 1. Let us consider a new
backoff process, where the underlying Markov matrix M is the same; where all of the backoff



probabilities oy, are the same, except that we change «; to 1; and where we change the start state
to j. This new backoff process can be shown to be ergodic. We show a way of “pasting together”
runs of the new ergodic backoff process to simulate runs of the old null ergodic process. Thereby,
we show the remarkable fact that the old null process has a Cesaro limit distribution which is the
same as the Cesaro limit distribution of the new ergodic process. We now show how the limiting
distribution may be computed. Again, we branch into three cases.

4.2.1 The null case

The matrix H = (I — A)MA~!, which we saw in Section 4.1), plays an important role in this
section. We refer to this matrix as the Hungarian matriz of the (M, @)-backoff process. The next
theorem gives an important application of the Hungarian matrix.

Theorem 4.11 The limiting probability distribution m satisfies # = wH. This linear system has a
unique solution subject to the restriction ), m; = 1. Thus, the limiting probability distribution can
found by solving a linear system.

Proof [Sketch].  The key ingredient in the proof is the observation that in the null case, the
probability of a transition from a state 7 to a state j by a forward step is the same as the probability
of a transition from state j to a state ¢ by a backward step (since each forward move is eventually
revoked, with probability 1). Thus if we let m;_,; denote the probability of a forward step from i
to j and 7. ; denote the probability of a backward step from j to ¢ (and m; denotes the limiting
probability of being in state 7), then the following conditions hold:

M=y Winj Y Wied;  Ming = (1—a)Mijmi;  Wisj = T
J J

Manipulating the above shows that 7 satisfies # = wH. For the uniqueness part, notice that if
all @; < 1, then H is irreducible and nonnegative and thus by Theorem A.l, 7 is a maximal
eigenvector and hence a unique solution to the linear system. If some a; = 1, we argue by focusing
on the matrix Hl,, (as in Section 4.1, H]|, is the principal submatrix of H containing only rows
and columns corresponding to 7 s.t. a; < 1) which is irreducible. Details omitted. m

4.2.2 The ergodic case

In this case also the limiting probabilities are obtained by solving linear systems, obtained from a
renewal argument. We define “epochs” starting at 7 by simulating the backoff process as follows.
The epoch starts at an initial history with Xy = (i). At the first step the process makes a forward
step. At every subsequent unit of time, if the process is in state 7, it first flips a coin that comes
up “B” with probability o; and “F” otherwise. If the coin comes up “B”, it checks to see if it is
back at the initial history and if so declares an end of an epoch.

Notice that the distribution of the length of an epoch starting at 7 is precisely the same as the
distribution of time, starting at an arbitrary history with ¢ on top of the stack, until this occurrence
of 7 is popped from the stack, conditioned on the fact that the first step taken from i is a forward
step.

Let T; denote the expected length of (or more precisely, number of transitions in) an epoch,
when starting at state ¢. Let N;; denote the expected number of transitions out of state j in an
epoch when starting at state . Standard renewal arguments (using Theorem A.8 with E(X;) =T;



and E(Y;) = N;;) show that the Cesaro limit probability distribution vector 7(), for an (M, &, i)-
backoff process, is given by 71'7(-2) = N;;/T;, provided Tj is finite. Since this is true for the ergodic

case, this gives us a way to compute the Cesaro limit distribution in the ergodic case. The key
equations that allow us to compute the N;; and T; are:

Ti =1+ Myfap -1+ (1 —ap) (T +1)] + (1 — o) T3,

k
Nij = 6ij + Y Miglag - i1, + (1 — ) (Nigj + 0p)] + (1 — ;) Nij,
k
where 0;; = 1 if ¢ = j and 0 otherwise. (The above equations are derived by straightforward

conditioning. For example, if the first step in the epoch takes the process to state k, then it takes
T}, units of time to return to () and then with probability (1 — «;) it takes T; more steps to end
the epoch.)

The T;’s and N;j’s can be computed by solving the linear systems above. Uniqueness of the
solution to the linear system is derived from the non-singularity of I — H, where H = (I — A)M A™!
is the Hungarian matrix. Details omitted.

4.2.3 The transient case

Theorem 4.12 Let (M, &) be a transient backoff process on n states, and let all entries of M and
a be rationals expressible as ratios of [-bit integers. Then, given any error bound € > 0, a vector
7' that e-approzimates the stationary probability distribution w of the (M, &)-process (i.e., satisfies
|7r9 —mj| <€) can be computed in time polynomial in n,l and log %

Let r; denote the “revocation” probability of a state 4, i.e., the probability that an epoch starting
at 7, as in Section 4.2.2, ends in finite time. Let 7 denote the vector of revocation probabilities.
The following lemma shows how to compute the limiting probabilities w given 7. Further it shows
how to compute a close approximation to 7, given a sufficiently close approximation to 7.

Lemma 4.13 The limiting probabilities satisfy m = w(I — A)M R, where R is a diagonal matriz
with 1—(1—ai)lzk o v the ith entry. Further, there exists a unique solution to the above system

subject to the condition ), m; = 1.

Remark: Two special cases of interest are: (1) When all a;; = 0, in which case we recover the
familiar condition for Markov chains that 7 = 7M. (2) When all r; = 1, in which case we get the
null case and then 7 satisfies 7 = 7(I — A)M A~ L.

Proof. The first part of the lemma is obtained as in Theorem 4.11. Let m;_,; denote the probability
of a forward transition from ¢ to j at stationarity, and let m;.; denote the probability of a backward
transition from j to 7. Then the following conditions hold.

Tiej = TjTisj (1)
iy = (1l — oy)M;; (2)

T = Zﬂjm-l-zﬂiej (3)
J J

Using Equation (1) to eliminate all occurrences of variables of the form ;. ;, and then Equa-
tion (2) to eliminate all occurrences of m;_,;, Equation (3) simplifies to:

i J

10



Thus if we let D be the matrix with the ijth entry being

_ (1 — o) M5
L — (1 —aj) X Mjrye

then 7 satisfies m = wD. As in the proof of Theorem 4.11 if we permute the rows and columns of
D so that all states ¢+ with a; = 1 appear at the end, then the matrix D looks as follows:

[ by x

where D, is non-negative and irreducible. Thus m = [rs7p] must satisfy 74 = 74D, and 7p =
maX. T4 is now seen to be unique (up to scaling) by the Perron-Frobenius theorem (Theorem
A.1), while g is unique given m4. The lemma follows by noticing that D can be expressed as
(I —A)MR. m

Lemma 4.14 Let the entries of M and & be l-bit rationals describing a transient (M, &)-precess
and let w be its stationary probability vector. For every € > 0, there exists 8 > 0, with log% =

poly(n, i, log %), such that given any vector ¥ of I'-bit rationals satisfying |7 — 7|, < B, a vector
' satisfying ||7" — 7|, < € can be found in time poly(n,l,l',log %)

Remark: By truncating 7 to log% bits, we can ensure that I’ also grows polynomially in the input
size, and thus get a fully polynomial time algorithm to approximate .
We defer the proof of Lemma 4.14 to Appendix C.5.

Lemma 4.15 The revocation probabilities r; are the optimum solution to the following system:

min E T;
i

st x> i+ (1 — )z 3 Mijz; (5)
z; < 1
ZI; 2 0

Further, the system of inequalitities above is equivalent to the following semidefinite program:

minzxi
i
s.t. g = 1—(1—«) Zj Mjz;
rp < 1
ez (6)
g > 0
D; postive semidefinite, where D; = ri o
V@i G )

Proof. We start by considering the following iterative system and prove that it converges to the
optimum of (5).
Fort =0,1,2,..., define :zrz(t) as follows:

#0 = 0, 2D = a; + (1 — Ofi)f”z(‘t) ZMijx('t)‘



By induction, we note that xl(t) < a:z(tﬂ)

x(-tH) = o+ (1 —ay)z tZMmav

< 1. For example:

2

> o+ (1 - Oéi Iit b ZMijIjtil)
J
(®)

Thus since (:vl(-t)

denote this limit.
We claim that z] are the (unique) optimum to (5). By construction, it is clear that 0 < z} <1

and 7} = a; + (1 — a;)7] 3, Mjjx}; and hence z}’s form a feasible solution to (5). To prove it is

)¢ is a non-decreasing sequence in the interval [0,1], it must have a limit. Let z}

the optimum, we claim for every feasible solution a;’s to (5) satisfies a; > :vl(-t) and thus a; > zj.

(t)

We prove this claim by induction. Assume a; > z;”, for every . Then

a; > ozi—l—(l—ai aiZMi]‘a]‘
> i+ (1 —ay)z tZMljav

el

This concludes the proof that the z}’s are the unique optimum to (5).

Next we show that the revocation probability r; = zj. To do so, note first that r; satisfies the
condition

ri = o; + (1 — Olz') ZMi]"f‘j’r‘i.
J
(Either the move onto i is revoked at the first step with probability «;, or we move to j with
probability (1 — a;)M;; and then the move to j is eventually revoked with probability r;, and this
places i again at the top of the stack, and with probability r; this move is revoked eventually.)
Thus r;’s form a feasible solution and thus r; > z;. To prove that r; < z7, let us define rl(t) to
be the probability that a forward move onto vertex ¢ is revoked in at most ¢ steps. Note that
r; = limg_, o0 rzgt). We will show by induction that rgt) < a:z(t) and this implies r; < z;. Notice first
that
TZ(t—H) <o+ (1—a)), Mijr](-t)rgt).
J

(This follows from a conditioning argument similar to the above and then noticing that in order
to revoke the move within ¢ + 1 steps, both the revocation of the move to 5 and then the eventual
revocation of the move to 4 must occur within ¢ time steps.) Now an inductive argument as earlier
shows rZ(t—H) < xEtH). Thus we conclude that z} = r;. This finishes the first part of the lemma.

For the second part, note that condition D; is semidefinite is equivalent to the condition r;q; >
«;. Substituting ¢; = 1—(1—qy) >_; Myjr; turns this into the constraint ri—(1—a;)r; > Mijry > oy,
and thus establishing the (syntactic) equivalence of (5) and (6). ®

Lemma 4.16 If the entries of M and & are given by [-bit rationals, then an e-approximation to
the vector of revocation probabilities can be found in time poly(n,l,log %)

12



Proof. We solve the convex program given by (5) approximately using the ellipsoid algorithm [3].
Recall that the ellipsoid algorithm can solve a convex programming problem given (1) a separation
oracle describing the convex space, (2) a point # inside the convex space, (3) radii € and R such
that the ball of radius € around Z is contained in the convex body and the ball of radius R contains
the convex body. The running time is polynomial in the dimension of the space and in log %

The fact that (5) describes a convex program follows from the fact that it is equivalent to the
semidefinite program (6). Further, a separation oracle can also be obtained due to this equivalence.
In what follows we will describe a vector Z that is feasible, and an e > 2~ PoW(™l) gyuch that every
point y satisfying ||z — y||,, < € is feasible. Further it is trivial to see that every feasible point
satisfies the condition that the ball of radius \/n around it contains the unit cube and hence all
feasible solutions. This will thus suffice to prove the claim.

Recall, from Section 4.1, that since (M, @) is null, there exists a p > 1 and a vector @ such that
(I — A)YM A~ '(w5) > pii. (This held even in the case where some aj = 0.) Note further that since p
is the maximal eigenvalue of a matrix whose entries are poly(n,[) bit rationals, its value is at least
142 Poly(md) Tet ¥ = A 145, and let vmax = max; v; and let vmin = min; v;. Again we note that
Vpmin > 27 POW(lgy Scaling # appropriately, we may assume vy, = 1. We will use this p and ¥
below.

Before describing the vector # and e, we make one simplification. Notice that if a; = 1, then
r; = 1 and if a; = 0, then r; = 0. We fix this setting and then solve (5) for only the remaining
choices of indices 7. So henceforth we assume 0 < «; < 1 and in particular the fact that o; > 2L,

2
Let § = . Note § > 27 PV Tet e = 270Dy, (”le) . We will set z; = 1 — dv; and
show that z; — a; — (1 — o)z > Mijzj is at least 2e. Now letting x; = z; — €, we get the required
vector & and e.

Consider

Z; — O — (1 — Olz')Zi ZMiij
J

= 1—-0v;—a; — (1 —a;)(1l — 5Ui)ZMz’j(1 — 0v;)
J
= 1- (5?)2' — Oy — (1 —Oti)(l - (5?)2')(1 — 5ZMZ'9"U]')
J

(1 — (5’()1) ((5 Z(l — ai)Mijvj) - (5?)Z'Oti

J

> (1= dv;) (dpavi) — dv;cy
> dajvi (p— pdv; — 1)
N2
> <p_1> Q;0;
2p
> 2e.

This concludes the proof. m

Proof. [of Theorem 4.12] Given M, & and ¢, let § be as given by Lemma 4.14. We first compute a
£ approximation to the vector of revocation probabilities in time poly(n,/, log %) = poly(n,,log %)
using Lemma 4.16. The output is a vector 7 of I’ = poly(n,[,log %)—bit rationals. Applying
Lemma 4.14 to M, &, ¥ and €, we obtain a e-approximation to the stationary probability vector 7

in time poly(n,,!’,log 1) = poly(n,/,log1). =

13
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A Preliminaries

In this section, we review background material essential to our proofs.

A.1 Perron-Frobenius Theorem

Theorem A.1 (Perron-Frobenius Theorem, see e.g., [4], p. 508) Let A be an irreducible, non-
negative n by n matriz. Then

e There exists ¥, with all components positive, and g > 0 such that AY = \¥;
o if \# \o is any other eigenvalue of A, then |\| < X\o; and

e the eigenspace associated with Ay is one-dimensional.

A.2 Martingale Tail Inequalities

We begin by reviewing the basic definitions.

Definition A.2 e A sequence of random variables Xo, X1, ... is said to be a martingale if for
all 1 >0, E[XZ|X0, R aXi—l] =X;_1.

e A sequence of random variables Xo, X1, ... is said to be a super-martingale if for all i > 0,
E[Xi| Xo,..., Xi—1] < Xj—1.

e A sequence of random wvariables Xo, X1,... is said to be a sub-martingale if for all i > 0,
E[Xi|Xo,...,Xi 1] > Xi 1.



Theorem A.3 (Azuma’s Inequality, see e.g., [8], p. 92) Let Xo, X1,... be a martingale sequence
such that for each k
| Xk — Xg—1| < e,

where ¢, may depend on k. Then, for all t > 0 and any A > 0,
22
Pr[X; — Xo| > A] < 2exp (—m> .
Corollary A.4 Let Xy, Xq,... be a martingale sequence such that for all k
| X — Xip1] <ec

Then, for allt > 0 and any A > 0

Pr[X, — Xo| > AevE] < 2¢ /2.
Corollary A.5 Let Xy, Xq,... be a sub-martingale such that

E(X;|Xo,...,X;-1) > X;—1 + 5,

(B >0) and for all k
|Xk — Xk,1| S C.
Then, for all t > 0 and any X > 0

Pr(|X; — Xo| < A) < 2¢ (2 (t-%)),

Corollary A.6 Let Xy, Xq,... be a super-martingale such that
B(XilXo,...,Xi—1) < Xim1 -8,
(B >0) and for all k
|Xk - Xk,1| S C.

Then, for all t >0 , ,
Pr(| X, 4 Bt — Xo| > ~t) < 27712,

A.3 Renewal Theory

Definition A.7 A renewal process {N(t), t > 0} is a non-negative integer-valued stochastic pro-
cess that registers the successive occurrences of an event during the time interval (0,t], where the
times between consecutive events are positive, independent, identically-distributed random variables.

Theorem A.8 (Corollary of Renewal Theorem, see e.g., [5], p. 203 ) Let N(t) be a renewal process
where the time between the ith and (i + 1)st event is denoted by the random variable X;. Let Y; be
a cost or value associated with the ith renewal cycle, where the values Y;, © > 1, are also positive,
independent, identically-distributed random variables. Then

i EYi<k<ni Yil  E(W)
1Mt 00 =

¢ E(X1)
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A.4 A Basic Probability Fact

Proposition A.9 Let p : Zt — [0,1] be a probability distribution (i.e., S22, p(i) = 1) with
expectation at least p (i.e., > 52 ip(i) > p). Let Yi,...,Yn,..., be a sequence of independent
random wvariables distributed according to p. Then, for every 6 > 0 and ' < p, there exists an

index N such that N

Pr[d Y >u - N >1-06.
i=1

Proof. Let K be an integer such that Zfil ip(i) > “,% (Such an index exists since the sequence
M1y 2y ey by - ., Where pj = 2{21 ip(7) is monotone non-decreasing and achieves a value of at
least j1.) Let p' be the distribution with p/(i) = p(i) if i € {1,..., K}, p'(0) =1 — XX, p(i) and 0
everywhere else. Note that the expectation of p’ is at least ”’—;“, and all moments of p’ are bounded
(by K). Thus we can apply the law of large numbers to conclude that there exists an N such that
sampling n times from p’ gives an average of at least p' - N with probability at least 1 — 5. m

B Proof of Theorem 3.1

Theorem B.1 For given natural numbers A and t, and a state j, we have Pr[X, = j | £(Hy) = A\] =
(7).

Proof. Consider a string w of “F”s and “B”s with the property the in every prefix, the number
of “B”s is not more than the number of “F”s. Notice that every such string corresponds to a
legitimate auxiliary sequence for the backoff process (except if a; = 0 or 1). Now consider strings
w and w' such that w = w1 FBwy and v’ = wjws. Let w be of length ¢ and w; of length ¢;. Notice
that

Pr(X;=j|(S,...,5) = w]
= Y Pr[H;, =5 |(S1,...,5,) =wi]-Pr[Xy =j | (Sy41,...,5) = FBw; and Hy, = 5]
7€S
= ZPI‘[Htl =0 | (Sl,...,St1> =w1] -PI‘[Xt =j | <St1+3,...,St1> = W9 and Ht1+2 =5’]
7eS
= Pr [Xt,Q :] | (Sla---75t72> :w']

This motivates the following notion of a reduction. A sequence w of “F”s and “B”’s reduces in one
step to a sequence ' if w = wi FBws and w' = wjwy. A sequence w reduces to a sequence w” if if
w" can be obtained from w by a finite number of “reductions in one step”. Repeatedly applying
the claim from the previous paragraph, we find that if a string w of length  reduces to a string w”
of length ¢”, then

PI'[Xt:j | (Sl,...,St>:LU]:PI'[XtH :] | (Sl,...,StH>:wﬂ].

But every auxiliary sequence (Si,...,S;) can eventually be reduced to a sequence of the form F*
(i.e., consisting only of forward steps), and further A = £(H;). This yields:

Pr(X; = | (S, S, €(H) = N = Pr [Xa = j | (S1,...,8)) = F*| = ax(j).

iii



C Proofs for Section 4

C.1 Preliminaries

Proof [of Proposition 4.1]. Let us call a state i transient if (M, d,1) is transient, and similarly for
the other properties (recurrent, and its subclassifications ergodic and null). We must show that if
some state is transient (resp., ergodic, null) then every state is transient (resp., ergodic, null). If
a; = 0 for some j, then every state ¢ is transient. This is because starting in state 7, there is a
positive probability of eventually reaching state j, and the stack (7,...,7) can never be unwound
back to the original stack (7). So assume that a; > 0 for every j.

Assume that there is at least one transient state and at least one recurrent state; we shall
derive a contradiction. Assume first that there is some transient state j with o; < 1. Let 4 be a
recurrent state. Starting in state ¢, there is a positive probability of eventually reaching state j.
This gives the stack (i,...,7). There is now a positive probability that the stack never unwinds
back to (i,...,7) (this follows from the fact that j is transient and that a; < 1). But if the stack
never unwinds to (7,..., ), then it never unwinds to (7). So there is a positive probability that the
stack never unwinds to (i), which contradicts the assumption that 7 is recurrent. Hence, we can
assume that for every transient state j, we have a; = 1.

Let j be an arbitrary state. We shall show that j is recurrent, a contradiction. Assume that
the backoff process starts in state j; we must show that with probability 1, the stack in the backoff
process returns to (7). Assume that the next state is £, so that the stack is (j,¢). If £ is transient,
then with probability 1, on the following step the stack is back to (j), since oy = 1. Therefore,
assume that £ is recurrent. So with probability 1, the stack is (4, ¢) infinitely often. Since ay > 0,
it follows that with probability 1, the stack must eventually return to (j), which was to be shown.

We have shown that if some state is transient, then they all are. Assume that there is at least
one null state and at least one ergodic state; we shall derive a contradiction. This will conclude
the proof.

Assume first that there is some null state j with a; < 1. Let 7 be an ergodic state. There is
a positive probability that starting in state 7 in (M, &, 1), the backoff process eventually reaches
state 7 and then makes a forward move. Since the expected time in (M, &, j) to return to the
stack (j) is infinite, it follows that the expected time in (M, &, %) to return to (i) is infinite. This
contradicts the assumption that 7 is ergodic. Hence, for every null state j, we have o; = 1.

Let 5 be an arbitrary state. We shall show that j is ergodic, a contradiction. For each state i,
let h; be the expected time to return to the stack (i) in (M, &, i), after starting in state i. Starting
in state j in (M, @, j), the expected time to return to the stack (j) is

> Mig(ap(2) + (1 — ar)ar(he +2) + (1 — )’ e(2he +2) + (1 — ar)’cr(Bhe +2) +---)  (7)
’

The term Moo (2) represents the situation where the first step is to some state ¢ followed im-
mediately by a backward step. The term M;,(1 — ay)ay(hs + 2) represents the situation where
the first step is to some state ¢ other than 7, followed immediately by a forward step, followed
eventually by a return to the stack (4, £), followed immediately by a backward step. The next term
M;o(1— cg)? g (2hg +2) represents the situation where the first step is to some state £ other than j,
followed immediately by a forward step, followed eventually by a return to the stack (7, £), followed
immediately by a forward step, followed eventually by another return to the stack (j,¢), followed
immediately by a backward step. The pattern continues in the obvious way.

v



The contribution to the sum by null states £ is finite, since ay = 1 for each null state . Let
zp = hy + 2. Then

(1 —ap)oy(he +2) + (1 — ap)®ap(2hp + 2) + (1 — ap)?0p(3he +2) + - -
is bounded above by
(1 = ap)e(ze) + (1 — ar)?a(220) + (1 — )’ cve(3z¢) + - --
This is bounded, since
(1 =) + (1= a)*2) + (1 = )’(3) + - = (1 — ar)/ ().

Therefore, the expression (7), the expected time to return to the stack (j), is finite, so j is
ergodic, as desired. =

C.2 Proof of Claim 4.10

Proof [of Claim 4.10]. Tt is clear by construction that vy > 0 and thus @ is admissible. We
now show that A®; is admissible, by arguing that for every £, the component A®; ;. satisfies the
conditions of admissibility.

Case 1: oy, = 1. In this case the expected change in potential, A®; ., is —1-wy = 0. (Note this
is admissible for @ since o = 1.)

Case 2: ap = 0. (This includes the case k = j.) In this case, we get the following expression for
the expected change in potential:

Adygp = Mygwy.
o

Since all summands are nonnegative, it suffices to prove one of them is strictly positive. Since
(M, &) is irreducible, we have that there must be some £’ such that Mg > 0 and oy < 1. By the
latter condition and the admissibility of @, we get wyr > 0 and thus Mypwgr > 0. So Ady > 0,
as desired.

Case 3: k # j, 0 < oy < 1. Let k' be such that My, > 0 and d(k',j) = d(k,j) — 1. We know
such a state k" exists (by definition of shortest paths). We have:

Ay = —apy™™9) 4 (1 —ay) > Myt

!

> =y + (1 — ap) Mgy ™9

= M9 (—agy + (1 — ) M)

> U9 (—agy 4 (1 — Amax) Mimin)

— ,Yd(k ) (—ak’)/ + 2704max)

> UKD (—agy + 2yay)

= 'yd(k, ) (k)

> 0.

So again, A®; ;. > 0, as desired. =



C.3 Proofs for the classification algorithm

Lemma C.1 For an (M,a)-backoff process, if there exists an admissible i s.t A®g is also admis-
sible, then the (M, &)-backoff process is transient.

Proof. We start by showing that the potential ®;(succ(succ(d))) has a strictly larger expectation
than the potential ®5(5). This, coupled with the fact that changes in the potential are always
bounded in magnitude, allow us to apply martingale tail inequalities to the sequence {®;(Hy)}y
and claim that it increases linearly with time, with all but an exponentially vanishing probability.
This allows us to prove that with positive probability the walk never returns to the initial history,
thus ruling out the possibility that it is recurrent. Details below.

Claim C.2 There exists an € > 0 s.t. for all sequences Hy, ..., H; of positive probability in the
(M, d,1)-Markov chain,
E [(I)(Ht+2) — (I)(Ht)] > €.

Proof. We start by noticing that the potential must increase (strictly) whenever H, is the initial
history. This is true, since in this case the backoff process is not allowed to backoff. Further, by
irreducibility, there exists some state j with a; < 1 and M;; > 0. Thus the expected increase in

potential from the initial history is at least eldéfijij. Let €2 be the smallest non-zero entry of
A®g5. We show that the claim holds for € = min{ey, ea}.

Notice first that both the quantities: E[®(H;11) — ®(H;)] and E [®(H;y2) — ®(H;11)] are non-
negative (since A®,;; is nonnegative). So it suffices to prove that at least one of these quantities
increases by at least e. We consider several cases:

Case 1: aop(m,) < 1: In this case E[®(Hiy1) — ®(Hy)] = APy iop(m,) = €2, since Ady is
admissible.

Case 2 ayop(pr,) = Land £(Hy) > 1: Let Hy = (00, ...,01-1,01). Note that Hy 1 = (00,...,01-1)-
Further, note that aop(m,,,) <1 (since only the top or bottom of the history can be states j with
a; = 1). Thus, in this case we have, E [®(H;12) — ®(H;41)] > €2 (again using the admissibility of
Ad;).

Case 3: aop(m,) = 1 and £(H;) < 1: In this case, either H; or Hyyq is the initial history, and in
such a case, we have that the expected increase in potential is at least ¢;. ®

Next we apply a martingale tail inequality to claim that the probability that the history is the
initial history (or equivalently the potential is zero) grows exponentially small with time.

Claim C.3 There exists ¢ < 0o, A < 1 such that for every integer t > 0, the following holds:
Pr[¢(H;) = 0] < c- A\

Proof. Since the potential at the start state is zero, and the potential is expected to go up by €
every two time steps, we have that the expected potential at the end of ¢ steps (when ¢ is even) is at
least et/2. Further notice that the sequence ®;(Hy), ®5(H2), ®i(Hy), ..., form a sub-martingale,
and that the change in ®;(H;) is absolutely bounded: |®;(Hyy2) — @y(Hy)| < 2-max;cqy 1 {wi}
Therefore, we can apply a standard tail inequality (Corollary A.5) to show that there exist constants
¢ < o0, A < 1 such that

Pr[®g(Hy) = 0] < c- A

The claim follows by noticing that if the history is the initial history, then the potential is zero. =
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We use the claim above to notice that for any time T', the probability that the (M, &, 7)-process
reaches the initial history after time 7 is at most 327 c-A! < ¢- AT /(1 —)). Setting T sufficiently
large, we get that this quantity is smaller than 1. Thus the probability that the given (M, &, 1)-
backoff process returns to the initial history after time 7" is bounded away from 1, ruling out the
possibility that it is recurrent. m

Lemma C.4 For an (M, &)-backoff process, if there exists an admissible W s.t the vector —A®;
is also admissible, then the (M, &)-backoff process is ergodic.

Proof. First notice that we can modify the vector @ so that it is positive and A®; is negative, as
follows: Let € be the smallest non-zero entry of —A®,;. For every j s.t. a; = 1, set wg- =wj+€/2.
The corresponding difference vector, A®z, is at most €/2 larger than Ad; in any coordinate; and
thus entries that were already negative in A®,;; remain negative in A®. On the other hand, for
any j such that Adyg ; was 0 (implying a; = 1), the value of A®y ; is —wj = —¢/2. Thus all the
zero entries are now negative.

Henceforth we assume, w.l.o.g., that @ is positive and A®; is negative. Let wmin denote the
smallest entry of —A®; and wyax denote the largest entry of . At this stage we have that the
expected w-potential always goes down except when the history is an initial history. Notice that
when the history is an initial history, the expected increase is potential is at most wmax. To deal
with initial histories, we define an extended potential.

For a sequence Hy,..., Hy,... of the (M, &,i)-Markov chain, let Ny(¢) denote the number of
times the initial history occurs in the sequence Hy, ..., H; 1. Define the extended potential ¥ (t) =

go"“’Ht"“(t) to be
Q[}(t) = (I)u‘z'(Ht) - (wmax + wmin) : NU(t)-

By construction, the extended potential of a sequence is expected to go down by at at least
Wmin in every step. Thus we have

E[tp(t)] < —wmin - t.

Further, the sequence (0),...,(t),... is a super-martingale and the change in one step is abso-
lutely bounded. Thus, by applying a martingale tail inequality (Corollary A.6), we get that for
any € > 0, we find that with probability tending to 1, the extended potential after ¢ steps is at most
—(1 — €)wmin - t. (More formally, Ve, d > 0, there exists a time %y such that for every ¢ > #,, the
probability that the extended potential 1 (t) is greater than —(1 — €)wmin - £, is at most .) Since the
®; part of the extended potential is always nonnegative, and each time the sequence reaches the
initial history, it is reduced by at most (wmax + Wmin), this implies that a sequence with potential
—(1 — €)wmin - t must include at least (1 — €)—tmis— . ¢ initial histories.

Assume for contradiction that the (M, @)-backoff process is null or transient. Then, the expected
time to return to an initial history is infinite. Let Y; denote the length of the time between the
(i — 1)st and 4th visit to the initial history. Using a straightforward application of the law of large
numbers (Proposition A.9), we find that for every § and ¢ < oo there exists an integer N such that
such that with probability at least 1 — 4, the first IV visits to the initial history take more than ¢- NV
steps. Setting § = % and c=2- w and t = ¢N, we find that this contradicts the conclusion

of the previous paragraph. We conclude that the (M, @)-backoff process is ergodic. m

Definition C.5 For a state j, define the revocation probability as follows: Pick any non-initial
history 6 = (og, ...,01) with top(d) = j. The revocation probability R; is the probability that the
(M, &,i)-Markov chain starting at state & reaches the state ' = (0q,...,01_1). (Notice that this
probability is independent of I and oq,...,0,_1; and thus the quantity is well-defined.)
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Before going on to characterize null processes, we prove a simple proposition that we will need
in the next lemma.

Proposition C.6 If an (M, a)-backoff process is transient, then there exists a state j with revoca-
tion probability R; < 1.

Proof. 1If every state has revocation probability 1, then the first step is revoked with probability
1, indicating that the walk returns to the origin with probability 1, making it recurrent. |

The converse is also true, but we do not need it, so we do not prove it.

Lemma C.7 For an (M, &)-backoff process, if there exists an admissible W s.t the vector A®gz = 0
then the (M, &)-backoff process is null.

Proof. We first define an extended potential as in the proof of Lemma C.4, but we will be a bit
more careful. Let 7 = E[®z(H1) — ®5(Hp)] be the expected increase in potential from the initial
history. (Note 7 > 0.)

For a sequence Hy,..., Hy,... of the (M, &,i)-Markov chain, let Ny(¢) denote the number of
occurrences of the initial history in time steps 0,...,%7 — 1, and let the extended potential 1 (¢) be
given by

B(t) = D(Hy) — 7 No(t).

Notice that the extended potential is expected to remain unchanged at every step of the backoff
process. Applying a martingale tail inequality again (Corollary A.4) we note that for every 6 > 0,
there exists a constant ¢ < oo such that the probability that the extended potential v (t) is greater
than ¢/t in absolute value is at most 6. We will show that for an ergodic process the extended
potential goes down linearly with time, while for a transient process the extended potential goes up
linearly with time - thus concluding that the given (M, &)-backoff process fits in neither category.

Claim C.8 If the (M, d)-backoff process is transient, then there exist constants € > 0 and b s.t.

for every time t, it is the case that
B[(6)] > et — b.

Proof. Let j be a state with R; < 1. Let n be the number of states of the Markov chain M.
Notice that for each ¢ and each history Hj, there is a positive probability that there exists a time
t' € [t+1,t+n] such that top(Hy) = j and the move from Hy | to Hy is a forward move. Further,
conditioned on this event there is a positive probability (of 1 — R;) that this move to j is never
revoked. Thus in any interval of time of length at least n, there is a positive probability, say -, that
the (M, @, 1)-backoff process makes a move that it never revokes in the future. Thus the expected
number of such moves in ¢ steps is v¢/n. Let wpyi, be the smallest non-zero entry of @. Then the
expected value of ®;(H,) is at least (yt/n)wmin.

We now verify that the expected value of 7 - Ny(¢) is bounded from above. This is an easy
consequence of a well-known property of transient Markov chains, which states that the expected
number of returns to the initial state (or any state) is finite. Let this finite bound on E[Ny(#)] be
B. Then for every ¢, we have E[r - Ny(t)] < 7B.

Thus the expected extended potential after ¢ steps is at least yt/n —7B. =

Claim C.9 If the (M, d)-backoff process is ergodic, then there exist constants v > 0 and b < oo
such that for all t,
B[$(t)] < —t +b.
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Proof.  We first argue that the “—7 - Ny(t)” part of the extended potential goes down linearly
with time. Let Y; denote the time between the (j — 1)st and jth return to the initial history.
Then the Y;’s are independently and identically distributed and have a bounded expectation, say
T. Then, applying the law of large numbers, we have that there exists a ¢ such that for all £ > %
the probability that the number of visits to the origin in the first ¢ time steps is less than ¢/27T is
at most % Thus the expected contribution to the extended potential from this part is bounded
above by —7 - (t —t9)/(4T).

It remains to bound the contribution from E[®;(H,)]. Let f(t) denote the smallest nonnegative
index such that the history H; ) is an initial history. Notice then that E[®;(H;)] is at most
Wmax - B[f(t)]. We will bound the expected value of f(t). Let F(¢) denote this quantity. Let p be
the probability distribution on the return time to an initial history, starting from Hy. Recall that
>.;ip(i) = T. Then F(t) satisfies the relation:

Ft)=Y_p()F(t—14)+ Y tp(i).
=1 1=t+1

(If the first return to the initial history happens at time ¢ and ¢ > ¢, then f(t) = ¢, and if i < ¢
then f(t) = f(t —1).) We use this relation to prove, by induction on ¢, that: For every ¢ > 0, there
exists a constant a such that F(t) < et +a. Set a such that Y7, ip(i) < §T. The base cases of
the induction are with ¢ < a and these easily satisfy the hypothesis, since F(t) <t < a < et + a.
For t > a, we get:

F(t) = Y p@)F(t—i)+ Y tp(i)
i=1 i=t+1
t

Y p()(e(t —i) +a)+ D tp(i)

<
i=1 i=t+1
00 t 00 00
< Y op()et = pi)ei+ Y pi)a+ D ip(i)
=1 =1 =1 i=t+1
oo oo
= et+a—Y pli)ei+ Y (1+e)ip(i)
i=1 i=t+1
< et+a—eT+ (1+¢€)(e/2)T
< et +a (Using e <1).
The claim now follows by setting € = ¢ and b = % +/. m

C.4 Existence of Cesaro Limits

In this section we prove that the (M, @, i)-backoff process always converges to a Cesaro limit. The
proofs are different for each case (ergodic, null and transient), and so we divide the discussion based
on the case.

C.4.1 Ergodic case

The simplest argument is for the ergodic case.
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Theorem C.10 If the backoff process (M, &) is ergodic, then the (M, &,1)-backoff process converges
to a Cesaro limit.

Proof. We gave this proof in Section 4.2. =

C.4.2 Transient case

In this section, we consider the transient case (where the Polish matrix is transient).

Theorem C.11 If the (M, a)-backoff process is transient, then the (M, &, i)-backoff process con-
verges to a stationary distribution.

Proof. Since the Polish matrix is transient, we know that for each state & of the Polish matrix
(which is a stack of states of the backoff process) where the top state top(c) has ayops) # 1, there
is a positive probability, starting in &, that the top state top(d) is never popped off of the stack.
It is clear that this probability depends only on the top state top(a) of the stack o.

When the backoff process is in a state (with a given stack), and that state is never popped off
of the stack (by taking a backedge), then we refer to this (occurrence of the) state as irrevocable.
Technically, an irrevocable state should really be thought of as a pair consisting of the state (of the
backoff process) and the time, but for convenience we shall simply refer to the state itself as being
irrevocable.

We now define a new matrix, which we call the Turkish matriz, which defines a Markov chain.
Just as with the Polish matrix, the states are again stacks of states of the backoff process, but
the interpretation of the stack is different from that of the Polish matrix. In the Turkish matrix,
the stack (o, ...,0y) represents a situation where og is irrevocable, and where o1,...,0y are not
irrevocable. The intuition behind the state {oy,...,o,) is that the top states of the stack of the
Turkish matrix (from o on up) are oy, ...,0,. As with the Polish matrix, the states (o, ..., o) of
the Turkish matrix are restricted to being the attainable ones: in this case this means (a) a,; # 1
for 0 <j < ¥4; (b) ay; #0for 1 <j </;and (¢) My, > 0for 0 <4 < {. There is a subtlety if the
start state i has a; = 1, since then the state (i) is not reachable from any other state, and so we do
not consider it to be a state of the Turkish matrix. One way around this issue is simply to assume
that the start state ¢ has a; # 1. This is an acceptable assumption, since with probability 1, the
backoff process will reach a state j with «; # 1 in a finite number of steps, and ignoring a finite
number of steps has no effect on asymptotic probabilities.

We now define the entries of the Turkish matrix T'. If & and ¢’ are states of the Turkish matrix,
then the entry T55 is 0 unless either (a) &’ is the result of popping the top element off of the stack
7, (b) @ is the result of pushing one new element onto the stack &, or (¢) both & and &’ each
contain exactly one element. The probabilities are those induced by the backoff process. Thus,
in case (a), if £ > 1, then Tiy)  5y(50...,0, ;) €quals the probability that the backoff process takes
a backedge from oy, given that the last irrevocable state was gy, that the stack from oy on up
is (0g,...,00), and that the remaining states o1,...,0,_; on the stack are not irrevocable. That
this conditional probability is well-defined (and is independent of the time) can be seen by writing
Pr[A | B] as Pr[A A B] /Pr[B]. Note that even though this conditional probability represents the
probability of taking a backedge from state oy, it is not necessarily equal to ay,, since the event
of taking the backedge is conditioned on other events, such as that o is irrevocable. Similarly, in
case (b), we have that Tig,....00)(00,004,) €Quals the probability that the backoff process takes a
forward edge from o, to opy1 and that o411 is not irrevocable, given that the last irrevocable state
was oy, that the stack from oy on up is (og,...,0¢), and that the remaining states o1,...,04 on



the stack are not irrevocable. Finally, in case (c) we have that T(Uo><06> equals the probability that
the backoff process takes a forward edge from to og to o, and that of, is irrevocable, given that oq
is irrevocable.

We now show that the Turkish matrix is irreducible, aperiodic, and (most importantly) ergodic.

We first show that it is irreducible. We begin by showing that from every state of the Turkish
matrix, it is possible to eventually reach each (legal) state (o) with only one element in the stack
(by “legal”, we mean that a,, # 1). This is because in the backoff process, it is possible to
eventually reach the state o, because the backoff process is irreducible; further, it is possible that
once this state o( is reached, it is then irrevocable. Next, from the state (o), it is possible to
eventually reach each state (oy,...,o0) with bottom element oy. This is because it is possible to
take forward steps from o to o1, then to o9, ..., and then to o,, with each of the states o1, 09,...,0y
being non-irrevocable (they can be non-irrevocable, since it is possible to backup from o, to oy
... t0 0g). Combining what we have shown, it follows that the Turkish matrix is irreducible.

We now show that the Turkish matrix is aperiodic. Let ¢ be a state with a; # 1. Since the
backoff process is aperiodic, the gcd of the lengths of all paths from i to itself is 1. But every path
from 4 to itself of length & in the backoff process gives a path from (i) to itself of length k in the
Turkish matrix (where we take the arrival in state i at the end of the path to be an irrevocable
state). So the Turkish matrix is aperiodic.

We now show that the Turkish matrix is ergodic. It is sufficient to show that for some state of
the Turkish matrix, the expected time to return to this state from itself is finite. We first show that
the expected time between irrevocable states is finite. Thus, we shall show that the expected time,
starting in an irrevocable state oy in the backoff process at time %j, to reach another irrevocable
state is finite. Let Ej be the event that the time to reach the next irrevocable state is at least k
steps (that is, takes place at time ¢y + & or later). It is sufficient to show that the probability of Ej
is O(\F) for some constant A < 1. Assume that the event Ej holds. There are now two possible
cases. Case 1: There are no further irrevocable states. In this case the state of the Turkish matrix
is of the form (o, 01) infinitely often with probability 1. Case 2: There is another irrevocable
state, that occurs at time tq + &k or later. Assume that it occurs for the first time at time ¢ + &/,
where k' > k. It is easy to see that the state of the Turkish matrix at time #y + &’ is of the form
(00,01). So in both cases, there is ¥’ > k such that after &’ steps, the size of the stack in the Polish
matrix has grown by only one.

Now since the Polish matrix is transient, we see from Section 4.1 that we can define a potential
such that there is an expected positive increase in the potential at each step. So by a submartingale
argument (Corollary A.5), the probability that the size of the stack in the Polish matrix has grown
by only one after &' > k steps is O(A\¥') for some constant A < 1. So the probability of Ej is O(\F),
as desired.

We have shown that the expected time between irrevocable states is finite. So starting in (oy),
there is some state o; such that the expected time to reach (o) from (op) is finite. Continuing,
we see that there is some state oo such that the expected time to reach (o9) from (o1) is finite.
Similarly, there is some state o3 such that the expected time to reach (o3) from (o3) is finite, and
so on. Let n be the number of states in the backoff process. Then some state o appears at least
twice among o0g,01,...,0,. Hence, the expected time from (o) to itself in the Turkish matrix is
finite. This was to be shown.

We have shown that the Turkish matrix is irreducible, aperiodic, and ergodic. So it has a
steady-state distribution. This gives us a stedy-state distribution in the backoff process, where the
probability of state 7 is the sum of the probabilities of the stacks in the Turkish matrix with top
state . H
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C.4.3 Null case

I like the use of the work “walk” in this section. Can we make this legal?
In this section we prove the following theorem.

Theorem C.12 The (M, &, 1) process has a Cesaro limit if the (M, &) process is null.
The theorem is implied by the lemma below.

Lemma C.13 Let (M, Q&) be null. Let j be any state of M such that o < 1. Let & be the vector
given by a;- =1 and 04;., = o otherwise. Then (M,d&') is ergodic and hence has a Cesaro limit
distribution. Let i be any state of M. Then the (M,d,1) process has a Cesaro limiting distribution
which is the same as the Cesaro limit distribution of the (M, &', j) process.

Remark: There are some magical consequences to the above lemma.

Proof.  The first part of Lemma C.13 claiming that (M,d’) is ergodic, follows from a simple
monotonicity argument, proven in Claim C.16. We now move to the more hairy part. For this
part, we consider a walk W of length ¢ of the (M, &, i) process and break it down into a number of
smaller pieces. This breakdown is achieved by a “skeletal decomposition” as defined below.

Fix an (M, d,1) walk W with (X, ..., X;) being the sequence of states visited, with auxiliary
sequence (S, ...,S;) and associated history sequence (Hy, ..., Hy).

For every t; < t such that S;, ="F” (i.e., W makes a forward step at time #1), we define a
partition of W into two walks W' and W" as follows: Let j be the state pushed onto the history
stack at time ¢; and let H;, = & be the history stack at time #;. Let 2 > ¢; be the first time at
which this history repeats itself (to = ¢ if this event never happens). Consider the sequence of time
steps (0,...,t1,to+1,...,t) (and the associated sequence of states visited and auxiliary sequences).
They give a new (M, d,i) walk W’ that has positive probability. On the other hand the sequence
of time steps t1,t1 + 1,...,%o define a walk W" of an (M, &, j) process, of length ty — t1, with
initial history being (j). We call this partition (W', W") a j-division of the walk W. (Notice that
W' . W" do not suffice to recover W, and this is fine by us.) A j-decomposition of a walk W is an
(unordered) collection of walks Wy, ..., W}, that are obtained by a sequence of j-decompositions of
W. Specifically, W is a j-decomposition of itself; and if Wy,...,W; is a j-decomposition of W’';
Wity ..., Wy is a j-decomposition of W”; and W', W" is a j-division of W, then Wy, ..., W} is a
j-decomposition of W. If a walk has no non-trivial j-divisions, then it is said to be j-indivisible.
A j-skeletal decomposition of a walk W is a j-decomposition Wy, ..., Wy of W, where each W,
is j-indivisible. Note that the skeletal decomposition is unique and independent of the choice of
j-divisions. We refer to Wy, ..., W) as the skeletons of W. Note that the skeletons come in one of
three categories (assuming j # i).

e Initial skeleton: This is a skeleton that has (i) as its initial history. Note that there is exactly
one such skeleton. (If i = j, we say there are no initial skeletons.)

e Closed skeletons: These are the skeletons with () as their initial and final history.

e Open skeletons: These are the skeletons with (j) as their initial, but not their final history.

Our strategy for analyzing the frequency of the occurence of a state j’ in the walk W is to
decompose W into its skeletons and then to examine the relative frequency of j' in these skeletons.
Roughly we will show that not too much time is spent in the initial and open skeletons; and that the
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distribution of closed skeletons of W is approximated by the distribution of random walks returning

to the initial history in an (M, &', j)-backoff process. But the (M, @, j) process is ergodic and thus

the expected time to return to the origin in such walks is finite and thus in a large number of closed

j-skeletons, the frequency of occurence of j' converges (to its frequency in (M, @', j)-processes).
Simulation of W.

1. Pick an (infinite) walk W from the (M, &, i) process.

2. Pick a sequence of walks W{,Wj,..., as follows: For each k, W] starts at (j) and walks
according to (M, &', 7) and terminates the first time it returns to the initial history.

3. We now cut and paste from the W}’s to get W as follows:

(a) We initialize W = W and t' =0, N = 0.
(b) We iterate the following steps till ¢’ >

i. Let ¢ be the first visit to j occurring at some time after ¢’ in W. Set ¢’ = ¢".
ii. With probability o;; do nothing, else (with probability 1 — «;, set N = N + 1 and
splice the walk W at time ¢’ and insert the walk W} into W at this time.

(c) Truncate W to its first ¢ steps and output it. Further, let W; denote the truncation of
W/ up to the point to which it is used in W.

The following proposition is easy to verify.

Proposition C.14 W generated as above has exactly the same distribution as that of the random
(M, d,i)-process. Further Wy, ..., Wy give the j-skeletal decomposition of W.

Let W' denote a random walk obtained by starting at (j), walking according to (M, &', j) and
stopping the first time we reach the initial history. Since the (M, &, j) process is ergodic, the
expected length of W' is finite. Let x4 denote the expectation of the length of the walk W' and let
pjr denote the expected number of occurrences of the state j' in W'. Note that p;/p = 71';-,, where
7' denotes the stationary distribution of the (M, &', j) process.

Let a), denote the number of visits to j' in W}, and let b} denote the length of W}. Since the
walks W} (k € {1,...,N}) are chosen independently from the same distribution as W', we have
that the expectation of aj, is pj and the expectation of bj, is . Let aj denote the number of visits
to 7/ in W}, and let by denote the length of Wj. Notice our goal is to show that Z}iv:o ay/ Zszo by,
approaches m; with probability tending to 1 as ¢ tends to infinity. Fix any 8 > 0. We will enumerate
a number of bad events, argue that each one of them has low probability of occurence and then
argue that if none of them happen, then

N N
(1 =By <> an/ D be < (1+ B)myr,
k=0 k=0

1. N is too small: In Claim C.17 we show that this event has low probability. Specifically, there
exists a 0 > 0 such that for every e > 0 there exists a tg such that for all ¢ > ¢y, the probability
that N is less that dt is at most e.

2. Wy is too long: Claim C.18 shows that for every e > 0, there exists ¢; such that for all ¢t > ¢,
the probability that Wy is longer than et is at most e.
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3. There are too many open skeletons: In Claim C.20, we prove that for every €y > 0, there exists
an ty such that if ¢ > 9, then the probability that the number of open skeletons is more than
€ot 1s at most €.

4. Z,]gvzl by is too large: By the law of large numbers, we have that for every € > 0, there exists
Ny such that for all N > Ny, the probability that 5, b, > (14 €)uN is at most €. Using
the fact that by < b}, we obtain the same upper bound on }°, by as well.

5. Z,JCVZI ay, is too large: As above, we have that we have that for every ¢ > 0, there exists Ny
such that for all N > Ns, the probability that Z,]ﬁvzl ap > (1 +€)pyN is at most e.

6. (Informally) S°&, by, is too small: The formal event considered here is that for some large
subset S C {1,..., N}, the quantity }_,.q b}, turns out to be too small. Using the fact that
the b)’s are independently and identically distributed and have finite mean p, Claim C.21
can be used to show that for every e > 0, there exists an €; > 0 and N3 > 0, such that for
all N > N3 the probability that there exists a subset S C {1,..., N} of cardinality at least
(1 —€1)N such that >, o) < (1 —€)uN is at most e. Taking S to be the subset of closed
skeletons and using the fact that for a closed skeleton by = b}, and relying on Item (3), we
get to the informal claim here.

7. Z,JCVZI ar, is too large: Obtained as above. Specifically, for every € > 0, there exists an €3 > 0
and Ny > 0, such that for all N > Ny the probability that there exists a subset S C {1,...,N}
of cardinality at least (1 — e2)N such that >, ¢ b). < (1 —€)uN is at most e.

Given the above claims, the lemma may be proved as follows: Let ¢ be as in Item (1) above.
Given any S, let € = min{3/7,5/(2 + 1/(nd)),8/(2 + 1/(pj70) + B)}. Let €; and e be as given
in Items (6) and (7) above and let ¢g = min{¢, €1d,e20}. For these choices of e and ep, let
to, t1,t2, N1, No, N3, Ny be as given in Items (1)-(7) and let ¢ > max{tg, t1, to, %Nl, %NQ, %Ng,, %N4}.
Then since ¢ is large enough, we have that for any of Items (1), (2), or (3) the probability of the
bad event listed there happens is at most e. If the bad event of Item (1) does not occur, then
N > {N1, N2, N3, N4} and thus the probability of any of the bad events list in Items (3)-(7) is at
most €. Summing over all bad events, we have the probability that no bad events happens is at
Zﬁ:o Gk
Zi\;o bk
(1 = B)m% and (1 + B)7j. We show the lower upper bound. The upper bound is similar. We first
upper bound Y"I_ by by Items (2) and (4). By Item (2) by < et < SN (where the second inequality
uses Ttem (1).) By Item (4) S0, b < (1 + €)uN and thus we have

is between

least 1 — 7e > 1 — . We now reason that if none of these events happen then

N
> b < (14 €+ €/(ud))uN
k=0

Next to lower bound I ag, we use Item (3) to conclude that the number of closed skeletons is
at least N —egt > N — (e9/d)N > (1 —e2)N. Let S denote the collection of closed skeletons. Thus,
we have

Zak>2ak—2ak (1 =€) N.
kes kes
Putting the above together, we get

N — 7]
Zl;:v:O ag > 1 € M_] > (1 —,8)71',
Sieobr  L+e+e/(ud) p
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as desired. (The final inequality above uses 77, = u; /i and e < 8/(2+1/(ud)).) The upper bound
follows similarly, using the inequality e < 3/(2 + 1/(u;0) + 3). This concludes the proof of the
lemma, modulo Claims C.16-C.21. =

For the following claims, let H denote the Hungarian matrix corresponding to the (M, &) process
and let H' denote the Hungarian matrix corresponding to the (M, a") process. For a non-negative
matrix A, let p(A) denote its maximal eigenvalue. For n x n matrices A and B, say A < B if
A < By, for every 4, k and there exists 4, k such that A;; < Bj,. Claim C.16 will use the following
simple claim.

Claim C.15 If A and B are n X n irreducible non-negative matrices such that A < B, then
p(A) < p(B).

Proof. Notice first that it suffices to prove that p(I + A) < p(I + B), since p(I + M) =1+ p(M).
Similarly it suffices to prove that for some postive integer k. p((I + A)¥) = p((I + B)*), since
p(MF*) = p(M)F. We will do so for k =2n — 1. Let C = (I + A)>» ! and D = (I + B)?>" L.

We first show that for every pair 4, j, C;; < D;j. Notice that the 7, jth entry of a matrix MPF has
the following combinatorial interpretation: It counts the sum of the weights of all walks of length &
between ¢ and j where the weights of a walk is the product of the weight of the edges it takes, and
the weight of an edge (u,v) is My,. Thus we wish to show that for every i, j, there exists a walk
P from ¢ to j of length 2n — 1 such that its weight under I + A is less than its weight under j. Let
Apn < By, By irreducibility of A we know there exists a path from 4 to [ of positive weight and by
taking enough self-loops this can be converted into a path P, of length exactly n — 1 with positive
weight in (I 4+ A). The path has at least the same weight in I 4+ B. Similarly we can find a path P,
of positive weight in I + A from m to j of length exactly n — 1. Now the path P; o (I,m) o P, has
positive weight in both I + A and I + B and has strictly larger weight in I + B since By, > Ajp,.
Thus we find that C;; < D;;, for every pair 4, j.

Now we use the properties of the maximal eigenvalue to show that p(C) < p(D). Notice that

p(C) = max min { (OF): } .

& ie{l,.m} L (Z);
Pick # that maximizes the right hand side above and now consider
p(D) = max min {

(D?j)i}
. {(Df)i}
> min -
ie{l,.n} L (2);
. {(Cf)i
> min e
ie{l,..n} L (%);

= p(C)(By our choice of Z.)

} (Since D;; > Cjj and Z # 0).

|
We are now ready to prove that the (M, &') process is ergodic.
Claim C.16 Let (M,@&) be irreducible and null. Let j be a state such that o < 1. Let & be the

vector obtained by setting oz;-, =aj if j' #j and a; > . Then (M,d') is ergodic (though it may
not be irreducible).
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Proof. We first focus on the case oz;- < 1. In this case, we observe that (M, &') is also irreducible.
For this part, we use the proof of Theorem 4.2 to rephrase this question in terms of the maximal
eigenvalues of the corresponding Hungarian matrices. In particular, we have p(H) = 1 and we need
p(H'") < p(H) = 1.
Note that for every k,l, we have

Hy = (11— af)Mpa;
(1 — af) My !
(1 — o) Mgy !
= Hy

Further, the first inequality is strict if [ = 7 and Mj; # 0 (and such a k does exist, by the
irreducibility of M). Using Claim C.15 we now have p(H') < p(H) = 1. and thus we have shown
the desired result for the case oz; <1

For the case oz;- = 1, we first use the first part shown above to show that the (M,&") process,
where j < o <1 (and o}, = a; for other j'), is ergodic. Thus it suffices to prove that (M, ')
is ergodic, given that (M, a") is ergodic. However, since we may not have irreducibility, we need
to argue this individually for every (M, &', 1) process. We will do so by arguing that the expected
return time of an (M, &, i) process (to its initial history) is finite. We use the fact that the expected
return time of the (M, &", 1) process is finite.

Given a walk W of the (M,a",i) process, let I(W) denote the initial skeleton Wy in the j-
skeletal decomposition of W. Let S(W),) denote the set of walks W such that I(W) = Wy. Let
p(W) denote the probability of the walk W in the (M,a",i) process; and let p' (W) denote the
probability of the walk Wy in the (M, &, i) process. Notice that Yyyecgw,) (W) = p'(W)p) and
the length of Wy is at most the length of W for every W € S(Wj). Putting these together, we
find the expected length of Wy in the (M, d’,4) process is at most the expected length of W in the
(M,a&", i) process.

The next claim shows that IV, the number of skeletons in a walk of length ¢, grows linearly in ¢.

Claim C.17 There exists a § > 0, such that for every e > 0 there exists a ty such that for all
t > to, the probability that N is less than 0t is at most €.

Proof. Notice that the number of skeletons is lower bounded by the number of times 5 is pushed
on to the history stack in the walk W. We lower bound this quantity by using the fact that in any
sequence of n steps (where n is the size of the Markov chain M), there is a positive probability p
of pushing j onto the history stack in the next n steps. Thus the expected number of times j is
pushed onto the history in ¢ steps is at least p(¢/n). Applying the law of large numbers, we get
that the there exists ¢y s.t. if ¢ > tj, then the probability that j is pushed on the stack fewer than
£p(t/n) times is at most e. The claim follows with § = 7.

Next we argue that the initial skeleton is not too long.
Claim C.18 For every € > 0, there exists a time ty such that for all time t > t1,

Pr[ Length of Wy > €t] < e.
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Proof. ~ We prove the claim in two steps. First we note that in a walk of length ¢, with high
probability, the (null) (M,@&,i) process returns to the initial history o(¢) times. Note that the
expected time to return to the initial history is infinite. Thus we get:

Sub claim 1: For every €’ > 0, there exists a time ¢} such that for all ¢ > ¢/, the probability that
an (M, &,1) walk of length ¢ returns to the initial history more than €'t times is at most €.

We then note that o(t) returns to the initial history of the (ergodic) (M,d&',i) process are
unlikely to take et time steps.

Sub claim 2: Let T be the expected return time to the initial history in the (M, &, ) process.
(Note T' < 00.) Then, for every €”, there exists an Ny such that if N > Ny and N’ < N, then the
probability that N’ returns to the origin take more than 2NT steps is at most €”.

JFrom the two sub-claims, we get the claim as follows: Set €’ = ¢/2 and € = min{e/2,¢/(2T)}.
Now let Ny and T be as in Sub claim 2 and let ¢, = max{t, QJ\LOT}. Given t > to, let N = (et)/(2T).
Notice N > Ny. Let N’ denote the number of returns to the initial history in W. Applying Sub
claim 1 with € we get that probability that the number of returns to the initial history is more than
N is at most € < €/2. Now applying Sub claim 2 with parameter €”, we get that the probability of
N returns to the origin taking more that 2NT = et steps is at most €’ = €/2. Thus the probability
that any of bad events listed in the Sub claims above occur is at most €, and if neither occurs, then
the length of the initial skeleton is at most et. ®

Next we show that not too many skeletons are open. We do it in two claims.

Claim C.19 If (M, a,i) is null, and W is a weight vector as guaranteed to exist by Lemma 4.9,
then the w-potential ®z(Hy) is expected to grow as o(t).

Proof.  Recall the extended potential used in Lemma C.4 was expected to be 0 after ¢ steps.
Further, by Sub claim 1 of Claim C.18, the number of returns to the initial history is at most €'t,
with probability all but ¢’. Thus the expected number of returns to the origin is at most 2¢'t. Thus
the expected value of ¢g;(Hy) is also at most 2¢'t. =

Claim C.20 For every € > 0, there exists a to such that for all t > to. the probability that more
than €t of the skeletons W1,...,Wn are open is at most €.

Proof. Consider the event E that the history H; contains more than et occurences of the state
j. We wish to show that the probability that E occurs is at most €. Assume E occurs with
probability at least e. Let @ be the weight vector as shown to exist in Lemma 4.9, and let ¢z(H;)
be the potential of the history H;. Notice that if £ occurs, then the potential ¢;(Hy) is at least wjet.
Since E happens with probability at least €, we have that the expected potential, E[¢(H;)] > €>wjt,
i.e., it is growing linearly in ¢. But this contradicts the previous claim. ®

Finally we conclude with a technical claim showing that large subsets of {1,..., N} can not
have a small sum.

Lemma C.21 For every distribution D on non-negative integers with finite expectation w1, and
every € > 0, there exists an €1 > 0 and N3 > 0, such that such that for all N > N3, if X1,..., XN
are N samples drawn i.i.d. from D, then

Pr|VSC[NL|S| > (1—e)N, Y X;>(1—€euN|>1-e
1€S
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Proof. We will pick 7 such that with high probability the eN-th largest element of Xi,..., Xy
is greater than or equal to 7. We will then sum only those elements in the X;’s whose value is at
most 7 and this will give a lower bound on } ;¢ X;.

Let p(j) be the probability given to j by D. Let puy = 3, jp(j). Notice ux’s converge to p.
Let 7 be such that u — pr < (¢/2)p. Let T(X) = X if X < 7 and 0 otherwise. Notice that for
X drawn from D, we have E[T(X)] > (1 — ¢/2)u (by definition of 7). Thus by the law of large
numbers we have that there exists an N3 such that for all N > Nj, the following holds.

Pr iT(XZ) <(1—€)Np| <e€/2. (8)
=1

Now set e; = 37,5, p(j)/2. Then the probability that X has value at least 7 is at least 2e;.
Thus, applying the law of large numbers again, we find that there exists an Nf' s.t. for all N > N7/,
the following holds:

Pe(l{ilX; > 7} < e1N] < /2. )

Thus, for N3 = max{N3, N3’} and any N > N3, we have that with probability at least 1 — €
neither of the events mentioned in (8) or (9) occur. In such a case, consider any set S of cardinality
at least (1 — €;)N, and let S’ be the set of the (1 — ¢;) N smallest X;’s. We have

Yxi > Y X;

i€S €S’
N
> Y T(X;)
=1
> (1—€)Npu.

This proves the claim. m

C.5 Computing Cesaro Limits in the Transient Case

Lemma C.22 Let the entries of M and & be [-bit rationals describing a transient (M, &)-precess
and let w be its stationary probability vector. For every € > 0, there exists 8 > 0, with log% =
poly(n, i, log %), such that given any vector ¥ of I'-bit rationals satisfying |7 — 7|, < B, a vector
' satisfying ||7" — 7|, < € can be found in time poly(n,l,l',log %)

Proof.  Let 7 be such that |7 — 7], < § (where § will be specified later). We will assume
(without loss of generality) that for every i, r, > r;.
Let D, D, and X be as in the proof of Lemma 4.13. Define D', D! and X' analogously. Le.,
D’ is the matrix given by
r (1 — o) M
L 1-— (1 — Ozj) Zk Mjkr;g’

;| D, X'
D_[O 0 |’

and D' can be described as

where Dy, is irreducible. Notice first that X' = X, since for any pair i,5 s.t. a; =1, D;jj = Dj; =
M;;(1 — ;). Recall our goal is to approximate the maximal left eigenvector = of D, s.t. ||«||, = 1.

Write 7 = ﬁ[ﬁAﬂB], where 7,4 is a left eigenvector of D, with ||74l|, =1, 7p = 74X and lp =
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|7B|l;- We will show how to compute 7'y, 7 such that that [|7/y[|, = 1, ||y — 7all, < €/(n+1)
and ||7 — 7|, < €/(n+1). It follows then that if we set 7' = [y 7], then

REAR
o'~y < s maflly — s 7 — 7]} + I — ]
1+1p
€ !
N
< €
as desired.
Further, if 7y is any vector such that |7y — ma|| < AT thena 'z satisfying [|7 — 7| <

€¢/(n + 1) can be obtained by setting 7%z = 7’y X. (Notice that max;;j{X;;} < 1 and thus |(7%); —
(m8);| < 32 Xijl(wh)i — (ra)il < nymy)

Thus, below we show how to find 7/, that closely approximates 74, specifically satisfying
|7y —mall, < €/(n(n +1)). Notice that this amounts to finding a left eigenvector of the ma-
trix D. We will show how to approximate this using the matrix D’.

We first show that the entries of D’ are close to those of D, using the fact that |rj, — x| < 3.
Assume, for notational simplicity, that rj, > ry. Note that

(1 —Ozi)Mi' _ (1 _ai)Mi'
1= (1 =o)X, Mgy, 1= (1 —a ) >, Mjgry,
(1 —ay) Xop Mjjg(ry, — k)
(1= (1 =) g Mypry) (1= (1 — o) p Mjgry)
< B
> 2"
(1= (1 =) Xf Mjkry)

Thus to upper bound this difference, we need an lower bound on the quantity 1—(1—a;) >, Mjgr.
If aj # 0, then this quantity is at least o; > 27!, Now consider the case where a; = 0. In such a
case, for any k, either oy, = 1, = 1, or o, < 1 and in such a case, we claim r, < 1 — 272", This
is true, since the (M, «)-process is irreducible and hence there is a path consisting only of forward
moves that goes from % to 7, and this path has probability at least 272, and once we push j onto
the history stack, it will never be revoked. Further, by the irreducibility of the (M, &) process,
we have that there must exist a k£ such that M;; > 0 and rp, <1 — 2-2nl, Using My, > 2= and
substituting, we get that the quantity 1 — (1 — o) >°p Mjry, is lower bounded by 2~ (2n+ll - Thyg
we conclude that

= (1 —a)Mj;

Next consider the matrix B = (%(I + Da))n. Notice that B has a (maximal) eigenvalue of
1, with a left eigenvector m4. We claim B is positive, with each entry being at least 2~ (2+1)n
To see this, first note that every non-zero entry of D, is at least 272/, Next consider a sequence
G0 = 1,%1,12,...,4; = j of length at most n satisfying D;, ; ., > 0. Such a sequence does exist since
D, is irreducible. Further B;; is at least 27" [, D;,;,,, which is at least 2-n(+1) Thus B is a
positive matrix and we are interested in computing its left eigenvector. Lemma C.23 shows how
this may be computed given a close approximation to the matrix B.

Next we show that B’ = (%(I + Dfl))n is a close enough approximation to B. Note that since
max;; | Dij — Di| < 204"+2!6, we have maxi; |Bj; — Bjj| < (1 +2"+218)" — 1), which may be
bounded from above by (2" - 2(47+21) 3 provided g < 2~ +2)L,
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Now let 7/, be any vector satisfying |7y — 7, B|| , < 2"H"+2)8 and ||7/,||, = 1. (Such a
vector does exist. In particular, 7w satisfies this condition. Further, such a vector can be found
by linear programming.) Applying Lemma C.23 to B, (B')",n4 and «'; with v = 2-"(+1)
e = = 2nHUn2) g vields ||y — mal|, < v/B20MD. Thus setting 3 = €2/27") suffices to get 7,
to be an €/(n(n + 1)) close approximation to 4. This concludes the proof. m

Lemma C.23 Let B,C be nxn matrices and Z, 1 be n-dimensional vectors satisfying the following
conditions:

1. For everyi,j, B;j >y >0, further p(B) = 1.
2. For every i,j, |Cij — Bjj| < 6.
3. |z|l, =1 and Bz = 7.

4 19l =1 and |[CF — g, <

Then ||& — |, < (1+ v/n)y/ 252,

Proof. We first convert the statement above into one about ¢5 norms. Let z =

Notice that
v < v e < ey/n.

1Cy —yll, < Vnl|Cy —yll

~ 19llCs =3l = Tall,
Thus applying Claim C.24 with ¢ = ey/n yields that ||z —yll, < w. Now applying
Claim C.25 to the vectors z and y and noticing & = Hx”l and § = |y|| gives the desired bound. =

Claim C.24 Let B,C be n x n matrices and =,y be n-dimensional vectors satisfying the following
conditions:

1. For everyi,j, B;j >y > 0; and further p(B) = 1.
2. For every i,j, |Cij — Bjj| < 6.

3. ||z||, =1 and Bz = z.

4- \lylly =1 and [|Cy —yll, < €.

2(e’ +4)
in

Then ||z = yll, <

Proof. Note that B is positive and since z is a non-negative eigenvector, 1 is a maximal eigenvalue
of B. This fact is often used below.

Roughly the proof uses standard numerical analysis methods and implicitly goes through the
following steps: (1) Argues that the maximal right eigenvector z and the maximal left eigenvector,
say z, of the matrix B have a large inner product. (2) Use this to argue that the second eigenvalue
of B is small. (3) Resolve the vector y into two components, one parallel to z and the other
orthogonal to z, and argue, using the second eignevalue of B, that the component orthogonal to
z is small. (4) Argue that y and z must be close, if the component of y orthogonal to z is small.
Details below.
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L. ||By —yll, < (¢’ +9): (This will get rid of C' is all future steps.) Let B = C'+ A. Notice that

|Az~j|§6.
1By —yll, = [[Cy+Ay—yl,
< [[Cy —ylly + 1Ayl
< €+ dylly
= €49

. Let z be the left maximal eigenvector of B, with ||z|l, = 1. Then 2Tz > 4%n: We argue this
by arguing that every coordinate of z and z is at least . Consider z;, the ith coordinate of
z. Let v; be the ith row of B. Note every coordinate of v; is at least v and z; = vZTx. Thus
z; > 7||z||; > . Similarly we can argue z; > . Thus 2"z > v?n as desired.

. Let L = —zz", B <~°n, and B' = B— L. Then B’ > 0 and has a maximal eigenvalue equal
tol—p.

To see that B’ is positive, first notice that every entry of zz” is at most 1, since ||z||,, |||, < 1.

T

Next we have that any entry of L is at most ,ﬁin < «y since 2"z is at least y?n. Since every

entry of B is at least «y, the claim on the positivity of B’ follows.

Next we notice that = is a non-negative eigenvector of B’ with eigenvalue 1 — 3, since B’z =
Bz — —(a:zT)x =1x— %x(sz) =1z — g = (1 — B)x. This step follows by the Perron-
Frobenius theorem (Theorem A.1) which says that 1 —  is the unique maximal eigenvalue
of B'.

. Lety = y;u- 4y, where yﬂ = —:1: Then ‘yZL < f;;;f
Notice that the choice of the vector y” makes y” parallel to = and y;- orthogonal to z. For
the latter, notice
y"z
(yzL)Tz:yTz (y ”) z=y'z— TITz—O
xtz
We use this fact, or actually the equivalent fact 2’y = 0 to bound ‘yz below. First we
note that:
= (By” — ) + (Byz ~yz)
y" 1 1
= E(Bﬂ? —z)+ (By; —yz)
= By, —vy;
= (B'+BL)y; -y
p
= (B'yy —yz) + a2’y
zlx
= (B'y, —v;)

We now use the fact that || B'v||, < p(B’)||v||, for  every vector v, and p(B') = 1—f to claim
that HB’yj- <(1- B)HyjH2 Thus
> | , 2 (1= (1-p)

This step follows by noticing 3 can be any real number smaller than vy*n.

L 1L L
Y, — B,yz Y

:5‘

1
Yz

1
2 HB'yz

¢ +6>|ly - Byl, =| vt
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2(e’+6
5. Jly — all, < /20

The crucial observation underlying this step is that the length of the projection of y on the
direction orthogonal to z is no larger than vector y above. Note that the projection of y onto
the direction orthogonal to z is given by y — (z7y)z. We notice

y—(@Tyz = @l+yd) - @@ +yh)
(= @"ylD)z) + (v — (@"y)x)
wh —yl) + (3 — (@"y)z)
=y, — (& y)m
Thus '
=", = o = o], <[], < S

where the first inequality uses the fact that the projection of any vector v onto a direction
orthogonal to a unit vector v has length less than the length of v.

Applying triangle inequality to the LHS above, we get

'
Il = T llell: < S22
Using ||zfly = [lyll; = 1, we get s
(a7y) > 1~ 67371 '
Now using the fact that ||y — z||, = /2 — 2(zTy), we get ||y — z||, < %-

This concludes the proof of the claim. m

T _ Yy
zlly Tyl

Claim C.25 Let z,y € R" satisfy ||z|y,|lyll, = 1 and ||z —y|, < 5. Then ‘ <

§(1+ /n).

Proof.  First we observe ||z —y||; < v/nllz —yll, < dy/n. Similarly, ||z —y| < |z —yll, < 6.
Finally, ||z|{,|lyl; > 1 and ||y||,, < 1. The claim now follows from the following sequence of

oo

inequalities.
€T T
oy |y oy
e, e, el
< eyl |2 Iy,
< r—vy Yy
=, Nl ~ Tl ||
< o |lolli-
ERCE
< §(1++/n).
[ ]
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