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Abstrat

We introdue bako� proesses, an idealized stohasti model of browsing on the world-wide

web, whih inorporates both hyperlink traversals and use of the \bak button." With some

probability the next state is generated by a distribution over out-edges from the urrent state,

as in a traditional Markov hain. With the remaining probability, however, the next state is

generated by liking on the bak button, and returning to the state from whih the urrent

state was entered. Repeated liks on the bak button require aess to inreasingly distant

history.

We show that this proess has fasinating similarities to and di�erenes from Markov hains.

In partiular, we prove that like Markov hains, bako� proesses always have a limiting distri-

bution, and we give algorithms to ompute this distribution. Unlike Markov hains, the limiting

distribution may depend on the initial state.
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1 Introdution

Consider a modi�ation of a Markov hain in whih at eah step, with some probability, we undo

the last forward transition of the hain. For intuition, the reader may wish to think of a user using

a browser on the world-wide web where he is following a Markov hain on the pages of the web,

and oasionally hitting the \bak button". We model suh phenomena by disrete-time stohasti

proesses of the following form: we are given a Markov hainM on a set V = f1; 2; : : : ; ng of states,

together with an n-dimensional vetor ~� of bako� probabilities. The proess evolves as follows: at

eah time step t = 0; 1; 2; : : : ; the proess is in a state X

t

2 V , and in addition has a history H

t

,

whih is a stak whose items are states from V . Let top(H) denote the top of the stak H. At t = 0

the proess starts at some state X

0

2 V , with the history H

0

ontaining only the single element

X

0

. At eah subsequent step the proess makes either a forward step or a bakward step, by the

following rules: (i) if H

t

onsists of the singleton X

0

it makes a forward step; (ii) otherwise, with

probability �

top(H

t

)

it makes a bakward step, and with probability 1��

top(H

t

)

it makes a forward

step. The forward and bakward steps at time t are as follows:

1. In a forward step, X

t

is distributed aording to the suessor state of X

t�1

under M ; the

state X

t

is then pushed onto the history stak H

t�1

to reate H

t

.

2. In a bakward step, the proess pops top(H

t�1

) from H

t�1

to reate H

t

; it then moves to

top(H

t

) (i.e., the new state X

t

= top(H

t

).)

1

Under what onditions do suh proesses have limiting distributions, and how do they di�er from

traditional Markov hains? We fous in this paper on the time-averaged limit distribution, usually

alled the \Cesaro limit distribution".

2

Motivation. Our work is broadly motivated by user modeling for senarios in whih a user

with an \undo" apability performs a sequene of ations. A simple onrete setting is that of

browsing on the world-wide web. We view the pages of the web as states in a Markov hain, with

the transition probabilities denoting the distribution over new pages to whih the user an move

forward, and the bako� vetor denoting for eah state the probability that a user enters the state

and elets to lik the browser's bak button rather than ontinuing to browse forward from that

state.

A number of researh projets [1, 7, 9℄ have designed and implemented web intermediaries and

learning agents that build simple user models, and used them to personalize the user experiene.

On the ommerial side, user models are exploited to better target advertising on the web based

on a user's browsing patterns; see [2℄ and referenes therein for theoretial results on these and

related problems. Understanding more sophistiated models suh as ours is interesting in its own

right, but ould also lead to better user modeling.

1

Note that the ondition X

t

= top(H

t

) holds for all t, independent of whether the step is a forward step or

bakward step.

2

The Cesaro limit of a sequene a

0

; a

1

; : : : is lim

t!1

1

t

P

t�1

�=1

a

�

, if the limit exists. For example, the sequene

0,1,0,1,... has Cesaro limit 1=2. The Cesaro limit distribution is lim

t!1

1

t

P

t�1

�=1

Pr [X

t

= i℄, if the limit exists. By

ontrast, the stationary distribution is lim

t!1

Pr [X

t

= i℄, if the limit exists. Of ourse, a stationary distribution is

always a Cesaro limit distribution. We shall sometimes refer simply to either a stationary distribution or a Cesaro

limit distribution as a limiting distribution.
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Overview of Results

For the remainder of this paper we assume a �nite number of states. We assume also that the

bako� proess is irreduible (i.e., it is possible, with positive probability, to eventually reah eah

state from eah other state). We now give the reader a preview of some interesting and arguably

unexpeted phenomena that emerge in suh \bak-button" random walks, as the bako� vetor ~�

varies on a �xed Markov hain M . Our primary fous is on the Cesaro limit distribution.

Intuitively, if the history stak H

t

grows unboundedly with time, then the proess \forgets"

the start state X

0

(as happens in a traditional Markov proess, where ~� is identially zero). On

the other hand, if the elements of ~� are all very lose to 1, the reader may envision the proess

repeatedly \falling bak" to the start state X

0

, so that H

t

does not tend to grow unboundedly.

What happens between these extremes?

One of our main results is that there is always a Cesaro limit distribution, although there may

not be a stationary distribution. Consider �rst the ase when all entries of ~� are equal, so that there

is a single bako� probability � that is independent of the state. In this ase we give a remarkably

simple haraterization of the history and the limiting distribution provided � < 1=2: the history

grows unboundedly with time, and the limiting distribution of the proess onverges to that of the

underlying Markov hain M .

On the other hand, if � > 1=2 then the proess returns to the start state X

0

in�nitely often,

the expeted history length is �nite, and the limiting distribution di�ers in general from that of M ,

and depends on the start state X

0

. Thus, unlike ergodi Markov hains, the limiting distribution

depends on the starting state.

More generally, onsider starting the bako� proess in a probability distribution over the states

of M ; then the limiting distribution depends on this initial distribution. As the initial distribution

varies over the unit simplex, the set of limiting distributions forms a simplex. As � onverges to

1=2 from above, these simplies onverge to a single point, whih is the limiting distribution of the

underlying Markov hain.

The transition ase � = 1=2 is fasinating: the proess returns to the start state in�nitely

often, but the history grows with time and the distribution of the proess reahes the stationary

distribution of M . These results are desribed in Setion 3.

We have distinguished three ases: � < 1=2, � = 1=2, and � > 1=2. In Setion 4, we show

that these three ases an be generalized to bako� probabilities that vary from state to state.

The generalization depends on whether a ertain in�nite Markov proess (whose states orrespond

to possible histories) is transient, null, or ergodi respetively (see Setion 4 for de�nitions). It

is intuitively lear in the onstant � ase, for example, that when � < 1=2, the history will grow

unboundedly. But what happens when some states have bako� probabilities greater than 1/2 and

others have bako� probabilities less than 1/2? When does the history grow, and how does the

limiting distribution depend on M and ~�? Even when all the bako� probabilities are less than

1=2, why should there be a limiting distribution?

We resolve these questions by showing that there exists a potential funtion of the history

that is expeted to grow in the transient ase (where the history grows unboundedly), is expeted

to shrink in the ergodi ase (where the expeted size of the history stak remains bounded),

and is expeted to remain onstant if the proess is null. The potential funtion is a bounded

di�erene martingale, whih allows us to use martingale tail inequalities to prove these equivalenes.

Somewhat surprisingly, we an use this relatively simple haraterization of the bako� proess to

obtain an eÆient algorithm to deide, givenM and �, whether or not the given proess is transient,

null or ergodi. We show that in all ases the proess attains a Cesaro limit distribution (though the

2



proofs are quite di�erent for the di�erent ases). We also give algorithms to ompute the limiting

probabilities. If the proess is either ergodi or null then the limiting probabilities are omputed

exatly by solving ertain systems of linear inequalities. However, if the proess is transient, then

the limiting probabilities need not be rational numbers, even if all entries of M and ~� are rational.

We show that in this ase, the limiting probabilities an be obtained by solving a linear system,

where the entries of the linear system are themselves the solution to a semide�nite program. This

gives us an algorithm to approximate the limiting probability vetor.

2 De�nitions and notation

We use (M; ~�; i) to denote the bako� proess on an underlyingMarkov hainM , with bako� vetor

~�, starting from state i. This proess is an (in�nite) Markov hain on the spae of all histories.

Formally, a history stak (whih we may refer to as simply a history) �� is a sequene h�

0

; �

1

; : : : ; �

l

i

of states of V , for l � 0. For a history �� = h�

0

; �

1

; : : : ; �

l

i, its length, denoted `(��), is l (sine the

initial state �

0

is speial, we do not ount it in the length). If `(��) = 0, then we say that it is an initial

history. For a history �� = h�

0

; �

1

; : : : ; �

l

i, then its top, denoted top(��), is �

l

. We also assoiate

the standard stak operations pop and push with histories. For a history �� = h�

0

; �

1

; : : : ; �

l

i and

j 2 f1; : : : ; ng, we have pop(��) = h�

0

; �

1

; : : : ; �

l�1

i, and push(��; j) = h�

0

; �

1

; : : : ; �

l

; ji. We let S

denote the spae of all �nite attainable histories.

For a Markov hain M , bako� vetor ~�, and history �� with top(��) = j, de�ne the suessor

(or next state) su(��) to take on values from S with the following distribution:

su(��) =

8

>

<

>

:

pop(��) with probability �

j

if `(��) � 1

push(��; k) with probability (1� �

j

)M

jk

if `(��) � 1

push(��; k) with probability M

jk

if `(��) = 0

For a Markov hain M , bako� vetor ~� and state i 2 f1; : : : ; ng, the (M; ~�; i)-Markov hain

is the sequene hH

0

;H

1

;H

2

; : : :i taking values from the set S of histories, with H

0

= hii and

H

t+1

distributed as su(H

t

). We refer to the sequene hX

0

;X

1

;X

2

; : : :i, with X

t

= top(H

t

) as the

(M; ~�; i)-bako� proess. Several properties of the (M; ~�; i)-bako� proess are atually independent

of the start state i, and to stress this aspet we will sometimes use simply the term \(M; ~�)-bako�

proess".

Note that the (M; ~�; i)-bako� proess does not ompletely give the (M; ~�; i)-Markov hain,

beause it does not speify whether eah step results from a \forward" or \bakward" operation.

To omplete the orrespondene we de�ne an auxiliary sequene: Let S

1

; : : : ; S

t

; : : : be the sequene

with S

t

taking on values from the set fF;Bg, with S

t

= F if `(H

t

) = `(H

t�1

) + 1 and S

t

= B

if `(H

t

) = `(H

t�1

) � 1. (Intuitively, F stands for \forward" and B for \bakward".) Notie

that sequene X

0

; : : : ;X

t

; : : : together with the sequene S

1

; : : : ; S

t

; : : : does ompletely speify the

sequene H

0

; : : : ;H

t

; : : :.

We study the distribution of the states X

t

as the bako� proess evolves over time. We shall

show that there is always a Cesaro limit distribution (although there is not neessarily a stationary

distribution). We shall also study the question of eÆiently omputing the Cesaro limit distribution.

For simpliity, throughout this paper, we shall restrit our attention to ases where both the

(M; ~�)-bako� proess and the underlying Markov hain M are irreduible and aperiodi. In

partiular, M has a stationary distribution, and not just a Cesaro limit distribution.
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3 Constant �

The ase in whih the bako� probability takes the same value � for every state has a very lean

haraterization, and it will give us insight into some of the arguments to ome.

We �x a spei� (M; ~�; i)-bako� proess throughout this setion. Suppose we generate a

sequene X

0

;X

1

; : : : ;X

t

; : : : of steps together with an auxiliary sequene S

1

; : : : ; S

t

; : : :. To begin

with, we wish to view this sequene of steps as being \equivalent" (in a sense) to one in whih only

forward steps are taken. In this way, we an relate the behavior of the (M; ~�; i)-bako� proess to

that of the underlying (�nite) Markov proess M beginning in state i, whih we understand muh

more aurately. We write q

t

(j) to denote the probability that M , starting in state i, is in state j

after t steps.

When the bako� probability takes the same value � for every state, we have the following basi

relation between these two proesses.

Theorem 3.1 For given natural numbers � and t, and a state j, we have Pr [X

t

= j j `(H

t

) = �℄ =

q

�

(j):

The proof of this theorem is given in Appendix B.

In addition to the sequenes fX

t

g and fS

t

g, onsider the sequene fY

t

: t � 0g, where Y

t

is

the history length `(H

t

). Now Y

t

is simply the position after t steps of a random walk on the

natural numbers, with a reeting barrier at 0, in whih the probability of moving left is � and the

probability of moving right is 1� �. This orrespondene will be ruial for our analysis.

In terms of these notions, we mention one additional tehnial lemma. Its proof follows simply

by onditioning on the value of Y

t

and applying Theorem 3.1.

Lemma 3.2 For all natural numbers t and states j, we have Pr [X

t

= j℄ =

P

r

q

r

(j) � Pr [Y

t

= r℄ :

We are now ready to onsider the two ases where � �

1

2

and where � >

1

2

, and show that in

eah ase there is a Cesaro limit distribution.

The ase of � �

1

2

. Let the stationary distribution of the underlying Markov hain M be

h 

1

; : : : ;  

n

i. By our assumptions about M , this distribution is independent of the start state i.

When � �

1

2

, we show that the (M; ~�; i)-bako� proess onverges to h 

1

; : : : ;  

n

i.

Theorem 3.3 For all states j of the (M; ~�; i)-bako� proess, we have lim

t!1

Pr [X

t

= j℄ =  

j

.

Thus, the limiting probability is independent of the start state i.

Proof. Fix � > 0, and hoose t

0

large enough that for all states j of M and all t � t

0

, we have

jq

t

(j) �  

j

j < �=2. Sine � � 1=2, we an also hoose t

1

� t

0

large enough that for eah t � t

1

, we

have Pr [Y

t

> t

0

℄ > 1� �=2. Then for t � t

1

we have

jPr [X

t

= j℄�  

j

j =

�

�

�

�

�

X

r

q

r

(j) � Pr [Y

t

= r℄�  

j

X

r

Pr [Y

t

= r℄

�

�

�

�

�

�

X

r

jq

r

(j)�  

j

j � Pr [Y

t

= r℄

=

X

r<t

1

jq

r

(j) �  

j

j � Pr [Y

t

= r℄ +

X

r�t

1

jq

r

(j)�  

j

j � Pr [Y

t

= r℄

�

X

r<t

1

Pr [Y

t

= r℄ +

X

r�t

1

�=2 � Pr [Y

t

= r℄

� �=2 + �=2 = �:
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Although the proof above applies to eah � �

1

2

, we note a qualitative di�erene between the

ase of � <

1

2

and the \threshold ase" � =

1

2

. In the former ase, for every r, there are almost

surely only �nitely many t for whih Y

t

� r; the largest suh t is a step on whih the proess pushes

a state that is never popped in the future. In the latter ase, Y

t

almost surely returns to 0 in�nitely

often, and yet the proess still onverges to the stationary distribution of M .

The ase of � >

1

2

. When � >

1

2

, the (M; ~�; i)-bako� proess retains positive probability on

short histories as t inreases, and hene retains memory of its start state i. Nevertheless, the

proess has a Cesaro limit distribution; but this distribution may be di�erent from the stationary

distribution of M .

Theorem 3.4 When � >

1

2

, the (M; ~�; i)-bako� proess has a Cesaro limit distribution.

Proof. For all natural numbers t and states j we have Pr [X

t

= j℄ =

P

r

q

r

(j) � Pr [Y

t

= r℄ by

Lemma 3.2. Viewing Y

t

as a random walk on the natural numbers, one an ompute the Cesaro

limit of Pr [Y

t

= r℄ to be �

r

= �� when r = 0, and �

r

= �z

r�1

when r > 0, where � = (2��1)=(2�

2

)

and z = (1 � �)=�. (Note that Y

t

does not have a stationary distribution, beause it is even only

on even steps.) A standard argument then shows that Pr [X

t

= j℄ has the Cesaro limit

P

r

�

r

q

r

(j).

Note that the proof shows only a Cesaro limit distribution, rather than a stationary distribution.

In fat, it is not hard to show that if � >

1

2

, then there is not neessarily a stationary distribution.

Now, more generally, suppose that the proess starts from an initial distribution over states; we

are given a vetor z

0

, hoose a state j with probability z

0

(j), and begin the proess from j. As z

0

ranges over all possible probability vetors, what are the possible vetors of limiting distributions?

Let us again assume a �xed underlying Markov hainM , and denote this set of limiting distributions

by S

�

.

Theorem 3.5 Eah S

�

is a simplex. As � onverges to

1

2

from above, these simplies onverge to

the single vetor that is the stationary distribution of the underlying Markov hain.

4 Varying �'s

Reall that the state spae S of the (M; ~�; i)-Markov hain ontains all �nite attainable histories of

the bako� proess. Let us refer to the transition probability matrix of the (M; ~�; i)-Markov hain

as the Polish matrix with starting state i, or simply the Polish matrix if i is impliit or irrelevant.

Note that even though the bako� proess has only �nitely many states, the Polish matrix has a

ountably in�nite number of states.

Our analysis in the rest of the paper will branh, depending on whether the Polish matrix

is transient, null, or ergodi. We now de�ne these onepts, whih are standard notions in the

study of denumerable Markov hains (see e.g., [6℄). A Markov hain (and its matrix P ) are alled

transient if, started in some state i, the probability of eventually returning to state i is stritly less

than 1. For every irreduible

3

non-transient Markov hain P , the sequene of powers of P has a

3

Note that the assumption that the (M; ~�)-bako� proess is irreduible implies that the Polish matrix is irreduible

exept if some �

i

= 0. We will see later that whenever some �

i

= 0, then the Polish matrix is transient. So all reurrent

hains we enounter are irreduible.

5



Cesaro limit L (that is,

1

t

P

t

�=1

P

�

onverges to L). An irreduible non-transient hain is null if L

is identially 0, and otherwise is ergodi. For an ergodi hain, every entry of L is stritly positive.

For eah state i of an ergodi hain, the expeted time, starting in state i, to return to i is �nite.

For eah state i of a null hain, the expeted time, starting in state i, to return to i is in�nite. We

note that no �nite Markov hain is null.

For example, onsider a random walk on the semi-in�nite line, with a reeting barrier at 0,

where the probability of moving left (exept at 0) is p, of moving right (exept at 0) is 1 � p, and

of moving right at 0 is 1. If p < 1=2, then the walk is transient; if p = 1=2, then the walk is null;

and if p > 1=2, then the walk is ergodi.

We say that the bako� proess (M; ~�; i) is transient (resp., null, ergodi) if the Polish matrix

is transient (resp., null, ergodi). In the onstant � ase (Setion 3), if � < 1=2, then the bako�

proess is transient; if � = 1=2, then the bako� proess is null; and if � > 1=2, then the bako�

proess is reurrent. The next proposition says that the lassi�ation does not depend on the start

state and therefore we may refer to the bako� proess (M; ~�) as being transient, ergodi, or null.

Its proof may be found in Appendix C.1.

Proposition 4.1 The bako� proess (M; ~�; i) is transient (resp., ergodi, null) preisely if the

bako� proess (M; ~�; j) is transient (resp., ergodi, null).

Theorem 4.2 If (M; ~�) is irreduible then the task of lassifying the (M; ~�)-bako� proess as

transient or ergodi or null is solvable in polynomial time.

Theorem 4.3 For every irreduible (M; ~�) and for every i 2 V , the (M; ~�; i)-bako� proess has a

Cesaro limit distribution. This limiting distribution is independent of i if the (M; ~�)-bako� proess

is transient or null. Furthermore, the limiting distribution is omputable exatly in polynomial time

if the proess is ergodi or null.

When the (M; ~�)-bako� proess is transient, the limiting probabilities are not neessarily

rational in the entries of M and ~� and therefore we annot hope to ompute them exatly. In

Setion 4.2, we give an algorithm for approximating these limiting probabilities.

4.1 Classifying the bako� proess

In this setion we show how it is possible to lassify, in polynomial time, the behavior of any

(M; ~�)-bako� proess as transient or ergodi or null. In Setion 3 (where the bako� probability

is independent of the state), we showed that the length of the history is either always expeted

to grow or always expeted to shrink (exept for initial histories), independent of the top state in

the history stak. To see that this argument annot arry over to this setion, onsider a simple

Markov hain M on two states with M

ij

= 1=2 for every pair i; j and ~�

1

= h:99; :01i. It is lear

that if the top state is 1, then the history is expeted to shrink while if the top state is 2, then the

history is expeted to grow. To deal with this imbalane between the states, we assoiate a weight

w

i

with every state i and onsider the weighted sum of states on the stak. Our goal is to �nd a

weight vetor with the property that the weighted sum of states on the stak is expeted to grow

(resp. shrink) if and only if the history is expeted to grow unboundedly (resp. remain bounded).

This hope motivates our next few de�nitions.

De�nition 4.4 For a nonnegative vetor ~w = hw

1

; : : : ; w

n

i, and a history �� = h�

0

; : : : ; �

l

i of an

(M; ~�)-bako� proess on n states de�ne the w-potential of ��, denoted �

~w

(��), to be

P

l

i=1

w

�

i

(i.e.,

it is the weighted sum of the states in the history, exept the initial state, with state i weighted by

w

i

).
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De�nition 4.5 For a nonnegative vetor ~w, and a history �� of an (M; ~�)-bako� proess on n

states de�ne the ~w-di�erential of ��, denoted ��

~w

(��), to be E [�

~w

(su(��))℄ � �

~w

(��). (Here E

represents the expeted value over the distribution given by su(��).)

The following proposition is immediate from the de�nition.

Proposition 4.6 If �� and ��

0

are non-initial histories with the same top state j, then

��

~w

(��) = ��

~w

(��

0

) = ��

j

w

j

+ (1� �

j

)

n

X

k=1

M

jk

w

k

:

The above proposition motivates the following de�nition.

De�nition 4.7 For an (M; ~�)-bako� proess, nonnegative vetor ~w, and state j 2 f1; : : : ; ng, let

��

~w;j

= ��

~w

(��), where �� is any history with j = top(��) and `(��) > 0. Let ��

~w

denote the vetor

h��

~w;1

; : : : ;��

~w;n

i.

For intuition, onsider the onstant � ase with weight vetor w

i

= 1 for all i. In this ase

�

~w

(��), the w-potential of ��, is preisely `(��), and ��

~w

(��), the ~w-di�erential of ��, is the expeted

hange in the size of the stak, whih is 1� 2�. When � < 1=2 (resp., � = 1=2, � > 1=2), so that

the expeted hange in the size of the stak is positive (resp., 0, negative), the proess is transient

(resp., null, ergodi).

Similarly, in the non-onstant � ase we would like to assoiate a positive weight with every

state so that (1) the expeted hange in potential in every step has the same sign independent of

the top state (i.e., ~w is positive and ��

~w

is either positive or zero or negative), and (2) this sign

an be used to ategorize the proess as either transient, null or ergodi preisely as it did in the

onstant � ase.

In general, this will not be possible, say, if some �

i

= 1 and some other �

j

= 0. Therefore, we

relax this requirement slightly and de�ne the notion of an \admissible" vetor (appliable to both

the vetor of weights and also the vetor of hanges in potential).

De�nition 4.8 We say that an n-dimensional vetor ~v is admissible for a vetor ~� if ~v is non-

negative and v

i

= 0 only if �

i

= 1. (We will drop the suÆx, admissible for ~�, and simply say

admissible, if the latter vetor is named ~�.)

In Appendix C.3 we prove three very natural lemmas that ombine to show the following.

Given (M; ~�) and an admissible vetor ~w: (1) If ��

w

is admissible then the proess is transient.

(2) If ��

w

is zero then the proess is null. (3) If ���

w

is admissible then the proess is ergodi.

Roughly speaking, we show that �

~w

(��) is a bounded-di�erene martingale. This enables us to use

martingale tail inequalities to analyze the long-term behavior of the proess.

This explains what ould happen if we are luky with the hoie of ~w. It does not explain how

to �nd ~w, or even why the three ases above are exhaustive. Our next lemma shows that the ases

are indeed exhaustive and gives a eÆient algorithm to ompute ~w.

Lemma 4.9 For every irreduible (M; ~�)-bako� proess, there exists an admissible vetor ~w suh

that exatly one of the following holds: (1) ��

~w

is admissible, (2) ��

~w

is zero, or (3) ���

~w

is

admissible. Furthermore suh a vetor an be omputed in polynomial time, given (M; ~�).

Proof. We �rst get rid of an easy ase, namely if some �

j

= 0.
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Claim 4.10 Suppose there exists j suh that �

j

= 0. Let d(k; j) denote the length of a shortest

path (of non-zero probability) from k to j in M . Let M

min

be the smallest non-zero entry of M ,

and let �

max

be the largest entry of ~� that is stritly smaller than 1. Let  =

1

2

�M

min

�

1��

max

�

max

. Let

~w be de�ned as follows.

w

k

=

(

0 if �

k

= 1



d(k;j)

otherwise.

Then ~w and ��

~w

are admissible.

We defer the proof of the laim to Appendix C.2.

Let A be the n�n diagonal matrix with the A

ii

= �

i

. Let I be the n�n identity matrix. Then

notie that ��

~w

= �A~w + (I �A)M ~w.

Let H = (I � A)MA

�1

. Notie that sine none of the �

i

's are zero, A

�1

exists. The matrix

H is nonnegative. Let Hj

~�

be the restrition of H to rows and olumns orresponding to �

j

< 1.

Notie that Hj

~�

is irreduible. (This is equivalent to M j

~�

being irreduible, whih is implied by

the irreduibility of the bako� proess.) By the Perron-Frobenius theorem (Theorem A.1), there

exists a (unique) positive vetor ~v

0

and a (unique) positive real � suh that Hj

~�

~v

0

= �~v

0

. Let ~v

be an n-dimensional vetor obtained by padding ~v

0

with zeroes in the olumns orresponding to

�

j

= 1. Notie then that H~v = �~v and ~v is admissible for ~�. Now let ~w = A

�1

~v. Notie that ~w is

also admissible, and satis�es (I � A)M ~w = �A~w. Equivalently, �A~w + (I � A)M ~w = (�� 1)A~w,

and thus ��

~w

= (�� 1)A~w. Thus, for this hoie of ~w, (1) if � > 1, then ��

~w

is admissible; (2) if

� = 1, then ��

~w

= 0; (3) if � < 1, then ���

~w

is admissible.

Thus we have proved the existene part of the result. But it also follows that the vetor ~w

an be omputed eÆiently (sine this amounts to omputing an eigenvalue and the orresponding

eigenvetor of a given matrix).

It is easy to see that the results we have disussed ombine to prove Theorem 4.2.

4.2 Cesaro limit distributions

We begin the setion by skething the proof that the (M; ~�; i)-bako� proess always has a Cesaro

limit distribution. The proof is quite di�erent in eah of the ases (transient, ergodi and null).

More details appear in Appendix C.4. We onlude the setion by showing how the limiting

distribution may be omputed.

The easiest ase is the ergodi ase. Sine the Polish matrix is ergodi, the orresponding

Markov proess has a Cesaro limit. This gives us a Cesaro limit in the bako� proess, where the

probability of state i is the sum of the probabilities of the staks in the Polish matrix with top

state i.

We now onsider the transient ase. When the bako� proess is in a state (with a given

stak), and that state is never popped o� of the stak (by taking a bakedge), then we refer to this

(ourrene of the) state as irrevoable. Let us �x a state i, and onsider a renewal proess (see

De�nition A.7), where eah new epoh begins when the proess has an irrevoable ourrene of

state i. Sine the Polish matrix is transient, the expeted length of an epoh is �nite. The limiting

probability distribution of state j is the expeted number of times that the proess is in state j in

an epoh, divided by the expeted length of an epoh. This is a sketh of a proof of the existene of

a Cesaro limit distribution. A more areful argument (given in Appendix C.4) shows the existene

of a stationary distribution.

Finally, we onsider the null ase. We selet a state j where �

j

6= 1. Let us onsider a new

bako� proess, where the underlying Markov matrix M is the same; where all of the bako�

8



probabilities �

k

are the same, exept that we hange �

j

to 1; and where we hange the start state

to j. This new bako� proess an be shown to be ergodi. We show a way of \pasting together"

runs of the new ergodi bako� proess to simulate runs of the old null ergodi proess. Thereby,

we show the remarkable fat that the old null proess has a Cesaro limit distribution whih is the

same as the Cesaro limit distribution of the new ergodi proess. We now show how the limiting

distribution may be omputed. Again, we branh into three ases.

4.2.1 The null ase

The matrix H = (I � A)MA

�1

, whih we saw in Setion 4.1), plays an important role in this

setion. We refer to this matrix as the Hungarian matrix of the (M; ~�)-bako� proess. The next

theorem gives an important appliation of the Hungarian matrix.

Theorem 4.11 The limiting probability distribution � satis�es � = �H. This linear system has a

unique solution subjet to the restrition

P

i

�

i

= 1. Thus, the limiting probability distribution an

found by solving a linear system.

Proof [Sketh℄. The key ingredient in the proof is the observation that in the null ase, the

probability of a transition from a state i to a state j by a forward step is the same as the probability

of a transition from state j to a state i by a bakward step (sine eah forward move is eventually

revoked, with probability 1). Thus if we let �

i!j

denote the probability of a forward step from i

to j and �

i j

denote the probability of a bakward step from j to i (and �

i

denotes the limiting

probability of being in state i), then the following onditions hold:

�

i

=

X

j

�

i!j

+

X

j

�

j i

; �

i!j

= (1� �

i

)M

ij

�

i

; �

i!j

= �

i j

:

Manipulating the above shows that � satis�es � = �H. For the uniqueness part, notie that if

all �

i

< 1, then H is irreduible and nonnegative and thus by Theorem A.1, � is a maximal

eigenvetor and hene a unique solution to the linear system. If some �

i

= 1, we argue by fousing

on the matrix Hj

�

, (as in Setion 4.1, Hj

�

is the prinipal submatrix of H ontaining only rows

and olumns orresponding to i s.t. �

i

< 1) whih is irreduible. Details omitted.

4.2.2 The ergodi ase

In this ase also the limiting probabilities are obtained by solving linear systems, obtained from a

renewal argument. We de�ne \epohs" starting at i by simulating the bako� proess as follows.

The epoh starts at an initial history with X

0

= hii. At the �rst step the proess makes a forward

step. At every subsequent unit of time, if the proess is in state j, it �rst ips a oin that omes

up \B" with probability �

j

and \F" otherwise. If the oin omes up \B", it heks to see if it is

bak at the initial history and if so delares an end of an epoh.

Notie that the distribution of the length of an epoh starting at i is preisely the same as the

distribution of time, starting at an arbitrary history with i on top of the stak, until this ourrene

of i is popped from the stak, onditioned on the fat that the �rst step taken from i is a forward

step.

Let T

i

denote the expeted length of (or more preisely, number of transitions in) an epoh,

when starting at state i. Let N

ij

denote the expeted number of transitions out of state j in an

epoh when starting at state i. Standard renewal arguments (using Theorem A.8 with E(X

i

) = T

i

9



and E(Y

i

) = N

ij

) show that the Cesaro limit probability distribution vetor �

(i)

, for an (M; ~�; i)-

bako� proess, is given by �

(i)

j

= N

ij

=T

i

, provided T

i

is �nite. Sine this is true for the ergodi

ase, this gives us a way to ompute the Cesaro limit distribution in the ergodi ase. The key

equations that allow us to ompute the N

ij

and T

i

are:

T

i

= 1 +

X

k

M

ik

[�

k

� 1 + (1� �

k

)(T

k

+ 1)℄ + (1� �

i

)T

i

;

N

ij

= Æ

ij

+

X

k

M

ik

[�

k

� Æ

jk

+ (1� �

k

)(N

kj

+ Æ

jk

)℄ + (1� �

i

)N

ij

;

where Æ

ij

= 1 if i = j and 0 otherwise. (The above equations are derived by straightforward

onditioning. For example, if the �rst step in the epoh takes the proess to state k, then it takes

T

k

units of time to return to hii and then with probability (1 � �

i

) it takes T

i

more steps to end

the epoh.)

The T

i

's and N

ij

's an be omputed by solving the linear systems above. Uniqueness of the

solution to the linear system is derived from the non-singularity of I�H, where H = (I�A)MA

�1

is the Hungarian matrix. Details omitted.

4.2.3 The transient ase

Theorem 4.12 Let (M; ~�) be a transient bako� proess on n states, and let all entries of M and

~� be rationals expressible as ratios of l-bit integers. Then, given any error bound � > 0, a vetor

�

0

that �-approximates the stationary probability distribution � of the (M; ~�)-proess (i.e., satis�es

j�

0

j

� �

j

j � �) an be omputed in time polynomial in n; l and log

1

�

.

Let r

i

denote the \revoation" probability of a state i, i.e., the probability that an epoh starting

at i, as in Setion 4.2.2, ends in �nite time. Let ~r denote the vetor of revoation probabilities.

The following lemma shows how to ompute the limiting probabilities � given ~r. Further it shows

how to ompute a lose approximation to �, given a suÆiently lose approximation to ~r.

Lemma 4.13 The limiting probabilities satisfy � = �(I � A)MR, where R is a diagonal matrix

with

1

1�(1��

i

)

P

k

r

k

M

ik

as the ith entry. Further, there exists a unique solution to the above system

subjet to the ondition

P

i

�

i

= 1.

Remark: Two speial ases of interest are: (1) When all �

i

= 0, in whih ase we reover the

familiar ondition for Markov hains that � = �M . (2) When all r

i

= 1, in whih ase we get the

null ase and then � satis�es � = �(I �A)MA

�1

.

Proof. The �rst part of the lemma is obtained as in Theorem 4.11. Let �

i!j

denote the probability

of a forward transition from i to j at stationarity, and let �

i j

denote the probability of a bakward

transition from j to i. Then the following onditions hold.

�

i j

= r

j

�

i!j

(1)

�

i!j

= �

i

(1� �

i

)M

ij

(2)

�

i

=

X

j

�

j!i

+

X

j

�

i j

(3)

Using Equation (1) to eliminate all ourrenes of variables of the form �

i j

, and then Equa-

tion (2) to eliminate all ourrenes of �

i!j

, Equation (3) simpli�es to:

�

i

=

X

j

�

j

(1� �

j

)M

ji

+ �

i

(1� �

i

)

X

j

r

j

M

ij

(4)
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Thus if we let D be the matrix with the ijth entry being

D

ij

=

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

k

then � satis�es � = �D. As in the proof of Theorem 4.11 if we permute the rows and olumns of

D so that all states i with �

i

= 1 appear at the end, then the matrix D looks as follows:

D =

"

D

�

X

0 0

#

where D

�

is non-negative and irreduible. Thus � = [�

A

�

B

℄ must satisfy �

A

= �

A

D

�

and �

B

=

�

A

X. �

A

is now seen to be unique (up to saling) by the Perron-Frobenius theorem (Theorem

A.1), while �

B

is unique given �

A

. The lemma follows by notiing that D an be expressed as

(I �A)MR.

Lemma 4.14 Let the entries of M and ~� be l-bit rationals desribing a transient (M; ~�)-preess

and let � be its stationary probability vetor. For every � > 0, there exists � > 0, with log

1

�

=

poly(n; l; log

1

�

), suh that given any vetor ~r

0

of l

0

-bit rationals satisfying k~r

0

� ~rk

1

� �, a vetor

�

0

satisfying k�

0

� �k

1

� � an be found in time poly(n; l; l

0

; log

1

�

).

Remark: By trunating ~r

0

to log

1

�

bits, we an ensure that l

0

also grows polynomially in the input

size, and thus get a fully polynomial time algorithm to approximate �.

We defer the proof of Lemma 4.14 to Appendix C.5.

Lemma 4.15 The revoation probabilities r

i

are the optimum solution to the following system:

min

X

i

x

i

s.t. x

i

� �

i

+ (1� �

i

)x

i

P

j

M

ij

x

j

x

i

� 1

x

i

� 0

9

>

>

>

>

=

>

>

>

>

;

(5)

Further, the system of inequalitities above is equivalent to the following semide�nite program:

min

X

i

x

i

s.t. q

i

= 1� (1� �

i

)

P

j

M

ij

x

j

x

i

� 1

x

i

� 0

q

i

� 0

D

i

postive semide�nite, where D

i

=

"

r

i

p

�

i

p

�

i

q

i

#

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Proof. We start by onsidering the following iterative system and prove that it onverges to the

optimum of (5).

For t = 0; 1; 2; : : :, de�ne x

(t)

i

as follows:

x

(0)

i

= 0; x

(t+1)

i

= �

i

+ (1� �

i

)x

(t)

i

X

j

M

ij

x

(t)

j

:

11



By indution, we note that x

(t)

i

� x

(t+1)

i

� 1. For example:

x

(t+1)

i

= �

i

+ (1� �

i

)x

(t)

i

X

j

M

ij

x

(t)

j

� �

i

+ (1� �

i

)x

(t�1)

i

X

j

M

ij

x

(t�1)

j

= x

(t)

i

Thus sine hx

(t)

i

i

t

is a non-dereasing sequene in the interval [0; 1℄, it must have a limit. Let x

�

i

denote this limit.

We laim that x

�

i

are the (unique) optimum to (5). By onstrution, it is lear that 0 � x

�

i

� 1

and x

�

i

= �

i

+ (1 � �

i

)x

�

i

P

j

M

ij

x

�

j

; and hene x

�

i

's form a feasible solution to (5). To prove it is

the optimum, we laim for every feasible solution a

i

's to (5) satis�es a

i

� x

(t)

i

and thus a

i

� x

�

i

.

We prove this laim by indution. Assume a

i

� x

(t)

i

, for every i. Then

a

i

� �

i

+ (1� �

i

)a

i

X

j

M

ij

a

j

� �

i

+ (1� �

i

)x

(t)

i

X

j

M

ij

x

(t)

j

= x

(t+1)

i

:

This onludes the proof that the x

�

i

's are the unique optimum to (5).

Next we show that the revoation probability r

i

= x

�

i

. To do so, note �rst that r

i

satis�es the

ondition

r

i

= �

i

+ (1� �

i

)

X

j

M

ij

r

j

r

i

:

(Either the move onto i is revoked at the �rst step with probability �

i

, or we move to j with

probability (1� �

i

)M

ij

and then the move to j is eventually revoked with probability r

j

, and this

plaes i again at the top of the stak, and with probability r

i

this move is revoked eventually.)

Thus r

i

's form a feasible solution and thus r

i

� x

�

i

. To prove that r

i

� x

�

i

, let us de�ne r

(t)

i

to

be the probability that a forward move onto vertex i is revoked in at most t steps. Note that

r

i

= lim

t!1

r

(t)

i

. We will show by indution that r

(t)

i

� x

(t)

i

and this implies r

i

� x

�

i

. Notie �rst

that

r

(t+1)

i

� �

i

+ (1� �

i

)

X

j

M

ij

r

(t)

j

r

(t)

i

:

(This follows from a onditioning argument similar to the above and then notiing that in order

to revoke the move within t+ 1 steps, both the revoation of the move to j and then the eventual

revoation of the move to i must our within t time steps.) Now an indutive argument as earlier

shows r

(t+1)

i

� x

(t+1)

i

. Thus we onlude that x

�

i

= r

i

. This �nishes the �rst part of the lemma.

For the seond part, note that ondition D

i

is semide�nite is equivalent to the ondition r

i

q

i

�

�

i

. Substituting q

i

= 1�(1��

i

)

P

j

M

ij

r

j

turns this into the onstraint r

i

�(1��

i

)r

i

P

j

M

ij

r

j

� �

i

,

and thus establishing the (syntati) equivalene of (5) and (6).

Lemma 4.16 If the entries of M and ~� are given by l-bit rationals, then an �-approximation to

the vetor of revoation probabilities an be found in time poly(n; l; log

1

�

).
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Proof. We solve the onvex program given by (5) approximately using the ellipsoid algorithm [3℄.

Reall that the ellipsoid algorithm an solve a onvex programming problem given (1) a separation

orale desribing the onvex spae, (2) a point ~x inside the onvex spae, (3) radii � and R suh

that the ball of radius � around ~x is ontained in the onvex body and the ball of radius R ontains

the onvex body. The running time is polynomial in the dimension of the spae and in log

R

r

.

The fat that (5) desribes a onvex program follows from the fat that it is equivalent to the

semide�nite program (6). Further, a separation orale an also be obtained due to this equivalene.

In what follows we will desribe a vetor ~x that is feasible, and an � � 2

� poly(n;l)

suh that every

point y satisfying kx� yk

1

� � is feasible. Further it is trivial to see that every feasible point

satis�es the ondition that the ball of radius

p

n around it ontains the unit ube and hene all

feasible solutions. This will thus suÆe to prove the laim.

Reall, from Setion 4.1, that sine (M; ~�) is null, there exists a � > 1 and a vetor ~w suh that

(I �A)MA

�1

(~w) � �~w. (This held even in the ase where some �

j

= 0.) Note further that sine �

is the maximal eigenvalue of a matrix whose entries are poly(n; l) bit rationals, its value is at least

1 + 2

� poly(n;l)

. Let ~v = A

�1

~w, and let v

max

= max

i

v

i

and let v

min

= min

i

v

i

. Again we note that

v

min

� 2

� poly(n;l)

v

max

. Saling ~v appropriately, we may assume v

max

= 1. We will use this � and ~v

below.

Before desribing the vetor ~x and �, we make one simpli�ation. Notie that if �

i

= 1, then

r

i

= 1 and if �

i

= 0, then r

i

= 0. We �x this setting and then solve (5) for only the remaining

hoies of indies i. So heneforth we assume 0 < �

i

< 1 and in partiular the fat that �

i

� 2

�l

.

Let Æ =

��1

2�

. Note Æ > 2

� poly(n;l)

. Let � = 2

�(l+3)

v

min

�

��1

�

�

2

. We will set z

i

= 1 � Æv

i

and

show that z

i

� �

i

� (1� �

i

)z

i

P

j

M

ij

z

j

is at least 2�. Now letting x

i

= z

i

� �, we get the required

vetor ~x and �.

Consider

z

i

� �

i

� (1� �

i

)z

i

X

j

M

ij

z

j

= 1� Æv

i

� �

i

� (1� �

i

)(1 � Æv

i

)

X

j

M

ij

(1� Æv

j

)

= 1� Æv

i

� �

i

� (1� �

i

)(1 � Æv

i

)(1� Æ

X

j

M

ij

v

j

)

= (1� Æv

i

)

0

�

Æ

X

j

(1� �

i

)M

ij

v

j

1

A

� Æv

i

�

i

� (1� Æv

i

) (Æ��

i

v

i

)� Æv

i

�

i

� Æ�

i

v

i

(�� �Æv

i

� 1)

�

�

�� 1

2�

�

2

�

i

v

i

� 2�:

This onludes the proof.

Proof. [of Theorem 4.12℄ GivenM , ~� and �, let � be as given by Lemma 4.14. We �rst ompute a

� approximation to the vetor of revoation probabilities in time poly(n; l; log

1

�

) = poly(n; l; log

1

�

)

using Lemma 4.16. The output is a vetor ~r

0

of l

0

= poly(n; l; log

1

�

)-bit rationals. Applying

Lemma 4.14 to M , ~�, ~r and �, we obtain a �-approximation to the stationary probability vetor �

in time poly(n; l; l

0

; log

1

�

) = poly(n; l; log

1

�

).
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A Preliminaries

In this setion, we review bakground material essential to our proofs.

A.1 Perron-Frobenius Theorem

Theorem A.1 (Perron-Frobenius Theorem, see e.g., [4℄, p. 508) Let A be an irreduible, non-

negative n by n matrix. Then

� There exists ~v, with all omponents positive, and �

0

> 0 suh that A~v = �

0

~v;

� if � 6= �

0

is any other eigenvalue of A, then j�j < �

0

; and

� the eigenspae assoiated with �

0

is one-dimensional.

A.2 Martingale Tail Inequalities

We begin by reviewing the basi de�nitions.

De�nition A.2 � A sequene of random variables X

0

;X

1

; : : : is said to be a martingale if for

all i > 0, E[X

i

jX

0

; : : : ;X

i�1

℄ = X

i�1

.

� A sequene of random variables X

0

;X

1

; : : : is said to be a super-martingale if for all i > 0,

E[X

i

jX

0

; : : : ;X

i�1

℄ � X

i�1

.

� A sequene of random variables X

0

;X

1

; : : : is said to be a sub-martingale if for all i > 0,

E[X

i

jX

0

; : : : ;X

i�1

℄ � X

i�1

.

i



Theorem A.3 (Azuma's Inequality, see e.g., [8℄, p. 92) Let X

0

;X

1

; : : : be a martingale sequene

suh that for eah k

jX

k

�X

k�1

j � 

k

;

where 

k

may depend on k. Then, for all t � 0 and any � > 0,

Pr[X

t

�X

0

j � �℄ � 2exp

 

�

�

2

2

P

1�k�t



2

k

!

:

Corollary A.4 Let X

0

;X

1

; : : : be a martingale sequene suh that for all k

jX

k

�X

k�1

j � :

Then, for all t � 0 and any � > 0

Pr[X

t

�X

0

j � �

p

t℄ � 2e

��

2

=2

:

Corollary A.5 Let X

0

;X

1

; : : : be a sub-martingale suh that

E(X

i

jX

0

; : : : ;X

i�1

) � X

i�1

+ �;

(� > 0) and for all k

jX

k

�X

k�1

j � :

Then, for all t � 0 and any � � 0

Pr(jX

t

�X

0

j � �) � 2e

�

�

�

2

2

�

t�

2�

�

��

:

Corollary A.6 Let X

0

;X

1

; : : : be a super-martingale suh that

E(X

i

jX

0

; : : : ;X

i�1

) � X

i�1

� �;

(� > 0) and for all k

jX

k

�X

k�1

j � :

Then, for all t � 0

Pr(jX

t

+ �t�X

0

j � t) � 2e

�

2

t=(2

2

)

:

A.3 Renewal Theory

De�nition A.7 A renewal proess fN(t); t � 0g is a non-negative integer-valued stohasti pro-

ess that registers the suessive ourrenes of an event during the time interval (0,t℄, where the

times between onseutive events are positive, independent, identially-distributed random variables.

Theorem A.8 (Corollary of Renewal Theorem, see e.g., [5℄, p. 203 ) Let N(t) be a renewal proess

where the time between the ith and (i+ 1)st event is denoted by the random variable X

i

. Let Y

i

be

a ost or value assoiated with the ith renewal yle, where the values Y

i

, i � 1, are also positive,

independent, identially-distributed random variables. Then

lim

t!1

E[

P

1�k�N(t)+1

Y

k

℄

t

=

E(Y

1

)

E(X

1

)

:
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A.4 A Basi Probability Fat

Proposition A.9 Let p : Z

+

! [0; 1℄ be a probability distribution (i.e.,

P

1

i=1

p(i) = 1) with

expetation at least � (i.e.,

P

1

i=1

ip(i) � �). Let Y

1

; : : : ; Y

N

; : : : ; be a sequene of independent

random variables distributed aording to p. Then, for every Æ > 0 and �

0

< �, there exists an

index N suh that

Pr[

N

X

i=1

Y

i

> �

0

�N ℄ � 1� Æ:

Proof. Let K be an integer suh that

P

K

i=1

ip(i) �

�

0

+�

2

. (Suh an index exists sine the sequene

�

1

; �

2

; : : : ; �

j

; : : :, where �

j

=

P

j

i=1

ip(i) is monotone non-dereasing and ahieves a value of at

least �.) Let p

0

be the distribution with p

0

(i) = p(i) if i 2 f1; : : : ;Kg, p

0

(0) = 1 �

P

K

i=1

p(i) and 0

everywhere else. Note that the expetation of p

0

is at least

�

0

+�

2

, and all moments of p

0

are bounded

(by K). Thus we an apply the law of large numbers to onlude that there exists an N suh that

sampling n times from p

0

gives an average of at least �

0

�N with probability at least 1� Æ.

B Proof of Theorem 3.1

Theorem B.1 For given natural numbers � and t, and a state j, we have Pr [X

t

= j j `(H

t

) = �℄ =

q

�

(j):

Proof. Consider a string ! of \F"s and \B"s with the property the in every pre�x, the number

of \B"s is not more than the number of \F"s. Notie that every suh string orresponds to a

legitimate auxiliary sequene for the bako� proess (exept if �

i

= 0 or 1). Now onsider strings

! and !

0

suh that ! = !

1

FB!

2

and !

0

= !

1

!

2

. Let ! be of length t and !

1

of length t

1

. Notie

that

Pr [X

t

= j j hS

1

; : : : ; S

t

i = !℄

=

X

��2S

Pr [H

t

1

= �� j hS

1

; : : : ; S

t

1

i = !

1

℄ � Pr [X

t

= j j hS

t

1

+1

; : : : ; S

t

1

i = FB!

2

and H

t

1

= ��℄

=

X

��2S

Pr [H

t

1

= �� j hS

1

; : : : ; S

t

1

i = !

1

℄ � Pr [X

t

= j j hS

t

1

+3

; : : : ; S

t

1

i = !

2

and H

t

1

+2

= ��℄

= Pr

�

X

t�2

= j j hS

1

; : : : ; S

t�2

i = !

0

�

This motivates the following notion of a redution. A sequene ! of \F"s and \B"'s redues in one

step to a sequene !

0

if ! = !

1

FB!

2

and !

0

= !

1

!

2

. A sequene ! redues to a sequene !

00

if if

!

00

an be obtained from ! by a �nite number of \redutions in one step". Repeatedly applying

the laim from the previous paragraph, we �nd that if a string ! of length t redues to a string !

00

of length t

00

, then

Pr [X

t

= j j hS

1

; : : : ; S

t

i = !℄ = Pr

�

X

t

00

= j j hS

1

; : : : ; S

t

00

i = !

00

�

:

But every auxiliary sequene hS

1

; : : : ; S

t

i an eventually be redued to a sequene of the form F

�

(i.e., onsisting only of forward steps), and further � = `(H

t

). This yields:

Pr [X

t

= j j hS

1

; : : : ; S

t

i; `(H

t

) = �℄ = Pr

h

X

�

= j j hS

1

; : : : ; S

�

i = F

�

i

= q

�

(j):
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C Proofs for Setion 4

C.1 Preliminaries

Proof [of Proposition 4.1℄. Let us all a state i transient if (M; ~�; i) is transient, and similarly for

the other properties (reurrent, and its sublassi�ations ergodi and null). We must show that if

some state is transient (resp., ergodi, null) then every state is transient (resp., ergodi, null). If

�

j

= 0 for some j, then every state i is transient. This is beause starting in state i, there is a

positive probability of eventually reahing state j, and the stak hi; : : : ; ji an never be unwound

bak to the original stak hii. So assume that �

j

> 0 for every j.

Assume that there is at least one transient state and at least one reurrent state; we shall

derive a ontradition. Assume �rst that there is some transient state j with �

j

< 1. Let i be a

reurrent state. Starting in state i, there is a positive probability of eventually reahing state j.

This gives the stak hi; : : : ; ji. There is now a positive probability that the stak never unwinds

bak to hi; : : : ; ji (this follows from the fat that j is transient and that �

j

< 1). But if the stak

never unwinds to hi; : : : ; ji, then it never unwinds to hii. So there is a positive probability that the

stak never unwinds to hii, whih ontradits the assumption that i is reurrent. Hene, we an

assume that for every transient state j, we have �

j

= 1.

Let j be an arbitrary state. We shall show that j is reurrent, a ontradition. Assume that

the bako� proess starts in state j; we must show that with probability 1, the stak in the bako�

proess returns to hji. Assume that the next state is `, so that the stak is hj; `i. If ` is transient,

then with probability 1, on the following step the stak is bak to hji, sine �

`

= 1. Therefore,

assume that ` is reurrent. So with probability 1, the stak is hj; `i in�nitely often. Sine �

`

> 0,

it follows that with probability 1, the stak must eventually return to hji, whih was to be shown.

We have shown that if some state is transient, then they all are. Assume that there is at least

one null state and at least one ergodi state; we shall derive a ontradition. This will onlude

the proof.

Assume �rst that there is some null state j with �

j

< 1. Let i be an ergodi state. There is

a positive probability that starting in state i in (M; ~�; i), the bako� proess eventually reahes

state j and then makes a forward move. Sine the expeted time in (M; ~�; j) to return to the

stak hji is in�nite, it follows that the expeted time in (M; ~�; i) to return to hii is in�nite. This

ontradits the assumption that i is ergodi. Hene, for every null state j, we have �

j

= 1.

Let j be an arbitrary state. We shall show that j is ergodi, a ontradition. For eah state i,

let h

i

be the expeted time to return to the stak hii in (M; ~�; i), after starting in state i. Starting

in state j in (M; ~�; j), the expeted time to return to the stak hji is

X

`

M

j`

(�

`

(2) + (1� �

`

)�

`

(h

`

+ 2) + (1� �

`

)

2

�

`

(2h

`

+ 2) + (1� �

`

)

3

�

`

(3h

`

+ 2) + � � �) (7)

The term M

j`

�

`

(2) represents the situation where the �rst step is to some state ` followed im-

mediately by a bakward step. The term M

j`

(1 � �

`

)�

`

(h

`

+ 2) represents the situation where

the �rst step is to some state ` other than j, followed immediately by a forward step, followed

eventually by a return to the stak hj; `i, followed immediately by a bakward step. The next term

M

j`

(1��

`

)

2

�

`

(2h

`

+2) represents the situation where the �rst step is to some state ` other than j,

followed immediately by a forward step, followed eventually by a return to the stak hj; `i, followed

immediately by a forward step, followed eventually by another return to the stak hj; `i, followed

immediately by a bakward step. The pattern ontinues in the obvious way.
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The ontribution to the sum by null states ` is �nite, sine �

`

= 1 for eah null state `. Let

z

`

= h

`

+ 2. Then

(1� �

`

)�

`

(h

`

+ 2) + (1� �

`

)

2

�

`

(2h

`

+ 2) + (1� �

`

)

3

�

`

(3h

`

+ 2) + � � �

is bounded above by

(1� �

`

)�

`

(z

`

) + (1� �

`

)

2

�

`

(2z

`

) + (1� �

`

)

3

�

`

(3z

`

) + � � �

This is bounded, sine

(1� �

`

) + (1� �

`

)

2

(2) + (1� �

`

)

3

(3) + � � � = (1� �

`

)=(�

`

)

2

:

Therefore, the expression (7), the expeted time to return to the stak hji, is �nite, so j is

ergodi, as desired.

C.2 Proof of Claim 4.10

Proof [of Claim 4.10℄. It is lear by onstrution that  > 0 and thus ~w is admissible. We

now show that ��

~w

is admissible, by arguing that for every k, the omponent ��

~w;k

satis�es the

onditions of admissibility.

Case 1: �

k

= 1. In this ase the expeted hange in potential, ��

~w;k

, is �1 �w

k

= 0. (Note this

is admissible for ~� sine �

k

= 1.)

Case 2: �

k

= 0. (This inludes the ase k = j.) In this ase, we get the following expression for

the expeted hange in potential:

��

~w;k

=

X

k

0

M

kk

0

w

k

0

:

Sine all summands are nonnegative, it suÆes to prove one of them is stritly positive. Sine

(M; ~�) is irreduible, we have that there must be some k

0

suh that M

kk

0

> 0 and �

k

0

< 1. By the

latter ondition and the admissibility of ~w, we get w

k

0

> 0 and thus M

kk

0

w

k

0

> 0. So ��

~w;k

> 0,

as desired.

Case 3: k 6= j, 0 < �

k

< 1. Let k

0

be suh that M

kk

0

> 0 and d(k

0

; j) = d(k; j) � 1. We know

suh a state k

0

exists (by de�nition of shortest paths). We have:

��

~w;k

= ��

k



d(k;j)

+ (1� �

k

)

X

l

M

kl



d(l;j)

� ��

k



d(k;j)

+ (1� �

k

)M

kk

0



d(k

0

;j)

= 

d(k

0

;j)

(��

k

 + (1� �

k

)M

kk

0

)

� 

d(k

0

;j)

(��

k

 + (1� �

max

)M

min

)

= 

d(k

0

;j)

(��

k

 + 2�

max

)

� 

d(k

0

;j)

(��

k

 + 2�

k

)

= 

d(k

0

;j)

(�

k

)

> 0:

So again, ��

~w;k

> 0, as desired.
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C.3 Proofs for the lassi�ation algorithm

Lemma C.1 For an (M; ~�)-bako� proess, if there exists an admissible ~w s.t ��

~w

is also admis-

sible, then the (M; ~�)-bako� proess is transient.

Proof. We start by showing that the potential �

~w

(su(su(��))) has a stritly larger expetation

than the potential �

~w

(��). This, oupled with the fat that hanges in the potential are always

bounded in magnitude, allow us to apply martingale tail inequalities to the sequene f�

~w

(H

t

)g

t

and laim that it inreases linearly with time, with all but an exponentially vanishing probability.

This allows us to prove that with positive probability the walk never returns to the initial history,

thus ruling out the possibility that it is reurrent. Details below.

Claim C.2 There exists an � > 0 s.t. for all sequenes H

0

; : : : ;H

t

of positive probability in the

(M; ~�; i)-Markov hain,

E [�(H

t+2

)��(H

t

)℄ > �:

Proof. We start by notiing that the potential must inrease (stritly) whenever H

t

is the initial

history. This is true, sine in this ase the bako� proess is not allowed to bako�. Further, by

irreduibility, there exists some state j with �

j

< 1 and M

ij

> 0. Thus the expeted inrease in

potential from the initial history is at least �

1

def

=w

j

M

ij

. Let �

2

be the smallest non-zero entry of

��

~w

. We show that the laim holds for � = minf�

1

; �

2

g.

Notie �rst that both the quantities: E [�(H

t+1

)��(H

t

)℄ and E [�(H

t+2

)� �(H

t+1

)℄ are non-

negative (sine ��

~w

is nonnegative). So it suÆes to prove that at least one of these quantities

inreases by at least �. We onsider several ases:

Case 1: �

top(H

t

)

< 1: In this ase E [�(H

t+1

)� �(H

t

)℄ = ��

~w;top(H

t

)

� �

2

, sine ��

~w

is

admissible.

Case 2: �

top(H

t

)

= 1 and `(H

t

) > 1: LetH

t

= h�

0

; : : : ; �

l�1

; �

l

i. Note thatH

t+1

= h�

0

; : : : ; �

l�1

i.

Further, note that �

top(H

t+1

)

< 1 (sine only the top or bottom of the history an be states j with

�

j

= 1). Thus, in this ase we have, E [�(H

t+2

)� �(H

t+1

)℄ � �

2

(again using the admissibility of

��

~w

).

Case 3: �

top(H

t

)

= 1 and `(H

t

) � 1: In this ase, either H

t

or H

t+1

is the initial history, and in

suh a ase, we have that the expeted inrease in potential is at least �

1

.

Next we apply a martingale tail inequality to laim that the probability that the history is the

initial history (or equivalently the potential is zero) grows exponentially small with time.

Claim C.3 There exists  <1, � < 1 suh that for every integer t � 0, the following holds:

Pr[`(H

t

) = 0℄ �  � �

t

:

Proof. Sine the potential at the start state is zero, and the potential is expeted to go up by �

every two time steps, we have that the expeted potential at the end of t steps (when t is even) is at

least �t=2. Further notie that the sequene �

~w

(H

0

);�

~w

(H

2

);�

~w

(H

4

); : : : ; form a sub-martingale,

and that the hange in �

~w

(H

t

) is absolutely bounded: j�

~w

(H

t+2

)��

~w

(H

t

)j � 2 �max

i2f1;:::;ng

fw

i

g.

Therefore, we an apply a standard tail inequality (Corollary A.5) to show that there exist onstants

 <1, � < 1 suh that

Pr [�

~w

(H

t

) = 0℄ �  � �

t

:

The laim follows by notiing that if the history is the initial history, then the potential is zero.
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We use the laim above to notie that for any time T , the probability that the (M; ~�; i)-proess

reahes the initial history after time T is at most

P

1

t=T

 ��

t

�  ��

T

=(1��). Setting T suÆiently

large, we get that this quantity is smaller than 1. Thus the probability that the given (M; ~�; i)-

bako� proess returns to the initial history after time T is bounded away from 1, ruling out the

possibility that it is reurrent.

Lemma C.4 For an (M; ~�)-bako� proess, if there exists an admissible ~w s.t the vetor ���

~w

is also admissible, then the (M; ~�)-bako� proess is ergodi.

Proof. First notie that we an modify the vetor ~w so that it is positive and ��

~w

is negative, as

follows: Let � be the smallest non-zero entry of ���

~w

. For every j s.t. �

j

= 1, set w

0

j

= w

j

+ �=2.

The orresponding di�erene vetor, ��

~w

0

, is at most �=2 larger than ��

~w

in any oordinate; and

thus entries that were already negative in ��

~w

remain negative in ��

~w

0

. On the other hand, for

any j suh that ��

~w;j

was 0 (implying �

j

= 1), the value of ��

~w

0

;j

is �w

0

j

= ��=2. Thus all the

zero entries are now negative.

Heneforth we assume, w.l.o.g., that ~w is positive and ��

~w

is negative. Let w

min

denote the

smallest entry of ���

~w

and w

max

denote the largest entry of ~w. At this stage we have that the

expeted w-potential always goes down exept when the history is an initial history. Notie that

when the history is an initial history, the expeted inrease is potential is at most w

max

. To deal

with initial histories, we de�ne an extended potential.

For a sequene H

0

; : : : ;H

t

; : : : of the (M; ~�; i)-Markov hain, let N

0

(t) denote the number of

times the initial history ours in the sequene H

0

; : : : ;H

t�1

. De�ne the extended potential  (t) =

 

H

0

;:::;H

t

;:::

~w

(t) to be

 (t) = �

~w

(H

t

)� (w

max

+ w

min

) �N

0

(t):

By onstrution, the extended potential of a sequene is expeted to go down by at at least

w

min

in every step. Thus we have

E[ (t)℄ � �w

min

� t:

Further, the sequene  (0); : : : ;  (t); : : : is a super-martingale and the hange in one step is abso-

lutely bounded. Thus, by applying a martingale tail inequality (Corollary A.6), we get that for

any � > 0, we �nd that with probability tending to 1, the extended potential after t steps is at most

�(1 � �)w

min

� t. (More formally, 8�; Æ > 0, there exists a time t

0

suh that for every t � t

0

, the

probability that the extended potential  (t) is greater than �(1��)w

min

� t, is at most Æ.) Sine the

�

~w

part of the extended potential is always nonnegative, and eah time the sequene reahes the

initial history, it is redued by at most (w

max

+ w

min

), this implies that a sequene with potential

�(1� �)w

min

� t must inlude at least (1� �)

w

min

w

min

+w

max

� t initial histories.

Assume for ontradition that the (M; ~�)-bako� proess is null or transient. Then, the expeted

time to return to an initial history is in�nite. Let Y

i

denote the length of the time between the

(i� 1)st and ith visit to the initial history. Using a straightforward appliation of the law of large

numbers (Proposition A.9), we �nd that for every Æ and  <1 there exists an integer N suh that

suh that with probability at least 1� Æ, the �rst N visits to the initial history take more than  �N

steps. Setting Æ =

1

2

and  = 2 �

w

min

+w

max

(1��)w

min

and t = N , we �nd that this ontradits the onlusion

of the previous paragraph. We onlude that the (M; ~�)-bako� proess is ergodi.

De�nition C.5 For a state j, de�ne the revoation probability as follows: Pik any non-initial

history �� = h�

0

; : : : ; �

l

i with top(��) = j. The revoation probability R

j

is the probability that the

(M; ~�; i)-Markov hain starting at state �� reahes the state ��

0

= h�

0

; : : : ; �

l�1

i. (Notie that this

probability is independent of l and �

0

; : : : ; �

l�1

; and thus the quantity is well-de�ned.)
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Before going on to haraterize null proesses, we prove a simple proposition that we will need

in the next lemma.

Proposition C.6 If an (M; ~�)-bako� proess is transient, then there exists a state j with revoa-

tion probability R

j

< 1.

Proof. If every state has revoation probability 1, then the �rst step is revoked with probability

1, indiating that the walk returns to the origin with probability 1, making it reurrent.

The onverse is also true, but we do not need it, so we do not prove it.

Lemma C.7 For an (M; ~�)-bako� proess, if there exists an admissible ~w s.t the vetor ��

~w

=

~

0

then the (M; ~�)-bako� proess is null.

Proof. We �rst de�ne an extended potential as in the proof of Lemma C.4, but we will be a bit

more areful. Let � = E [�

~w

(H

1

)� �

~w

(H

0

)℄ be the expeted inrease in potential from the initial

history. (Note � > 0.)

For a sequene H

0

; : : : ;H

t

; : : : of the (M; ~�; i)-Markov hain, let N

0

(t) denote the number of

ourrenes of the initial history in time steps 0; : : : ; t� 1, and let the extended potential  (t) be

given by

 (t) = �

~w

(H

t

)� � �N

0

(t):

Notie that the extended potential is expeted to remain unhanged at every step of the bako�

proess. Applying a martingale tail inequality again (Corollary A.4) we note that for every Æ > 0,

there exists a onstant  <1 suh that the probability that the extended potential  (t) is greater

than 

p

t in absolute value is at most Æ. We will show that for an ergodi proess the extended

potential goes down linearly with time, while for a transient proess the extended potential goes up

linearly with time - thus onluding that the given (M; ~�)-bako� proess �ts in neither ategory.

Claim C.8 If the (M; ~�)-bako� proess is transient, then there exist onstants � > 0 and b s.t.

for every time t, it is the ase that

E[ (t)℄ � �t� b:

Proof. Let j be a state with R

j

< 1. Let n be the number of states of the Markov hain M .

Notie that for eah t and eah history H

t

, there is a positive probability that there exists a time

t

0

2 [t+1; t+n℄ suh that top(H

t

0

) = j and the move from H

t

0

�1

to H

t

0

is a forward move. Further,

onditioned on this event there is a positive probability (of 1 � R

j

) that this move to j is never

revoked. Thus in any interval of time of length at least n, there is a positive probability, say , that

the (M; ~�; i)-bako� proess makes a move that it never revokes in the future. Thus the expeted

number of suh moves in t steps is t=n. Let w

min

be the smallest non-zero entry of ~w. Then the

expeted value of �

~w

(H

t

) is at least (t=n)w

min

.

We now verify that the expeted value of � � N

0

(t) is bounded from above. This is an easy

onsequene of a well-known property of transient Markov hains, whih states that the expeted

number of returns to the initial state (or any state) is �nite. Let this �nite bound on E[N

0

(t)℄ be

B. Then for every t, we have E[� �N

0

(t)℄ � �B.

Thus the expeted extended potential after t steps is at least t=n� �B.

Claim C.9 If the (M; ~�)-bako� proess is ergodi, then there exist onstants  > 0 and b < 1

suh that for all t,

E [ (t)℄ � �t+ b:
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Proof. We �rst argue that the \�� � N

0

(t)" part of the extended potential goes down linearly

with time. Let Y

j

denote the time between the (j � 1)st and jth return to the initial history.

Then the Y

j

's are independently and identially distributed and have a bounded expetation, say

T . Then, applying the law of large numbers, we have that there exists a t

0

suh that for all t � t

0

the probability that the number of visits to the origin in the �rst t time steps is less than t=2T is

at most

1

2

. Thus the expeted ontribution to the extended potential from this part is bounded

above by �� � (t� t

0

)=(4T ).

It remains to bound the ontribution from E[�

~w

(H

t

)℄. Let f(t) denote the smallest nonnegative

index suh that the history H

t�f(t)

is an initial history. Notie then that E[�

~w

(H

t

)℄ is at most

w

max

� E[f(t)℄. We will bound the expeted value of f(t). Let F (t) denote this quantity. Let p be

the probability distribution on the return time to an initial history, starting from H

0

. Reall that

P

i

ip(i) = T . Then F (t) satis�es the relation:

F (t) =

t

X

i=1

p(i)F (t� i) +

1

X

i=t+1

tp(i):

(If the �rst return to the initial history happens at time i and i > t, then f(t) = t, and if i � t

then f(t) = f(t� i).) We use this relation to prove, by indution on t, that: For every � > 0, there

exists a onstant a suh that F (t) � �t + a. Set a suh that

P

i>a

ip(i) �

�

2

T . The base ases of

the indution are with t � a and these easily satisfy the hypothesis, sine F (t) � t � a � �t + a.

For t > a, we get:

F (t) =

t

X

i=1

p(i)F (t � i) +

1

X

i=t+1

tp(i)

�

t

X

i=1

p(i)(�(t � i) + a) +

1

X

i=t+1

tp(i)

�

1

X

i=1

p(i)�t�

t

X

i=1

p(i)�i+

1

X

i=1

p(i)a+

1

X

i=t+1

ip(i)

= �t+ a�

1

X

i=1

p(i)�i +

1

X

i=t+1

(1 + �)ip(i)

� �t+ a� �T + (1 + �)(�=2)T

� �t+ a (Using � � 1).

The laim now follows by setting � =

�

8T

and b =

� �t

0

8T

+ l.

C.4 Existene of Cesaro Limits

In this setion we prove that the (M; ~�; i)-bako� proess always onverges to a Cesaro limit. The

proofs are di�erent for eah ase (ergodi, null and transient), and so we divide the disussion based

on the ase.

C.4.1 Ergodi ase

The simplest argument is for the ergodi ase.
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Theorem C.10 If the bako� proess (M; ~�) is ergodi, then the (M; ~�; i)-bako� proess onverges

to a Cesaro limit.

Proof. We gave this proof in Setion 4.2.

C.4.2 Transient ase

In this setion, we onsider the transient ase (where the Polish matrix is transient).

Theorem C.11 If the (M; ~�)-bako� proess is transient, then the (M; ~�; i)-bako� proess on-

verges to a stationary distribution.

Proof. Sine the Polish matrix is transient, we know that for eah state �� of the Polish matrix

(whih is a stak of states of the bako� proess) where the top state top(��) has �

top(��)

6= 1, there

is a positive probability, starting in ��, that the top state top(��) is never popped o� of the stak.

It is lear that this probability depends only on the top state top(��) of the stak ��.

When the bako� proess is in a state (with a given stak), and that state is never popped o�

of the stak (by taking a bakedge), then we refer to this (ourrene of the) state as irrevoable.

Tehnially, an irrevoable state should really be thought of as a pair onsisting of the state (of the

bako� proess) and the time, but for onveniene we shall simply refer to the state itself as being

irrevoable.

We now de�ne a new matrix, whih we all the Turkish matrix, whih de�nes a Markov hain.

Just as with the Polish matrix, the states are again staks of states of the bako� proess, but

the interpretation of the stak is di�erent from that of the Polish matrix. In the Turkish matrix,

the stak h�

0

; : : : ; �

`

i represents a situation where �

0

is irrevoable, and where �

1

; : : : ; �

`

are not

irrevoable. The intuition behind the state h�

0

; : : : ; �

`

i is that the top states of the stak of the

Turkish matrix (from �

0

on up) are �

0

; : : : ; �

`

. As with the Polish matrix, the states h�

0

; : : : ; �

`

i of

the Turkish matrix are restrited to being the attainable ones: in this ase this means (a) �

�

j

6= 1

for 0 � j < `; (b) �

�

j

6= 0 for 1 � j � `; and ()M

�

i

�

i+1

> 0 for 0 � i < `. There is a subtlety if the

start state i has �

i

= 1, sine then the state hii is not reahable from any other state, and so we do

not onsider it to be a state of the Turkish matrix. One way around this issue is simply to assume

that the start state i has �

i

6= 1. This is an aeptable assumption, sine with probability 1, the

bako� proess will reah a state j with �

j

6= 1 in a �nite number of steps, and ignoring a �nite

number of steps has no e�et on asymptoti probabilities.

We now de�ne the entries of the Turkish matrix T . If �� and ��

0

are states of the Turkish matrix,

then the entry T

����

0

is 0 unless either (a) ��

0

is the result of popping the top element o� of the stak

��, (b) ��

0

is the result of pushing one new element onto the stak ��, or () both �� and ��

0

eah

ontain exatly one element. The probabilities are those indued by the bako� proess. Thus,

in ase (a), if ` � 1, then T

h�

0

;:::;�

`

ih�

0

;:::;�

`�1

i

equals the probability that the bako� proess takes

a bakedge from �

`

, given that the last irrevoable state was �

0

, that the stak from �

0

on up

is h�

0

; : : : ; �

`

i, and that the remaining states �

1

; : : : ; �

`�1

on the stak are not irrevoable. That

this onditional probability is well-de�ned (and is independent of the time) an be seen by writing

Pr [A j B℄ as Pr [A ^B℄ =Pr [B℄. Note that even though this onditional probability represents the

probability of taking a bakedge from state �

`

, it is not neessarily equal to �

�

`

, sine the event

of taking the bakedge is onditioned on other events, suh as that �

0

is irrevoable. Similarly, in

ase (b), we have that T

h�

0

;:::;�

`

ih�

0

;:::;�

`+1

i

equals the probability that the bako� proess takes a

forward edge from �

`

to �

`+1

and that �

`+1

is not irrevoable, given that the last irrevoable state

was �

0

, that the stak from �

0

on up is h�

0

; : : : ; �

`

i, and that the remaining states �

1

; : : : ; �

`

on
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the stak are not irrevoable. Finally, in ase () we have that T

h�

0

ih�

0

0

i

equals the probability that

the bako� proess takes a forward edge from to �

0

to �

0

0

and that �

0

0

is irrevoable, given that �

0

is irrevoable.

We now show that the Turkish matrix is irreduible, aperiodi, and (most importantly) ergodi.

We �rst show that it is irreduible. We begin by showing that from every state of the Turkish

matrix, it is possible to eventually reah eah (legal) state h�

0

i with only one element in the stak

(by \legal", we mean that �

�

0

6= 1). This is beause in the bako� proess, it is possible to

eventually reah the state �

0

, beause the bako� proess is irreduible; further, it is possible that

one this state �

0

is reahed, it is then irrevoable. Next, from the state h�

0

i, it is possible to

eventually reah eah state h�

0

; : : : ; �

`

i with bottom element �

0

. This is beause it is possible to

take forward steps from �

0

to �

1

, then to �

2

, ..., and then to �

`

, with eah of the states �

1

; �

2

; : : : ; �

`

being non-irrevoable (they an be non-irrevoable, sine it is possible to bakup from �

`

to �

`�1

... to �

0

). Combining what we have shown, it follows that the Turkish matrix is irreduible.

We now show that the Turkish matrix is aperiodi. Let i be a state with �

i

6= 1. Sine the

bako� proess is aperiodi, the gd of the lengths of all paths from i to itself is 1. But every path

from i to itself of length k in the bako� proess gives a path from hii to itself of length k in the

Turkish matrix (where we take the arrival in state i at the end of the path to be an irrevoable

state). So the Turkish matrix is aperiodi.

We now show that the Turkish matrix is ergodi. It is suÆient to show that for some state of

the Turkish matrix, the expeted time to return to this state from itself is �nite. We �rst show that

the expeted time between irrevoable states is �nite. Thus, we shall show that the expeted time,

starting in an irrevoable state �

0

in the bako� proess at time t

0

, to reah another irrevoable

state is �nite. Let E

k

be the event that the time to reah the next irrevoable state is at least k

steps (that is, takes plae at time t

0

+ k or later). It is suÆient to show that the probability of E

k

is O(�

k

) for some onstant � < 1. Assume that the event E

k

holds. There are now two possible

ases. Case 1: There are no further irrevoable states. In this ase the state of the Turkish matrix

is of the form h�

0

; �

1

i in�nitely often with probability 1. Case 2: There is another irrevoable

state, that ours at time t

0

+ k or later. Assume that it ours for the �rst time at time t

0

+ k

0

,

where k

0

� k. It is easy to see that the state of the Turkish matrix at time t

0

+ k

0

is of the form

h�

0

; �

1

i. So in both ases, there is k

0

� k suh that after k

0

steps, the size of the stak in the Polish

matrix has grown by only one.

Now sine the Polish matrix is transient, we see from Setion 4.1 that we an de�ne a potential

suh that there is an expeted positive inrease in the potential at eah step. So by a submartingale

argument (Corollary A.5), the probability that the size of the stak in the Polish matrix has grown

by only one after k

0

> k steps is O(�

k

0

) for some onstant � < 1. So the probability of E

k

is O(�

k

),

as desired.

We have shown that the expeted time between irrevoable states is �nite. So starting in h�

0

i,

there is some state �

1

suh that the expeted time to reah h�

1

i from h�

0

i is �nite. Continuing,

we see that there is some state �

2

suh that the expeted time to reah h�

2

i from h�

1

i is �nite.

Similarly, there is some state �

3

suh that the expeted time to reah h�

3

i from h�

2

i is �nite, and

so on. Let n be the number of states in the bako� proess. Then some state � appears at least

twie among �

0

; �

1

; : : : ; �

n

. Hene, the expeted time from h�i to itself in the Turkish matrix is

�nite. This was to be shown.

We have shown that the Turkish matrix is irreduible, aperiodi, and ergodi. So it has a

steady-state distribution. This gives us a stedy-state distribution in the bako� proess, where the

probability of state i is the sum of the probabilities of the staks in the Turkish matrix with top

state i.
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C.4.3 Null ase

I like the use of the work \walk" in this setion. Can we make this legal?

In this setion we prove the following theorem.

Theorem C.12 The (M; ~�; i) proess has a Cesaro limit if the (M; ~�) proess is null.

The theorem is implied by the lemma below.

Lemma C.13 Let (M; ~�) be null. Let j be any state of M suh that �

j

< 1. Let ~�

0

be the vetor

given by �

0

j

= 1 and �

0

j

0

= �

j

0

otherwise. Then (M; ~�

0

) is ergodi and hene has a Cesaro limit

distribution. Let i be any state of M . Then the (M; ~�; i) proess has a Cesaro limiting distribution

whih is the same as the Cesaro limit distribution of the (M; ~�

0

; j) proess.

Remark: There are some magial onsequenes to the above lemma.

Proof. The �rst part of Lemma C.13 laiming that (M; ~�

0

) is ergodi, follows from a simple

monotoniity argument, proven in Claim C.16. We now move to the more hairy part. For this

part, we onsider a walk W of length t of the (M; ~�; i) proess and break it down into a number of

smaller piees. This breakdown is ahieved by a \skeletal deomposition" as de�ned below.

Fix an (M; ~�; i) walk W with hX

0

; : : : ;X

t

i being the sequene of states visited, with auxiliary

sequene hS

0

; : : : ; S

t

i and assoiated history sequene hH

0

; : : : ;H

t

i.

For every t

1

� t suh that S

t

1

="F" (i.e., W makes a forward step at time t

1

), we de�ne a

partition of W into two walks W

0

and W

00

as follows: Let j be the state pushed onto the history

stak at time t

1

and let H

t

1

= �� be the history stak at time t

1

. Let t

2

> t

1

be the �rst time at

whih this history repeats itself (t

2

= t if this event never happens). Consider the sequene of time

steps h0; : : : ; t

1

; t

2

+1; : : : ; ti (and the assoiated sequene of states visited and auxiliary sequenes).

They give a new (M; ~�; i) walk W

0

that has positive probability. On the other hand the sequene

of time steps t

1

; t

1

+ 1; : : : ; t

2

de�ne a walk W

00

of an (M; ~�; j) proess, of length t

2

� t

1

, with

initial history being hji. We all this partition (W

0

;W

00

) a j-division of the walk W . (Notie that

W

0

;W

00

do not suÆe to reover W , and this is �ne by us.) A j-deomposition of a walk W is an

(unordered) olletion of walks W

0

; : : : ;W

k

that are obtained by a sequene of j-deompositions of

W . Spei�ally, W is a j-deomposition of itself; and if W

0

; : : : ;W

l

is a j-deomposition of W

0

;

W

l+1

; : : : ;W

k

is a j-deomposition of W

00

; and W

0

;W

00

is a j-division of W , then W

0

; : : : ;W

k

is a

j-deomposition of W . If a walk has no non-trivial j-divisions, then it is said to be j-indivisible.

A j-skeletal deomposition of a walk W is a j-deomposition W

0

; : : : ;W

k

of W , where eah W

l

is j-indivisible. Note that the skeletal deomposition is unique and independent of the hoie of

j-divisions. We refer to W

0

; : : : ;W

k

as the skeletons of W . Note that the skeletons ome in one of

three ategories (assuming j 6= i).

� Initial skeleton: This is a skeleton that has hii as its initial history. Note that there is exatly

one suh skeleton. (If i = j, we say there are no initial skeletons.)

� Closed skeletons: These are the skeletons with hji as their initial and �nal history.

� Open skeletons: These are the skeletons with hji as their initial, but not their �nal history.

Our strategy for analyzing the frequeny of the ourene of a state j

0

in the walk W is to

deompose W into its skeletons and then to examine the relative frequeny of j

0

in these skeletons.

Roughly we will show that not too muh time is spent in the initial and open skeletons; and that the
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distribution of losed skeletons ofW is approximated by the distribution of random walks returning

to the initial history in an (M; ~�

0

; j)-bako� proess. But the (M; ~�

0

; j) proess is ergodi and thus

the expeted time to return to the origin in suh walks is �nite and thus in a large number of losed

j-skeletons, the frequeny of ourene of j

0

onverges (to its frequeny in (M; ~�

0

; j)-proesses).

Simulation of W .

1. Pik an (in�nite) walk W

0

0

from the (M; ~�

0

; i) proess.

2. Pik a sequene of walks W

0

1

;W

0

2

; : : : ; as follows: For eah k, W

0

k

starts at hji and walks

aording to (M; ~�

0

; j) and terminates the �rst time it returns to the initial history.

3. We now ut and paste from the W

0

i

's to get W as follows:

(a) We initialize W =W

0

0

and t

0

= 0, N = 0.

(b) We iterate the following steps till t

0

� t:

i. Let t

00

be the �rst visit to j ourring at some time after t

0

in W . Set t

0

= t

00

.

ii. With probability �

j

do nothing, else (with probability 1 � �

j

, set N = N + 1 and

splie the walk W at time t

0

and insert the walk W

0

N

into W at this time.

() Trunate W to its �rst t steps and output it. Further, let W

i

denote the trunation of

W

0

i

up to the point to whih it is used in W .

The following proposition is easy to verify.

Proposition C.14 W generated as above has exatly the same distribution as that of the random

(M; ~�; i)-proess. Further W

0

; : : : ;W

N

give the j-skeletal deomposition of W .

Let W

0

denote a random walk obtained by starting at hji, walking aording to (M; ~�

0

; j) and

stopping the �rst time we reah the initial history. Sine the (M; ~�

0

; j) proess is ergodi, the

expeted length of W

0

is �nite. Let � denote the expetation of the length of the walk W

0

and let

�

j

0

denote the expeted number of ourrenes of the state j

0

in W

0

. Note that �

j

0

=� = �

0

j

0

, where

�

0

denotes the stationary distribution of the (M; ~�

0

; j) proess.

Let a

0

k

denote the number of visits to j

0

in W

0

k

and let b

0

k

denote the length of W

0

k

. Sine the

walks W

0

k

(k 2 f1; : : : ; Ng) are hosen independently from the same distribution as W

0

, we have

that the expetation of a

0

k

is �

j

0

and the expetation of b

0

k

is �. Let a

k

denote the number of visits

to j

0

in W

k

and let b

k

denote the length of W

k

. Notie our goal is to show that

P

N

k=0

a

k

=

P

N

k=0

b

k

approahes �

j

0

with probability tending to 1 as t tends to in�nity. Fix any � > 0. We will enumerate

a number of bad events, argue that eah one of them has low probability of ourene and then

argue that if none of them happen, then

(1� �)�

j

0

�

N

X

k=0

a

k

=

N

X

k=0

b

k

� (1 + �)�

j

0

;

1. N is too small: In Claim C.17 we show that this event has low probability. Spei�ally, there

exists a Æ > 0 suh that for every � > 0 there exists a t

0

suh that for all t � t

0

, the probability

that N is less that Æt is at most �.

2. W

0

is too long: Claim C.18 shows that for every � > 0, there exists t

1

suh that for all t � t

1

,

the probability that W

0

is longer than �t is at most �.
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3. There are too many open skeletons: In Claim C.20, we prove that for every �

0

> 0, there exists

an t

2

suh that if t � t

2

, then the probability that the number of open skeletons is more than

�

0

t is at most �

0

.

4.

P

N

k=1

b

k

is too large: By the law of large numbers, we have that for every � > 0, there exists

N

1

suh that for all N � N

1

, the probability that

P

N

k=1

b

0

k

� (1 + �)�N is at most �. Using

the fat that b

k

� b

0

k

, we obtain the same upper bound on

P

k

b

k

as well.

5.

P

N

k=1

a

k

is too large: As above, we have that we have that for every � > 0, there exists N

2

suh that for all N � N

2

, the probability that

P

N

k=1

a

k

� (1 + �)�

j

0

N is at most �.

6. (Informally)

P

N

k=1

b

k

is too small: The formal event onsidered here is that for some large

subset S � f1; : : : ; Ng, the quantity

P

k2S

b

0

k

turns out to be too small. Using the fat that

the b

0

k

's are independently and identially distributed and have �nite mean �, Claim C.21

an be used to show that for every � > 0, there exists an �

1

> 0 and N

3

> 0, suh that for

all N � N

3

the probability that there exists a subset S � f1; : : : ; Ng of ardinality at least

(1 � �

1

)N suh that

P

k2S

b

0

k

� (1 � �)�N is at most �. Taking S to be the subset of losed

skeletons and using the fat that for a losed skeleton b

k

= b

0

k

, and relying on Item (3), we

get to the informal laim here.

7.

P

N

k=1

a

k

is too large: Obtained as above. Spei�ally, for every � > 0, there exists an �

2

> 0

and N

4

> 0, suh that for allN � N

4

the probability that there exists a subset S � f1; : : : ; Ng

of ardinality at least (1� �

2

)N suh that

P

k2S

b

0

k

� (1� �)�N is at most �.

Given the above laims, the lemma may be proved as follows: Let Æ be as in Item (1) above.

Given any �, let � = minf�=7; �=(2 + 1=(�Æ)); �=(2 + 1=(�

j

0

Æ) + �)g. Let �

1

and �

2

be as given

in Items (6) and (7) above and let �

0

= minf�; �

1

Æ; �

2

Æg. For these hoies of � and �

0

, let

t

0

; t

1

; t

2

; N

1

; N

2

; N

3

; N

4

be as given in Items (1)-(7) and let t � maxft

0

; t

1

; t

2

;

1

Æ

N

1

;

1

Æ

N

2

;

1

Æ

N

3

;

1

Æ

N

4

g.

Then sine t is large enough, we have that for any of Items (1), (2), or (3) the probability of the

bad event listed there happens is at most �. If the bad event of Item (1) does not our, then

N � fN

1

; N

2

; N

3

; N

4

g and thus the probability of any of the bad events list in Items (3)-(7) is at

most �. Summing over all bad events, we have the probability that no bad events happens is at

least 1� 7� � 1 � �. We now reason that if none of these events happen then

P

N

k=0

a

k

P

N

k=0

b

k

is between

(1 � �)�

0

j

0

and (1 + �)�

0

j

0

. We show the lower upper bound. The upper bound is similar. We �rst

upper bound

P

N

k=0

b

k

by Items (2) and (4). By Item (2) b

0

� �t �

�

Æ

N (where the seond inequality

uses Item (1).) By Item (4)

P

N

k=1

b

k

� (1 + �)�N and thus we have

N

X

k=0

b

k

� (1 + �+ �=(�Æ))�N:

Next to lower bound

P

N

k=0

a

k

, we use Item (3) to onlude that the number of losed skeletons is

at least N � �

0

t � N � (�

0

=Æ)N � (1� �

2

)N . Let S denote the olletion of losed skeletons. Thus,

we have

N

X

k=0

a

k

�

X

k2S

a

k

=

X

k2S

a

0

k

� (1� �)�

j

0

N:

Putting the above together, we get

P

N

k=0

a

k

P

N

k=0

b

k

�

1� �

1 + �+ �=(�Æ)

�

j

0

�

� (1� �)�

0

j

0

;
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as desired. (The �nal inequality above uses �

0

j

0

= �

j

0

=� and � � �=(2+1=(�Æ)).) The upper bound

follows similarly, using the inequality � � �=(2 + 1=(�

j

0

Æ) + �). This onludes the proof of the

lemma, modulo Claims C.16-C.21.

For the following laims, letH denote the Hungarian matrix orresponding to the (M; ~�) proess

and let H

0

denote the Hungarian matrix orresponding to the (M; ~�

0

) proess. For a non-negative

matrix A, let �(A) denote its maximal eigenvalue. For n � n matries A and B, say A < B if

A

ik

� B

ik

for every i; k and there exists i, k suh that A

ik

< B

ik

. Claim C.16 will use the following

simple laim.

Claim C.15 If A and B are n � n irreduible non-negative matries suh that A < B, then

�(A) < �(B).

Proof. Notie �rst that it suÆes to prove that �(I +A) < �(I +B), sine �(I +M) = 1 + �(M).

Similarly it suÆes to prove that for some postive integer k. �((I + A)

k

) = �((I + B)

k

), sine

�(M

k

) = �(M)

k

. We will do so for k = 2n� 1. Let C = (I +A)

2n�1

and D = (I +B)

2n�1

.

We �rst show that for every pair i; j, C

ij

< D

ij

. Notie that the i; jth entry of a matrixM

k

has

the following ombinatorial interpretation: It ounts the sum of the weights of all walks of length k

between i and j where the weights of a walk is the produt of the weight of the edges it takes, and

the weight of an edge (u; v) is M

uv

. Thus we wish to show that for every i; j, there exists a walk

P from i to j of length 2n� 1 suh that its weight under I +A is less than its weight under j. Let

A

lm

< B

lm

. By irreduibility of A we know there exists a path from i to l of positive weight and by

taking enough self-loops this an be onverted into a path P

1

of length exatly n� 1 with positive

weight in (I +A). The path has at least the same weight in I +B. Similarly we an �nd a path P

2

of positive weight in I +A from m to j of length exatly n� 1. Now the path P

1

Æ (l;m) Æ P

2

has

positive weight in both I +A and I +B and has stritly larger weight in I +B sine B

lm

> A

lm

.

Thus we �nd that C

ij

< D

ij

, for every pair i; j.

Now we use the properties of the maximal eigenvalue to show that �(C) < �(D). Notie that

�(C) = max

~x

min

i2f1;:::;ng

�

(C~x)

i

(~x)

i

�

:

Pik ~x that maximizes the right hand side above and now onsider

�(D) = max

~y

min

i2f1;:::;ng

�

(D~y)

i

(~y)

i

�

� min

i2f1;:::;ng

�

(D~x)

i

(~x)

i

�

> min

i2f1;:::;ng

�

(C~x)

i

(~x)

i

�

(Sine D

ij

> C

ij

and ~x 6= 0).

= �(C)(By our hoie of ~x.)

We are now ready to prove that the (M; ~�

0

) proess is ergodi.

Claim C.16 Let (M; ~�) be irreduible and null. Let j be a state suh that �

j

< 1. Let ~�

0

be the

vetor obtained by setting �

0

j

0

= �

j

0

if j

0

6= j and �

0

j

> �

j

. Then (M; ~�

0

) is ergodi (though it may

not be irreduible).
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Proof. We �rst fous on the ase �

0

j

< 1. In this ase, we observe that (M; ~�

0

) is also irreduible.

For this part, we use the proof of Theorem 4.2 to rephrase this question in terms of the maximal

eigenvalues of the orresponding Hungarian matries. In partiular, we have �(H) = 1 and we need

�(H

0

) < �(H) = 1.

Note that for every k; l, we have

H

0

kl

= (1� �

0

k

)M

kl

�

0�1

l

� (1� �

0

k

)M

kl

�

�1

l

� (1� �

k

)M

kl

�

�1

l

= H

kl

Further, the �rst inequality is strit if l = j and M

kj

6= 0 (and suh a k does exist, by the

irreduibility of M). Using Claim C.15 we now have �(H

0

) < �(H) = 1. and thus we have shown

the desired result for the ase �

0

j

< 1.

For the ase �

0

j

= 1, we �rst use the �rst part shown above to show that the (M; ~�

00

) proess,

where �

j

< �

00

j

< 1 (and �

00

j

0

= �

j

0

for other j

0

), is ergodi. Thus it suÆes to prove that (M; ~�

0

)

is ergodi, given that (M; ~�

00

) is ergodi. However, sine we may not have irreduibility, we need

to argue this individually for every (M; ~�

0

; i) proess. We will do so by arguing that the expeted

return time of an (M; ~�

0

; i) proess (to its initial history) is �nite. We use the fat that the expeted

return time of the (M; ~�

00

; i) proess is �nite.

Given a walk W of the (M; ~�

00

; i) proess, let I(W ) denote the initial skeleton W

0

in the j-

skeletal deomposition of W . Let S(W

0

) denote the set of walks W suh that I(W ) = W

0

. Let

p(W ) denote the probability of the walk W in the (M; ~�

00

; i) proess; and let p

0

(W

0

) denote the

probability of the walk W

0

in the (M; ~�

0

; i) proess. Notie that

P

W2S(W

0

)

p(W ) = p

0

(W

0

) and

the length of W

0

is at most the length of W for every W 2 S(W

0

). Putting these together, we

�nd the expeted length of W

0

in the (M; ~�

0

; i) proess is at most the expeted length of W in the

(M; ~�

00

; i) proess.

The next laim shows that N , the number of skeletons in a walk of length t, grows linearly in t.

Claim C.17 There exists a Æ > 0, suh that for every � > 0 there exists a t

0

suh that for all

t � t

0

, the probability that N is less than Æt is at most �.

Proof. Notie that the number of skeletons is lower bounded by the number of times j is pushed

on to the history stak in the walk W . We lower bound this quantity by using the fat that in any

sequene of n steps (where n is the size of the Markov hain M), there is a positive probability �

of pushing j onto the history stak in the next n steps. Thus the expeted number of times j is

pushed onto the history in t steps is at least �(t=n). Applying the law of large numbers, we get

that the there exists t

0

s.t. if t � t

0

, then the probability that j is pushed on the stak fewer than

1

2

�(t=n) times is at most �. The laim follows with Æ =

�

2n

.

Next we argue that the initial skeleton is not too long.

Claim C.18 For every � > 0, there exists a time t

1

suh that for all time t > t

1

,

Pr[ Length of W

0

> �t℄ < �:
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Proof. We prove the laim in two steps. First we note that in a walk of length t, with high

probability, the (null) (M; ~�; i) proess returns to the initial history o(t) times. Note that the

expeted time to return to the initial history is in�nite. Thus we get:

Sub laim 1: For every �

0

> 0, there exists a time t

0

1

suh that for all t > t

0

1

, the probability that

an (M; ~�; i) walk of length t returns to the initial history more than �

0

t times is at most �

0

.

We then note that o(t) returns to the initial history of the (ergodi) (M; ~�

0

; i) proess are

unlikely to take �t time steps.

Sub laim 2: Let T be the expeted return time to the initial history in the (M; ~�

0

; i) proess.

(Note T <1.) Then, for every �

00

, there exists an N

0

suh that if N � N

0

and N

0

� N , then the

probability that N

0

returns to the origin take more than 2NT steps is at most �

00

.

>From the two sub-laims, we get the laim as follows: Set �

00

= �=2 and �

0

= minf�=2; �=(2T )g.

Now let N

0

and T be as in Sub laim 2 and let t

0

= maxft

0

0

;

2N

0

T

�

g. Given t � t

0

, let N = (�t)=(2T ).

Notie N � N

0

. Let N

0

denote the number of returns to the initial history in W . Applying Sub

laim 1 with �

0

we get that probability that the number of returns to the initial history is more than

N is at most �

0

� �=2. Now applying Sub laim 2 with parameter �

00

, we get that the probability of

N returns to the origin taking more that 2NT = �t steps is at most �

00

= �=2. Thus the probability

that any of bad events listed in the Sub laims above our is at most �, and if neither ours, then

the length of the initial skeleton is at most �t.

Next we show that not too many skeletons are open. We do it in two laims.

Claim C.19 If (M; ~�; i) is null, and ~w is a weight vetor as guaranteed to exist by Lemma 4.9,

then the ~w-potential �

~w

(H

t

) is expeted to grow as o(t).

Proof. Reall the extended potential used in Lemma C.4 was expeted to be 0 after t steps.

Further, by Sub laim 1 of Claim C.18, the number of returns to the initial history is at most �

0

t,

with probability all but �

0

. Thus the expeted number of returns to the origin is at most 2�

0

t. Thus

the expeted value of �

~w

(H

t

) is also at most 2�

0

t.

Claim C.20 For every � > 0, there exists a t

2

suh that for all t � t

2

. the probability that more

than �t of the skeletons W

1

; : : : ;W

N

are open is at most �.

Proof. Consider the event E that the history H

t

ontains more than �t ourenes of the state

j. We wish to show that the probability that E ours is at most �. Assume E ours with

probability at least �. Let ~w be the weight vetor as shown to exist in Lemma 4.9, and let �

~w

(H

t

)

be the potential of the historyH

t

. Notie that if E ours, then the potential �

~w

(H

t

) is at least w

j

�t.

Sine E happens with probability at least �, we have that the expeted potential, E[�(H

t

)℄ � �

2

w

j

t,

i.e., it is growing linearly in t. But this ontradits the previous laim.

Finally we onlude with a tehnial laim showing that large subsets of f1; : : : ; Ng an not

have a small sum.

Lemma C.21 For every distribution D on non-negative integers with �nite expetation �, and

every � > 0, there exists an �

1

> 0 and N

3

> 0, suh that suh that for all N � N

3

, if X

1

; : : : ;X

N

are N samples drawn i.i.d. from D, then

Pr

"

8S � [N ℄; jSj � (1� �

1

)N;

X

i2S

X

i

� (1� �)�N

#

� 1� �:
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Proof. We will pik � suh that with high probability the �N -th largest element of X

1

; : : : ;X

N

is greater than or equal to � . We will then sum only those elements in the X

i

's whose value is at

most � and this will give a lower bound on

P

i2S

X

i

.

Let p(j) be the probability given to j by D. Let �

k

=

P

j�k

jp(j). Notie �

k

's onverge to �.

Let � be suh that � � �

k

� (�=2)�. Let T (X) = X if X � � and 0 otherwise. Notie that for

X drawn from D, we have E[T (X)℄ � (1 � �=2)� (by de�nition of �). Thus by the law of large

numbers we have that there exists an N

0

3

suh that for all N � N

0

3

, the following holds.

Pr

"

N

X

i=1

T (X

i

) � (1� �)N�

#

� �=2: (8)

Now set �

1

=

P

j>�

p(j)=2. Then the probability that X has value at least � is at least 2�

1

.

Thus, applying the law of large numbers again, we �nd that there exists an N

00

3

s.t. for all N � N

00

3

,

the following holds:

Pr [jfijX

i

� �gj < �

1

N ℄ � �=2: (9)

Thus, for N

3

= maxfN

0

3

; N

00

3

g and any N � N

3

, we have that with probability at least 1 � �

neither of the events mentioned in (8) or (9) our. In suh a ase, onsider any set S of ardinality

at least (1� �

1

)N , and let S

0

be the set of the (1� �

1

)N smallest X

i

's. We have

X

i2S

X

i

�

X

i2S

0

X

i

�

N

X

i=1

T (X

i

)

� (1� �)N�:

This proves the laim.

C.5 Computing Cesaro Limits in the Transient Case

Lemma C.22 Let the entries of M and ~� be l-bit rationals desribing a transient (M; ~�)-preess

and let � be its stationary probability vetor. For every � > 0, there exists � > 0, with log

1

�

=

poly(n; l; log

1

�

), suh that given any vetor ~r

0

of l

0

-bit rationals satisfying k~r

0

� ~rk

1

� �, a vetor

�

0

satisfying k�

0

� �k

1

� � an be found in time poly(n; l; l

0

; log

1

�

).

Proof. Let ~r

0

be suh that k~r

0

� ~rk

1

� � (where � will be spei�ed later). We will assume

(without loss of generality) that for every i, r

0

i

� r

i

.

Let D, D

�

and X be as in the proof of Lemma 4.13. De�ne D

0

, D

0

�

and X

0

analogously. I.e.,

D

0

is the matrix given by

D

0

ij

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

0

k

;

and D

0

an be desribed as

D

0

=

"

D

0

�

X

0

0 0

#

;

where D

0

�

is irreduible. Notie �rst that X

0

= X, sine for any pair i; j s.t. �

j

= 1, D

ij

= D

0

ij

=

M

ij

(1� �

i

). Reall our goal is to approximate the maximal left eigenvetor � of D, s.t. k�k

1

= 1.

Write � =

1

1+l

B

[�

A

�

B

℄, where �

A

is a left eigenvetor of D

�

with k�

A

k

1

= 1, �

B

= �

A

X and l

B

=
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k�

B

k

1

. We will show how to ompute �

0

A

; �

0

B

suh that that k�

0

A

k

1

= 1, k�

0

A

� �

A

k

1

� �=(n+ 1)

and k�

0

B

� �

B

k

1

� �=(n+ 1). It follows then that if we set �

0

=

1

1+

k

�

0

B

k

1

[�

0

A

�

0

B

℄, then





�

0

� �





1

�

1

1 + l

B

maxf





�

0

A

� �

A





1

;





�

0

B

� �

B





1

g+ jl

B

�





�

0

B





1

j

�

�

n+ 1

+ j





�

0

B

� �

B





1

j

� �

as desired.

Further, if �

0

A

is any vetor suh that k�

0

A

� �

A

k

1

�

�

n(n+1)

, then a �

0

B

satisfying k�

0

B

� �

B

k

1

�

�=(n + 1) an be obtained by setting �

0

B

= �

0

A

X. (Notie that max

ij

fX

ij

g � 1 and thus j(�

0

B

)

j

�

(�

B

)

j

j �

P

i

X

ij

j(�

0

A

)

i

� (�

A

)

i

j � n

�

n(n+1)

.)

Thus, below we show how to �nd �

0

A

that losely approximates �

A

, spei�ally satisfying

k�

0

A

� �

A

k

1

� �=(n(n + 1)). Notie that this amounts to �nding a left eigenvetor of the ma-

trix D. We will show how to approximate this using the matrix D

0

.

We �rst show that the entries of D

0

are lose to those of D, using the fat that jr

0

k

� r

k

j � �.

Assume, for notational simpliity, that r

0

k

� r

k

. Note that

D

0

ij

�D

ij

=

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

0

k

�

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

k

= (1� �

i

)M

ij

(1� �

j

)

P

k

M

jk

(r

0

k

� r

k

)

�

1� (1� �

j

)

P

k

M

jk

r

0

k

�

(1� (1� �

j

)

P

k

M

jk

r

k

)

�

�

(1� (1� �

j

)

P

k

M

jk

r

k

)

2

:

Thus to upper bound this di�erene, we need an lower bound on the quantity 1�(1��

j

)

P

k

M

jk

r

k

.

If �

j

6= 0, then this quantity is at least �

j

� 2

�l

. Now onsider the ase where �

j

= 0. In suh a

ase, for any k, either �

k

= r

k

= 1, or �

k

< 1 and in suh a ase, we laim r

k

� 1 � 2

�2nl

. This

is true, sine the (M;�)-proess is irreduible and hene there is a path onsisting only of forward

moves that goes from k to j, and this path has probability at least 2

�2nl

, and one we push j onto

the history stak, it will never be revoked. Further, by the irreduibility of the (M; ~�) proess,

we have that there must exist a k suh that M

jk

> 0 and r

k

� 1 � 2

�2nl

. Using M

jk

� 2

�l

and

substituting, we get that the quantity 1� (1� �

j

)

P

k

M

jk

r

k

is lower bounded by 2

�(2n+1)l

. Thus

we onlude that

jD

0

ij

�D

ij

j � 2

(4n+2)l

�:

Next onsider the matrix B =

�

1

2

(I +D

�

)

�

n

. Notie that B has a (maximal) eigenvalue of

1, with a left eigenvetor �

A

. We laim B is positive, with eah entry being at least 2

�(2l+1)n

.

To see this, �rst note that every non-zero entry of D

�

is at least 2

�2l

. Next onsider a sequene

i

0

= i; i

1

; i

2

; : : : ; i

l

= j of length at most n satisfying D

i

k

;i

k+1

> 0. Suh a sequene does exist sine

D

�

is irreduible. Further B

ij

is at least 2

�n

Q

k

D

i

k

i

k+1

whih is at least 2

�n(l+1)

. Thus B is a

positive matrix and we are interested in omputing its left eigenvetor. Lemma C.23 shows how

this may be omputed given a lose approximation to the matrix B.

Next we show that B

0

=

�

1

2

(I +D

0

�

)

�

n

is a lose enough approximation to B. Note that sine

max

ij

jD

ij

� D

0

ij

j � 2

(4n+2)l

�, we have max

ij

jB

0

ij

� B

ij

j � (1 + 2

(4n+2)l

�)

n

� 1), whih may be

bounded from above by (2

n

� 2

(4n+2)l

)� provided � � 2

�(4n+2)l

.
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Now let �

0

A

be any vetor satisfying k�

0

A

� �

0

A

B

0

k

1

� 2

n+l(4n+2)

� and k�

0

A

k

1

= 1. (Suh a

vetor does exist. In partiular, �

A

satis�es this ondition. Further, suh a vetor an be found

by linear programming.) Applying Lemma C.23 to B

T

; (B

0

)

T

; �

A

and �

0

A

with  = 2

�n(l+1)

,

� = Æ = 2

n+l(4n+2)

� yields k�

0

A

� �

A

k

1

�

p

�2

O(nl)

. Thus setting � = �

2

=2

�
(nl)

suÆes to get �

0

A

to be an �=(n(n+ 1)) lose approximation to �

A

. This onludes the proof.

Lemma C.23 Let B;C be n�n matries and x̂; ŷ be n-dimensional vetors satisfying the following

onditions:

1. For every i; j, B

ij

�  > 0, further �(B) = 1.

2. For every i; j, jC

ij

�B

ij

j < Æ.

3. kx̂k

1

= 1 and Bx̂ = x̂.

4. kŷk

1

= 1 and kCŷ � ŷk

1

� �.

Then kx̂� ŷk

1

� (1 +

p

n)

r

2(�

p

n+Æ)



3

n

.

Proof. We �rst onvert the statement above into one about `

2

norms. Let x =

x̂

kx̂k

2

and y =

ŷ

kŷk

2

.

Notie that

kCy � yk

2

�

p

nkCy � yk

1

=

p

n

kŷk

2

kCŷ � ŷk

1

�

p

n

kŷk

2

� � �

p

n:

Thus applying Claim C.24 with �

0

= �

p

n yields that kx� yk

2

�

r

2(�

p

n+Æ)



3

n

. Now applying

Claim C.25 to the vetors x and y and notiing x̂ =

x

kxk

1

and ŷ =

y

kyk

1

gives the desired bound.

Claim C.24 Let B;C be n�n matries and x; y be n-dimensional vetors satisfying the following

onditions:

1. For every i; j, B

ij

�  > 0; and further �(B) = 1.

2. For every i; j, jC

ij

�B

ij

j < Æ.

3. kxk

2

= 1 and Bx = x.

4. kyk

2

= 1 and kCy � yk

2

� �

0

.

Then kx� yk

2

�

q

2(�

0

+Æ)



3

n

.

Proof. Note that B is positive and sine x is a non-negative eigenvetor, 1 is a maximal eigenvalue

of B. This fat is often used below.

Roughly the proof uses standard numerial analysis methods and impliitly goes through the

following steps: (1) Argues that the maximal right eigenvetor x and the maximal left eigenvetor,

say z, of the matrix B have a large inner produt. (2) Use this to argue that the seond eigenvalue

of B is small. (3) Resolve the vetor y into two omponents, one parallel to x and the other

orthogonal to z, and argue, using the seond eignevalue of B, that the omponent orthogonal to

z is small. (4) Argue that y and x must be lose, if the omponent of y orthogonal to z is small.

Details below.
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1. kBy � yk

2

� (�

0

+ Æ): (This will get rid of C is all future steps.) Let B = C +�. Notie that

j�

ij

j � Æ.

kBy � yk

2

= kCy +�y � yk

2

� kCy � yk

2

+ k�yk

2

� �

0

+ Ækyk

2

= �

0

+ Æ

2. Let z be the left maximal eigenvetor of B, with kzk

2

= 1. Then z

T

x � 

2

n: We argue this

by arguing that every oordinate of z and x is at least . Consider x

i

, the ith oordinate of

x. Let v

i

be the ith row of B. Note every oordinate of v

i

is at least  and x

i

= v

T

i

x. Thus

x

i

� kxk

1

� . Similarly we an argue z

i

� . Thus z

T

x � 

2

n as desired.

3. Let L =

1

z

T

x

xz

T

, � < 

3

n, and B

0

= B��L. Then B

0

> 0 and has a maximal eigenvalue equal

to 1� �.

To see that B

0

is positive, �rst notie that every entry of xz

T

is at most 1, sine kxk

2

; kzk

2

� 1.

Next we have that any entry of �L is at most

�



2

n

<  sine z

T

x is at least 

2

n. Sine every

entry of B is at least , the laim on the positivity of B

0

follows.

Next we notie that x is a non-negative eigenvetor of B

0

with eigenvalue 1� �, sine B

0

x =

Bx �

�

z

T

x

(xz

T

)x = x �

�

z

T

x

x(z

T

x) = x �

�

x

= (1 � �)x. This step follows by the Perron-

Frobenius theorem (Theorem A.1) whih says that 1 � � is the unique maximal eigenvalue

of B

0

.

4. Let y = y

k

x

+ y

?

z

, where y

k

x

=

y

T

z

x

T

z

x. Then







y

?

z







2

�

�

0

+Æ



3

n

.

Notie that the hoie of the vetor y

k

x

makes y

k

x

parallel to x and y

?

z

orthogonal to z. For

the latter, notie

(y

?

z

)

T

z = y

T

z � (y

k

x

)

T

z = y

T

z �

y

T

z

x

t

z

x

T

z = 0:

We use this fat, or atually the equivalent fat z

T

y

?

z

= 0 to bound







y

?

z







2

below. First we

note that:

By � y = B(y

k

x

+ y

?

z

)� (y

k

x

+ y

?

z

)

= (By

k

x

� y

k

x

) + (By

?

z

� y

?

z

)

=

y

T

z

x

T

z

(Bx� x) + (By

?

z

� y

?

z

)

= By

?

z

� y

?

z

= (B

0

+ �L)y

?

z

� y

?

z

= (B

0

y

?

z

� y

?

z

) +

�

z

T

x

xz

T

y

?

z

= (B

0

y

?

z

� y

?

z

)

We now use the fat that kB

0

vk

2

� �(B

0

)kvk

2

for l every vetor v, and �(B

0

) = 1�� to laim

that







B

0

y

?

z







2

� (1� �)







y

?

z







2

. Thus

�

0

+ Æ � ky �Byk

2

=







y

?

z

�B

0

y

?

z







2

�







y

?

z







2

�







B

0

y

?

z







2

� (1� (1� �))







y

?

z







2

= �







y

?

z







2

:

This step follows by notiing � an be any real number smaller than 

3

n.

xxi



5. ky � xk

2

�

q

2(�

0

+Æ)



3

n

:

The ruial observation underlying this step is that the length of the projetion of y on the

diretion orthogonal to x is no larger than vetor y above. Note that the projetion of y onto

the diretion orthogonal to x is given by y � (x

T

y)x. We notie

y � (x

T

y)x = (y

k

x

+ y

?

z

)� (x

T

(y

k

x

+ y

?

z

))x

= (y

k

x

� (x

T

y

k

x

)x) + (y

?

z

� (x

T

y

?

z

)x)

= (y

k

x

� y

k

x

) + (y

?

z

� (x

T

y

?

z

)x)

= y

?

z

� (x

T

y

?

z

)x;

Thus







y � (x

T

y)x







2

=







y

?

z

� (x

T

y

?

z

)x







2

�







y

?

z







2

�

�

0

+ Æ



3

n

;

where the �rst inequality uses the fat that the projetion of any vetor v onto a diretion

orthogonal to a unit vetor u has length less than the length of v.

Applying triangle inequality to the LHS above, we get

kyk

2

� (x

T

y)kxk

2

: �

�

0

+ Æ



3

n

:

Using kxk

2

= kyk

2

= 1, we get

(x

T

y) � 1�

�

0

+ Æ



3

n

:

Now using the fat that ky � xk

2

=

q

2� 2(x

T

y), we get ky � xk

2

�

q

2(�

0

+Æ)



3

n

.

This onludes the proof of the laim.

Claim C.25 Let x; y 2 <

n

satisfy kxk

2

; kyk

2

= 1 and kx� yk

2

� Æ. Then







x

kxk

1

�

y

kyk

1







1

�

Æ(1 +

p

n).

Proof. First we observe kx� yk

1

�

p

nkx� yk

2

� Æ

p

n. Similarly, kx� yk

1

� kx� yk

2

� Æ.

Finally, kxk

1

; kyk

1

� 1 and kyk

1

� 1. The laim now follows from the following sequene of

inequalities.











x

kxk

1

�

y

kyk

1











1

�











x

kxk

1

�

y

kxk

1











1

+











y

kxk

1

�

y

kyk

1











1

�

1

kxk

1

kx� yk

1

+

�

�

�

�

�

1

kxk

1

�

1

kyk

1

�

�

�

�

�

kyk

1

� Æ +

�

�

�

�

�

kxk

1

� kyk

1

kxk

1

kyk

1

�

�

�

�

�

� Æ(1 +

p

n):
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