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Abstra
t

We introdu
e ba
ko� pro
esses, an idealized sto
hasti
 model of browsing on the world-wide

web, whi
h in
orporates both hyperlink traversals and use of the \ba
k button." With some

probability the next state is generated by a distribution over out-edges from the 
urrent state,

as in a traditional Markov 
hain. With the remaining probability, however, the next state is

generated by 
li
king on the ba
k button, and returning to the state from whi
h the 
urrent

state was entered. Repeated 
li
ks on the ba
k button require a

ess to in
reasingly distant

history.

We show that this pro
ess has fas
inating similarities to and di�eren
es from Markov 
hains.

In parti
ular, we prove that like Markov 
hains, ba
ko� pro
esses always have a limiting distri-

bution, and we give algorithms to 
ompute this distribution. Unlike Markov 
hains, the limiting

distribution may depend on the initial state.
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1 Introdu
tion

Consider a modi�
ation of a Markov 
hain in whi
h at ea
h step, with some probability, we undo

the last forward transition of the 
hain. For intuition, the reader may wish to think of a user using

a browser on the world-wide web where he is following a Markov 
hain on the pages of the web,

and o

asionally hitting the \ba
k button". We model su
h phenomena by dis
rete-time sto
hasti


pro
esses of the following form: we are given a Markov 
hainM on a set V = f1; 2; : : : ; ng of states,

together with an n-dimensional ve
tor ~� of ba
ko� probabilities. The pro
ess evolves as follows: at

ea
h time step t = 0; 1; 2; : : : ; the pro
ess is in a state X

t

2 V , and in addition has a history H

t

,

whi
h is a sta
k whose items are states from V . Let top(H) denote the top of the sta
k H. At t = 0

the pro
ess starts at some state X

0

2 V , with the history H

0


ontaining only the single element

X

0

. At ea
h subsequent step the pro
ess makes either a forward step or a ba
kward step, by the

following rules: (i) if H

t


onsists of the singleton X

0

it makes a forward step; (ii) otherwise, with

probability �

top(H

t

)

it makes a ba
kward step, and with probability 1��

top(H

t

)

it makes a forward

step. The forward and ba
kward steps at time t are as follows:

1. In a forward step, X

t

is distributed a

ording to the su

essor state of X

t�1

under M ; the

state X

t

is then pushed onto the history sta
k H

t�1

to 
reate H

t

.

2. In a ba
kward step, the pro
ess pops top(H

t�1

) from H

t�1

to 
reate H

t

; it then moves to

top(H

t

) (i.e., the new state X

t

= top(H

t

).)

1

Under what 
onditions do su
h pro
esses have limiting distributions, and how do they di�er from

traditional Markov 
hains? We fo
us in this paper on the time-averaged limit distribution, usually


alled the \Cesaro limit distribution".

2

Motivation. Our work is broadly motivated by user modeling for s
enarios in whi
h a user

with an \undo" 
apability performs a sequen
e of a
tions. A simple 
on
rete setting is that of

browsing on the world-wide web. We view the pages of the web as states in a Markov 
hain, with

the transition probabilities denoting the distribution over new pages to whi
h the user 
an move

forward, and the ba
ko� ve
tor denoting for ea
h state the probability that a user enters the state

and ele
ts to 
li
k the browser's ba
k button rather than 
ontinuing to browse forward from that

state.

A number of resear
h proje
ts [1, 7, 9℄ have designed and implemented web intermediaries and

learning agents that build simple user models, and used them to personalize the user experien
e.

On the 
ommer
ial side, user models are exploited to better target advertising on the web based

on a user's browsing patterns; see [2℄ and referen
es therein for theoreti
al results on these and

related problems. Understanding more sophisti
ated models su
h as ours is interesting in its own

right, but 
ould also lead to better user modeling.

1

Note that the 
ondition X

t

= top(H

t

) holds for all t, independent of whether the step is a forward step or

ba
kward step.

2

The Cesaro limit of a sequen
e a

0

; a

1

; : : : is lim

t!1

1

t

P

t�1

�=1

a

�

, if the limit exists. For example, the sequen
e

0,1,0,1,... has Cesaro limit 1=2. The Cesaro limit distribution is lim

t!1

1

t

P

t�1

�=1

Pr [X

t

= i℄, if the limit exists. By


ontrast, the stationary distribution is lim

t!1

Pr [X

t

= i℄, if the limit exists. Of 
ourse, a stationary distribution is

always a Cesaro limit distribution. We shall sometimes refer simply to either a stationary distribution or a Cesaro

limit distribution as a limiting distribution.

1



Overview of Results

For the remainder of this paper we assume a �nite number of states. We assume also that the

ba
ko� pro
ess is irredu
ible (i.e., it is possible, with positive probability, to eventually rea
h ea
h

state from ea
h other state). We now give the reader a preview of some interesting and arguably

unexpe
ted phenomena that emerge in su
h \ba
k-button" random walks, as the ba
ko� ve
tor ~�

varies on a �xed Markov 
hain M . Our primary fo
us is on the Cesaro limit distribution.

Intuitively, if the history sta
k H

t

grows unboundedly with time, then the pro
ess \forgets"

the start state X

0

(as happens in a traditional Markov pro
ess, where ~� is identi
ally zero). On

the other hand, if the elements of ~� are all very 
lose to 1, the reader may envision the pro
ess

repeatedly \falling ba
k" to the start state X

0

, so that H

t

does not tend to grow unboundedly.

What happens between these extremes?

One of our main results is that there is always a Cesaro limit distribution, although there may

not be a stationary distribution. Consider �rst the 
ase when all entries of ~� are equal, so that there

is a single ba
ko� probability � that is independent of the state. In this 
ase we give a remarkably

simple 
hara
terization of the history and the limiting distribution provided � < 1=2: the history

grows unboundedly with time, and the limiting distribution of the pro
ess 
onverges to that of the

underlying Markov 
hain M .

On the other hand, if � > 1=2 then the pro
ess returns to the start state X

0

in�nitely often,

the expe
ted history length is �nite, and the limiting distribution di�ers in general from that of M ,

and depends on the start state X

0

. Thus, unlike ergodi
 Markov 
hains, the limiting distribution

depends on the starting state.

More generally, 
onsider starting the ba
ko� pro
ess in a probability distribution over the states

of M ; then the limiting distribution depends on this initial distribution. As the initial distribution

varies over the unit simplex, the set of limiting distributions forms a simplex. As � 
onverges to

1=2 from above, these simpli
es 
onverge to a single point, whi
h is the limiting distribution of the

underlying Markov 
hain.

The transition 
ase � = 1=2 is fas
inating: the pro
ess returns to the start state in�nitely

often, but the history grows with time and the distribution of the pro
ess rea
hes the stationary

distribution of M . These results are des
ribed in Se
tion 3.

We have distinguished three 
ases: � < 1=2, � = 1=2, and � > 1=2. In Se
tion 4, we show

that these three 
ases 
an be generalized to ba
ko� probabilities that vary from state to state.

The generalization depends on whether a 
ertain in�nite Markov pro
ess (whose states 
orrespond

to possible histories) is transient, null, or ergodi
 respe
tively (see Se
tion 4 for de�nitions). It

is intuitively 
lear in the 
onstant � 
ase, for example, that when � < 1=2, the history will grow

unboundedly. But what happens when some states have ba
ko� probabilities greater than 1/2 and

others have ba
ko� probabilities less than 1/2? When does the history grow, and how does the

limiting distribution depend on M and ~�? Even when all the ba
ko� probabilities are less than

1=2, why should there be a limiting distribution?

We resolve these questions by showing that there exists a potential fun
tion of the history

that is expe
ted to grow in the transient 
ase (where the history grows unboundedly), is expe
ted

to shrink in the ergodi
 
ase (where the expe
ted size of the history sta
k remains bounded),

and is expe
ted to remain 
onstant if the pro
ess is null. The potential fun
tion is a bounded

di�eren
e martingale, whi
h allows us to use martingale tail inequalities to prove these equivalen
es.

Somewhat surprisingly, we 
an use this relatively simple 
hara
terization of the ba
ko� pro
ess to

obtain an eÆ
ient algorithm to de
ide, givenM and �, whether or not the given pro
ess is transient,

null or ergodi
. We show that in all 
ases the pro
ess attains a Cesaro limit distribution (though the

2



proofs are quite di�erent for the di�erent 
ases). We also give algorithms to 
ompute the limiting

probabilities. If the pro
ess is either ergodi
 or null then the limiting probabilities are 
omputed

exa
tly by solving 
ertain systems of linear inequalities. However, if the pro
ess is transient, then

the limiting probabilities need not be rational numbers, even if all entries of M and ~� are rational.

We show that in this 
ase, the limiting probabilities 
an be obtained by solving a linear system,

where the entries of the linear system are themselves the solution to a semide�nite program. This

gives us an algorithm to approximate the limiting probability ve
tor.

2 De�nitions and notation

We use (M; ~�; i) to denote the ba
ko� pro
ess on an underlyingMarkov 
hainM , with ba
ko� ve
tor

~�, starting from state i. This pro
ess is an (in�nite) Markov 
hain on the spa
e of all histories.

Formally, a history sta
k (whi
h we may refer to as simply a history) �� is a sequen
e h�

0

; �

1

; : : : ; �

l

i

of states of V , for l � 0. For a history �� = h�

0

; �

1

; : : : ; �

l

i, its length, denoted `(��), is l (sin
e the

initial state �

0

is spe
ial, we do not 
ount it in the length). If `(��) = 0, then we say that it is an initial

history. For a history �� = h�

0

; �

1

; : : : ; �

l

i, then its top, denoted top(��), is �

l

. We also asso
iate

the standard sta
k operations pop and push with histories. For a history �� = h�

0

; �

1

; : : : ; �

l

i and

j 2 f1; : : : ; ng, we have pop(��) = h�

0

; �

1

; : : : ; �

l�1

i, and push(��; j) = h�

0

; �

1

; : : : ; �

l

; ji. We let S

denote the spa
e of all �nite attainable histories.

For a Markov 
hain M , ba
ko� ve
tor ~�, and history �� with top(��) = j, de�ne the su

essor

(or next state) su

(��) to take on values from S with the following distribution:

su

(��) =

8

>

<

>

:

pop(��) with probability �

j

if `(��) � 1

push(��; k) with probability (1� �

j

)M

jk

if `(��) � 1

push(��; k) with probability M

jk

if `(��) = 0

For a Markov 
hain M , ba
ko� ve
tor ~� and state i 2 f1; : : : ; ng, the (M; ~�; i)-Markov 
hain

is the sequen
e hH

0

;H

1

;H

2

; : : :i taking values from the set S of histories, with H

0

= hii and

H

t+1

distributed as su

(H

t

). We refer to the sequen
e hX

0

;X

1

;X

2

; : : :i, with X

t

= top(H

t

) as the

(M; ~�; i)-ba
ko� pro
ess. Several properties of the (M; ~�; i)-ba
ko� pro
ess are a
tually independent

of the start state i, and to stress this aspe
t we will sometimes use simply the term \(M; ~�)-ba
ko�

pro
ess".

Note that the (M; ~�; i)-ba
ko� pro
ess does not 
ompletely give the (M; ~�; i)-Markov 
hain,

be
ause it does not spe
ify whether ea
h step results from a \forward" or \ba
kward" operation.

To 
omplete the 
orresponden
e we de�ne an auxiliary sequen
e: Let S

1

; : : : ; S

t

; : : : be the sequen
e

with S

t

taking on values from the set fF;Bg, with S

t

= F if `(H

t

) = `(H

t�1

) + 1 and S

t

= B

if `(H

t

) = `(H

t�1

) � 1. (Intuitively, F stands for \forward" and B for \ba
kward".) Noti
e

that sequen
e X

0

; : : : ;X

t

; : : : together with the sequen
e S

1

; : : : ; S

t

; : : : does 
ompletely spe
ify the

sequen
e H

0

; : : : ;H

t

; : : :.

We study the distribution of the states X

t

as the ba
ko� pro
ess evolves over time. We shall

show that there is always a Cesaro limit distribution (although there is not ne
essarily a stationary

distribution). We shall also study the question of eÆ
iently 
omputing the Cesaro limit distribution.

For simpli
ity, throughout this paper, we shall restri
t our attention to 
ases where both the

(M; ~�)-ba
ko� pro
ess and the underlying Markov 
hain M are irredu
ible and aperiodi
. In

parti
ular, M has a stationary distribution, and not just a Cesaro limit distribution.
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3 Constant �

The 
ase in whi
h the ba
ko� probability takes the same value � for every state has a very 
lean


hara
terization, and it will give us insight into some of the arguments to 
ome.

We �x a spe
i�
 (M; ~�; i)-ba
ko� pro
ess throughout this se
tion. Suppose we generate a

sequen
e X

0

;X

1

; : : : ;X

t

; : : : of steps together with an auxiliary sequen
e S

1

; : : : ; S

t

; : : :. To begin

with, we wish to view this sequen
e of steps as being \equivalent" (in a sense) to one in whi
h only

forward steps are taken. In this way, we 
an relate the behavior of the (M; ~�; i)-ba
ko� pro
ess to

that of the underlying (�nite) Markov pro
ess M beginning in state i, whi
h we understand mu
h

more a

urately. We write q

t

(j) to denote the probability that M , starting in state i, is in state j

after t steps.

When the ba
ko� probability takes the same value � for every state, we have the following basi


relation between these two pro
esses.

Theorem 3.1 For given natural numbers � and t, and a state j, we have Pr [X

t

= j j `(H

t

) = �℄ =

q

�

(j):

The proof of this theorem is given in Appendix B.

In addition to the sequen
es fX

t

g and fS

t

g, 
onsider the sequen
e fY

t

: t � 0g, where Y

t

is

the history length `(H

t

). Now Y

t

is simply the position after t steps of a random walk on the

natural numbers, with a re
e
ting barrier at 0, in whi
h the probability of moving left is � and the

probability of moving right is 1� �. This 
orresponden
e will be 
ru
ial for our analysis.

In terms of these notions, we mention one additional te
hni
al lemma. Its proof follows simply

by 
onditioning on the value of Y

t

and applying Theorem 3.1.

Lemma 3.2 For all natural numbers t and states j, we have Pr [X

t

= j℄ =

P

r

q

r

(j) � Pr [Y

t

= r℄ :

We are now ready to 
onsider the two 
ases where � �

1

2

and where � >

1

2

, and show that in

ea
h 
ase there is a Cesaro limit distribution.

The 
ase of � �

1

2

. Let the stationary distribution of the underlying Markov 
hain M be

h 

1

; : : : ;  

n

i. By our assumptions about M , this distribution is independent of the start state i.

When � �

1

2

, we show that the (M; ~�; i)-ba
ko� pro
ess 
onverges to h 

1

; : : : ;  

n

i.

Theorem 3.3 For all states j of the (M; ~�; i)-ba
ko� pro
ess, we have lim

t!1

Pr [X

t

= j℄ =  

j

.

Thus, the limiting probability is independent of the start state i.

Proof. Fix � > 0, and 
hoose t

0

large enough that for all states j of M and all t � t

0

, we have

jq

t

(j) �  

j

j < �=2. Sin
e � � 1=2, we 
an also 
hoose t

1

� t

0

large enough that for ea
h t � t

1

, we

have Pr [Y

t

> t

0

℄ > 1� �=2. Then for t � t

1

we have

jPr [X

t

= j℄�  

j

j =

�

�

�

�

�

X

r

q

r

(j) � Pr [Y

t

= r℄�  

j

X

r

Pr [Y

t

= r℄

�

�

�

�

�

�

X

r

jq

r

(j)�  

j

j � Pr [Y

t

= r℄

=

X

r<t

1

jq

r

(j) �  

j

j � Pr [Y

t

= r℄ +

X

r�t

1

jq

r

(j)�  

j

j � Pr [Y

t

= r℄

�

X

r<t

1

Pr [Y

t

= r℄ +

X

r�t

1

�=2 � Pr [Y

t

= r℄

� �=2 + �=2 = �:

4



Although the proof above applies to ea
h � �

1

2

, we note a qualitative di�eren
e between the


ase of � <

1

2

and the \threshold 
ase" � =

1

2

. In the former 
ase, for every r, there are almost

surely only �nitely many t for whi
h Y

t

� r; the largest su
h t is a step on whi
h the pro
ess pushes

a state that is never popped in the future. In the latter 
ase, Y

t

almost surely returns to 0 in�nitely

often, and yet the pro
ess still 
onverges to the stationary distribution of M .

The 
ase of � >

1

2

. When � >

1

2

, the (M; ~�; i)-ba
ko� pro
ess retains positive probability on

short histories as t in
reases, and hen
e retains memory of its start state i. Nevertheless, the

pro
ess has a Cesaro limit distribution; but this distribution may be di�erent from the stationary

distribution of M .

Theorem 3.4 When � >

1

2

, the (M; ~�; i)-ba
ko� pro
ess has a Cesaro limit distribution.

Proof. For all natural numbers t and states j we have Pr [X

t

= j℄ =

P

r

q

r

(j) � Pr [Y

t

= r℄ by

Lemma 3.2. Viewing Y

t

as a random walk on the natural numbers, one 
an 
ompute the Cesaro

limit of Pr [Y

t

= r℄ to be �

r

= �� when r = 0, and �

r

= �z

r�1

when r > 0, where � = (2��1)=(2�

2

)

and z = (1 � �)=�. (Note that Y

t

does not have a stationary distribution, be
ause it is even only

on even steps.) A standard argument then shows that Pr [X

t

= j℄ has the Cesaro limit

P

r

�

r

q

r

(j).

Note that the proof shows only a Cesaro limit distribution, rather than a stationary distribution.

In fa
t, it is not hard to show that if � >

1

2

, then there is not ne
essarily a stationary distribution.

Now, more generally, suppose that the pro
ess starts from an initial distribution over states; we

are given a ve
tor z

0

, 
hoose a state j with probability z

0

(j), and begin the pro
ess from j. As z

0

ranges over all possible probability ve
tors, what are the possible ve
tors of limiting distributions?

Let us again assume a �xed underlying Markov 
hainM , and denote this set of limiting distributions

by S

�

.

Theorem 3.5 Ea
h S

�

is a simplex. As � 
onverges to

1

2

from above, these simpli
es 
onverge to

the single ve
tor that is the stationary distribution of the underlying Markov 
hain.

4 Varying �'s

Re
all that the state spa
e S of the (M; ~�; i)-Markov 
hain 
ontains all �nite attainable histories of

the ba
ko� pro
ess. Let us refer to the transition probability matrix of the (M; ~�; i)-Markov 
hain

as the Polish matrix with starting state i, or simply the Polish matrix if i is impli
it or irrelevant.

Note that even though the ba
ko� pro
ess has only �nitely many states, the Polish matrix has a


ountably in�nite number of states.

Our analysis in the rest of the paper will bran
h, depending on whether the Polish matrix

is transient, null, or ergodi
. We now de�ne these 
on
epts, whi
h are standard notions in the

study of denumerable Markov 
hains (see e.g., [6℄). A Markov 
hain (and its matrix P ) are 
alled

transient if, started in some state i, the probability of eventually returning to state i is stri
tly less

than 1. For every irredu
ible

3

non-transient Markov 
hain P , the sequen
e of powers of P has a

3

Note that the assumption that the (M; ~�)-ba
ko� pro
ess is irredu
ible implies that the Polish matrix is irredu
ible

ex
ept if some �

i

= 0. We will see later that whenever some �

i

= 0, then the Polish matrix is transient. So all re
urrent


hains we en
ounter are irredu
ible.

5



Cesaro limit L (that is,

1

t

P

t

�=1

P

�


onverges to L). An irredu
ible non-transient 
hain is null if L

is identi
ally 0, and otherwise is ergodi
. For an ergodi
 
hain, every entry of L is stri
tly positive.

For ea
h state i of an ergodi
 
hain, the expe
ted time, starting in state i, to return to i is �nite.

For ea
h state i of a null 
hain, the expe
ted time, starting in state i, to return to i is in�nite. We

note that no �nite Markov 
hain is null.

For example, 
onsider a random walk on the semi-in�nite line, with a re
e
ting barrier at 0,

where the probability of moving left (ex
ept at 0) is p, of moving right (ex
ept at 0) is 1 � p, and

of moving right at 0 is 1. If p < 1=2, then the walk is transient; if p = 1=2, then the walk is null;

and if p > 1=2, then the walk is ergodi
.

We say that the ba
ko� pro
ess (M; ~�; i) is transient (resp., null, ergodi
) if the Polish matrix

is transient (resp., null, ergodi
). In the 
onstant � 
ase (Se
tion 3), if � < 1=2, then the ba
ko�

pro
ess is transient; if � = 1=2, then the ba
ko� pro
ess is null; and if � > 1=2, then the ba
ko�

pro
ess is re
urrent. The next proposition says that the 
lassi�
ation does not depend on the start

state and therefore we may refer to the ba
ko� pro
ess (M; ~�) as being transient, ergodi
, or null.

Its proof may be found in Appendix C.1.

Proposition 4.1 The ba
ko� pro
ess (M; ~�; i) is transient (resp., ergodi
, null) pre
isely if the

ba
ko� pro
ess (M; ~�; j) is transient (resp., ergodi
, null).

Theorem 4.2 If (M; ~�) is irredu
ible then the task of 
lassifying the (M; ~�)-ba
ko� pro
ess as

transient or ergodi
 or null is solvable in polynomial time.

Theorem 4.3 For every irredu
ible (M; ~�) and for every i 2 V , the (M; ~�; i)-ba
ko� pro
ess has a

Cesaro limit distribution. This limiting distribution is independent of i if the (M; ~�)-ba
ko� pro
ess

is transient or null. Furthermore, the limiting distribution is 
omputable exa
tly in polynomial time

if the pro
ess is ergodi
 or null.

When the (M; ~�)-ba
ko� pro
ess is transient, the limiting probabilities are not ne
essarily

rational in the entries of M and ~� and therefore we 
annot hope to 
ompute them exa
tly. In

Se
tion 4.2, we give an algorithm for approximating these limiting probabilities.

4.1 Classifying the ba
ko� pro
ess

In this se
tion we show how it is possible to 
lassify, in polynomial time, the behavior of any

(M; ~�)-ba
ko� pro
ess as transient or ergodi
 or null. In Se
tion 3 (where the ba
ko� probability

is independent of the state), we showed that the length of the history is either always expe
ted

to grow or always expe
ted to shrink (ex
ept for initial histories), independent of the top state in

the history sta
k. To see that this argument 
annot 
arry over to this se
tion, 
onsider a simple

Markov 
hain M on two states with M

ij

= 1=2 for every pair i; j and ~�

1

= h:99; :01i. It is 
lear

that if the top state is 1, then the history is expe
ted to shrink while if the top state is 2, then the

history is expe
ted to grow. To deal with this imbalan
e between the states, we asso
iate a weight

w

i

with every state i and 
onsider the weighted sum of states on the sta
k. Our goal is to �nd a

weight ve
tor with the property that the weighted sum of states on the sta
k is expe
ted to grow

(resp. shrink) if and only if the history is expe
ted to grow unboundedly (resp. remain bounded).

This hope motivates our next few de�nitions.

De�nition 4.4 For a nonnegative ve
tor ~w = hw

1

; : : : ; w

n

i, and a history �� = h�

0

; : : : ; �

l

i of an

(M; ~�)-ba
ko� pro
ess on n states de�ne the w-potential of ��, denoted �

~w

(��), to be

P

l

i=1

w

�

i

(i.e.,

it is the weighted sum of the states in the history, ex
ept the initial state, with state i weighted by

w

i

).
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De�nition 4.5 For a nonnegative ve
tor ~w, and a history �� of an (M; ~�)-ba
ko� pro
ess on n

states de�ne the ~w-di�erential of ��, denoted ��

~w

(��), to be E [�

~w

(su

(��))℄ � �

~w

(��). (Here E

represents the expe
ted value over the distribution given by su

(��).)

The following proposition is immediate from the de�nition.

Proposition 4.6 If �� and ��

0

are non-initial histories with the same top state j, then

��

~w

(��) = ��

~w

(��

0

) = ��

j

w

j

+ (1� �

j

)

n

X

k=1

M

jk

w

k

:

The above proposition motivates the following de�nition.

De�nition 4.7 For an (M; ~�)-ba
ko� pro
ess, nonnegative ve
tor ~w, and state j 2 f1; : : : ; ng, let

��

~w;j

= ��

~w

(��), where �� is any history with j = top(��) and `(��) > 0. Let ��

~w

denote the ve
tor

h��

~w;1

; : : : ;��

~w;n

i.

For intuition, 
onsider the 
onstant � 
ase with weight ve
tor w

i

= 1 for all i. In this 
ase

�

~w

(��), the w-potential of ��, is pre
isely `(��), and ��

~w

(��), the ~w-di�erential of ��, is the expe
ted


hange in the size of the sta
k, whi
h is 1� 2�. When � < 1=2 (resp., � = 1=2, � > 1=2), so that

the expe
ted 
hange in the size of the sta
k is positive (resp., 0, negative), the pro
ess is transient

(resp., null, ergodi
).

Similarly, in the non-
onstant � 
ase we would like to asso
iate a positive weight with every

state so that (1) the expe
ted 
hange in potential in every step has the same sign independent of

the top state (i.e., ~w is positive and ��

~w

is either positive or zero or negative), and (2) this sign


an be used to 
ategorize the pro
ess as either transient, null or ergodi
 pre
isely as it did in the


onstant � 
ase.

In general, this will not be possible, say, if some �

i

= 1 and some other �

j

= 0. Therefore, we

relax this requirement slightly and de�ne the notion of an \admissible" ve
tor (appli
able to both

the ve
tor of weights and also the ve
tor of 
hanges in potential).

De�nition 4.8 We say that an n-dimensional ve
tor ~v is admissible for a ve
tor ~� if ~v is non-

negative and v

i

= 0 only if �

i

= 1. (We will drop the suÆx, admissible for ~�, and simply say

admissible, if the latter ve
tor is named ~�.)

In Appendix C.3 we prove three very natural lemmas that 
ombine to show the following.

Given (M; ~�) and an admissible ve
tor ~w: (1) If ��

w

is admissible then the pro
ess is transient.

(2) If ��

w

is zero then the pro
ess is null. (3) If ���

w

is admissible then the pro
ess is ergodi
.

Roughly speaking, we show that �

~w

(��) is a bounded-di�eren
e martingale. This enables us to use

martingale tail inequalities to analyze the long-term behavior of the pro
ess.

This explains what 
ould happen if we are lu
ky with the 
hoi
e of ~w. It does not explain how

to �nd ~w, or even why the three 
ases above are exhaustive. Our next lemma shows that the 
ases

are indeed exhaustive and gives a eÆ
ient algorithm to 
ompute ~w.

Lemma 4.9 For every irredu
ible (M; ~�)-ba
ko� pro
ess, there exists an admissible ve
tor ~w su
h

that exa
tly one of the following holds: (1) ��

~w

is admissible, (2) ��

~w

is zero, or (3) ���

~w

is

admissible. Furthermore su
h a ve
tor 
an be 
omputed in polynomial time, given (M; ~�).

Proof. We �rst get rid of an easy 
ase, namely if some �

j

= 0.
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Claim 4.10 Suppose there exists j su
h that �

j

= 0. Let d(k; j) denote the length of a shortest

path (of non-zero probability) from k to j in M . Let M

min

be the smallest non-zero entry of M ,

and let �

max

be the largest entry of ~� that is stri
tly smaller than 1. Let 
 =

1

2

�M

min

�

1��

max

�

max

. Let

~w be de�ned as follows.

w

k

=

(

0 if �

k

= 1




d(k;j)

otherwise.

Then ~w and ��

~w

are admissible.

We defer the proof of the 
laim to Appendix C.2.

Let A be the n�n diagonal matrix with the A

ii

= �

i

. Let I be the n�n identity matrix. Then

noti
e that ��

~w

= �A~w + (I �A)M ~w.

Let H = (I � A)MA

�1

. Noti
e that sin
e none of the �

i

's are zero, A

�1

exists. The matrix

H is nonnegative. Let Hj

~�

be the restri
tion of H to rows and 
olumns 
orresponding to �

j

< 1.

Noti
e that Hj

~�

is irredu
ible. (This is equivalent to M j

~�

being irredu
ible, whi
h is implied by

the irredu
ibility of the ba
ko� pro
ess.) By the Perron-Frobenius theorem (Theorem A.1), there

exists a (unique) positive ve
tor ~v

0

and a (unique) positive real � su
h that Hj

~�

~v

0

= �~v

0

. Let ~v

be an n-dimensional ve
tor obtained by padding ~v

0

with zeroes in the 
olumns 
orresponding to

�

j

= 1. Noti
e then that H~v = �~v and ~v is admissible for ~�. Now let ~w = A

�1

~v. Noti
e that ~w is

also admissible, and satis�es (I � A)M ~w = �A~w. Equivalently, �A~w + (I � A)M ~w = (�� 1)A~w,

and thus ��

~w

= (�� 1)A~w. Thus, for this 
hoi
e of ~w, (1) if � > 1, then ��

~w

is admissible; (2) if

� = 1, then ��

~w

= 0; (3) if � < 1, then ���

~w

is admissible.

Thus we have proved the existen
e part of the result. But it also follows that the ve
tor ~w


an be 
omputed eÆ
iently (sin
e this amounts to 
omputing an eigenvalue and the 
orresponding

eigenve
tor of a given matrix).

It is easy to see that the results we have dis
ussed 
ombine to prove Theorem 4.2.

4.2 Cesaro limit distributions

We begin the se
tion by sket
hing the proof that the (M; ~�; i)-ba
ko� pro
ess always has a Cesaro

limit distribution. The proof is quite di�erent in ea
h of the 
ases (transient, ergodi
 and null).

More details appear in Appendix C.4. We 
on
lude the se
tion by showing how the limiting

distribution may be 
omputed.

The easiest 
ase is the ergodi
 
ase. Sin
e the Polish matrix is ergodi
, the 
orresponding

Markov pro
ess has a Cesaro limit. This gives us a Cesaro limit in the ba
ko� pro
ess, where the

probability of state i is the sum of the probabilities of the sta
ks in the Polish matrix with top

state i.

We now 
onsider the transient 
ase. When the ba
ko� pro
ess is in a state (with a given

sta
k), and that state is never popped o� of the sta
k (by taking a ba
kedge), then we refer to this

(o

urren
e of the) state as irrevo
able. Let us �x a state i, and 
onsider a renewal pro
ess (see

De�nition A.7), where ea
h new epo
h begins when the pro
ess has an irrevo
able o

urren
e of

state i. Sin
e the Polish matrix is transient, the expe
ted length of an epo
h is �nite. The limiting

probability distribution of state j is the expe
ted number of times that the pro
ess is in state j in

an epo
h, divided by the expe
ted length of an epo
h. This is a sket
h of a proof of the existen
e of

a Cesaro limit distribution. A more 
areful argument (given in Appendix C.4) shows the existen
e

of a stationary distribution.

Finally, we 
onsider the null 
ase. We sele
t a state j where �

j

6= 1. Let us 
onsider a new

ba
ko� pro
ess, where the underlying Markov matrix M is the same; where all of the ba
ko�

8



probabilities �

k

are the same, ex
ept that we 
hange �

j

to 1; and where we 
hange the start state

to j. This new ba
ko� pro
ess 
an be shown to be ergodi
. We show a way of \pasting together"

runs of the new ergodi
 ba
ko� pro
ess to simulate runs of the old null ergodi
 pro
ess. Thereby,

we show the remarkable fa
t that the old null pro
ess has a Cesaro limit distribution whi
h is the

same as the Cesaro limit distribution of the new ergodi
 pro
ess. We now show how the limiting

distribution may be 
omputed. Again, we bran
h into three 
ases.

4.2.1 The null 
ase

The matrix H = (I � A)MA

�1

, whi
h we saw in Se
tion 4.1), plays an important role in this

se
tion. We refer to this matrix as the Hungarian matrix of the (M; ~�)-ba
ko� pro
ess. The next

theorem gives an important appli
ation of the Hungarian matrix.

Theorem 4.11 The limiting probability distribution � satis�es � = �H. This linear system has a

unique solution subje
t to the restri
tion

P

i

�

i

= 1. Thus, the limiting probability distribution 
an

found by solving a linear system.

Proof [Sket
h℄. The key ingredient in the proof is the observation that in the null 
ase, the

probability of a transition from a state i to a state j by a forward step is the same as the probability

of a transition from state j to a state i by a ba
kward step (sin
e ea
h forward move is eventually

revoked, with probability 1). Thus if we let �

i!j

denote the probability of a forward step from i

to j and �

i j

denote the probability of a ba
kward step from j to i (and �

i

denotes the limiting

probability of being in state i), then the following 
onditions hold:

�

i

=

X

j

�

i!j

+

X

j

�

j i

; �

i!j

= (1� �

i

)M

ij

�

i

; �

i!j

= �

i j

:

Manipulating the above shows that � satis�es � = �H. For the uniqueness part, noti
e that if

all �

i

< 1, then H is irredu
ible and nonnegative and thus by Theorem A.1, � is a maximal

eigenve
tor and hen
e a unique solution to the linear system. If some �

i

= 1, we argue by fo
using

on the matrix Hj

�

, (as in Se
tion 4.1, Hj

�

is the prin
ipal submatrix of H 
ontaining only rows

and 
olumns 
orresponding to i s.t. �

i

< 1) whi
h is irredu
ible. Details omitted.

4.2.2 The ergodi
 
ase

In this 
ase also the limiting probabilities are obtained by solving linear systems, obtained from a

renewal argument. We de�ne \epo
hs" starting at i by simulating the ba
ko� pro
ess as follows.

The epo
h starts at an initial history with X

0

= hii. At the �rst step the pro
ess makes a forward

step. At every subsequent unit of time, if the pro
ess is in state j, it �rst 
ips a 
oin that 
omes

up \B" with probability �

j

and \F" otherwise. If the 
oin 
omes up \B", it 
he
ks to see if it is

ba
k at the initial history and if so de
lares an end of an epo
h.

Noti
e that the distribution of the length of an epo
h starting at i is pre
isely the same as the

distribution of time, starting at an arbitrary history with i on top of the sta
k, until this o

urren
e

of i is popped from the sta
k, 
onditioned on the fa
t that the �rst step taken from i is a forward

step.

Let T

i

denote the expe
ted length of (or more pre
isely, number of transitions in) an epo
h,

when starting at state i. Let N

ij

denote the expe
ted number of transitions out of state j in an

epo
h when starting at state i. Standard renewal arguments (using Theorem A.8 with E(X

i

) = T

i

9



and E(Y

i

) = N

ij

) show that the Cesaro limit probability distribution ve
tor �

(i)

, for an (M; ~�; i)-

ba
ko� pro
ess, is given by �

(i)

j

= N

ij

=T

i

, provided T

i

is �nite. Sin
e this is true for the ergodi



ase, this gives us a way to 
ompute the Cesaro limit distribution in the ergodi
 
ase. The key

equations that allow us to 
ompute the N

ij

and T

i

are:

T

i

= 1 +

X

k

M

ik

[�

k

� 1 + (1� �

k

)(T

k

+ 1)℄ + (1� �

i

)T

i

;

N

ij

= Æ

ij

+

X

k

M

ik

[�

k

� Æ

jk

+ (1� �

k

)(N

kj

+ Æ

jk

)℄ + (1� �

i

)N

ij

;

where Æ

ij

= 1 if i = j and 0 otherwise. (The above equations are derived by straightforward


onditioning. For example, if the �rst step in the epo
h takes the pro
ess to state k, then it takes

T

k

units of time to return to hii and then with probability (1 � �

i

) it takes T

i

more steps to end

the epo
h.)

The T

i

's and N

ij

's 
an be 
omputed by solving the linear systems above. Uniqueness of the

solution to the linear system is derived from the non-singularity of I�H, where H = (I�A)MA

�1

is the Hungarian matrix. Details omitted.

4.2.3 The transient 
ase

Theorem 4.12 Let (M; ~�) be a transient ba
ko� pro
ess on n states, and let all entries of M and

~� be rationals expressible as ratios of l-bit integers. Then, given any error bound � > 0, a ve
tor

�

0

that �-approximates the stationary probability distribution � of the (M; ~�)-pro
ess (i.e., satis�es

j�

0

j

� �

j

j � �) 
an be 
omputed in time polynomial in n; l and log

1

�

.

Let r

i

denote the \revo
ation" probability of a state i, i.e., the probability that an epo
h starting

at i, as in Se
tion 4.2.2, ends in �nite time. Let ~r denote the ve
tor of revo
ation probabilities.

The following lemma shows how to 
ompute the limiting probabilities � given ~r. Further it shows

how to 
ompute a 
lose approximation to �, given a suÆ
iently 
lose approximation to ~r.

Lemma 4.13 The limiting probabilities satisfy � = �(I � A)MR, where R is a diagonal matrix

with

1

1�(1��

i

)

P

k

r

k

M

ik

as the ith entry. Further, there exists a unique solution to the above system

subje
t to the 
ondition

P

i

�

i

= 1.

Remark: Two spe
ial 
ases of interest are: (1) When all �

i

= 0, in whi
h 
ase we re
over the

familiar 
ondition for Markov 
hains that � = �M . (2) When all r

i

= 1, in whi
h 
ase we get the

null 
ase and then � satis�es � = �(I �A)MA

�1

.

Proof. The �rst part of the lemma is obtained as in Theorem 4.11. Let �

i!j

denote the probability

of a forward transition from i to j at stationarity, and let �

i j

denote the probability of a ba
kward

transition from j to i. Then the following 
onditions hold.

�

i j

= r

j

�

i!j

(1)

�

i!j

= �

i

(1� �

i

)M

ij

(2)

�

i

=

X

j

�

j!i

+

X

j

�

i j

(3)

Using Equation (1) to eliminate all o

urren
es of variables of the form �

i j

, and then Equa-

tion (2) to eliminate all o

urren
es of �

i!j

, Equation (3) simpli�es to:

�

i

=

X

j

�

j

(1� �

j

)M

ji

+ �

i

(1� �

i

)

X

j

r

j

M

ij

(4)
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Thus if we let D be the matrix with the ijth entry being

D

ij

=

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

k

then � satis�es � = �D. As in the proof of Theorem 4.11 if we permute the rows and 
olumns of

D so that all states i with �

i

= 1 appear at the end, then the matrix D looks as follows:

D =

"

D

�

X

0 0

#

where D

�

is non-negative and irredu
ible. Thus � = [�

A

�

B

℄ must satisfy �

A

= �

A

D

�

and �

B

=

�

A

X. �

A

is now seen to be unique (up to s
aling) by the Perron-Frobenius theorem (Theorem

A.1), while �

B

is unique given �

A

. The lemma follows by noti
ing that D 
an be expressed as

(I �A)MR.

Lemma 4.14 Let the entries of M and ~� be l-bit rationals des
ribing a transient (M; ~�)-pre
ess

and let � be its stationary probability ve
tor. For every � > 0, there exists � > 0, with log

1

�

=

poly(n; l; log

1

�

), su
h that given any ve
tor ~r

0

of l

0

-bit rationals satisfying k~r

0

� ~rk

1

� �, a ve
tor

�

0

satisfying k�

0

� �k

1

� � 
an be found in time poly(n; l; l

0

; log

1

�

).

Remark: By trun
ating ~r

0

to log

1

�

bits, we 
an ensure that l

0

also grows polynomially in the input

size, and thus get a fully polynomial time algorithm to approximate �.

We defer the proof of Lemma 4.14 to Appendix C.5.

Lemma 4.15 The revo
ation probabilities r

i

are the optimum solution to the following system:

min

X

i

x

i

s.t. x

i

� �

i

+ (1� �

i

)x

i

P

j

M

ij

x

j

x

i

� 1

x

i

� 0

9

>

>

>

>

=

>

>

>

>

;

(5)

Further, the system of inequalitities above is equivalent to the following semide�nite program:

min

X

i

x

i

s.t. q

i

= 1� (1� �

i

)

P

j

M

ij

x

j

x

i

� 1

x

i

� 0

q

i

� 0

D

i

postive semide�nite, where D

i

=

"

r

i

p

�

i

p

�

i

q

i

#

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Proof. We start by 
onsidering the following iterative system and prove that it 
onverges to the

optimum of (5).

For t = 0; 1; 2; : : :, de�ne x

(t)

i

as follows:

x

(0)

i

= 0; x

(t+1)

i

= �

i

+ (1� �

i

)x

(t)

i

X

j

M

ij

x

(t)

j

:

11



By indu
tion, we note that x

(t)

i

� x

(t+1)

i

� 1. For example:

x

(t+1)

i

= �

i

+ (1� �

i

)x

(t)

i

X

j

M

ij

x

(t)

j

� �

i

+ (1� �

i

)x

(t�1)

i

X

j

M

ij

x

(t�1)

j

= x

(t)

i

Thus sin
e hx

(t)

i

i

t

is a non-de
reasing sequen
e in the interval [0; 1℄, it must have a limit. Let x

�

i

denote this limit.

We 
laim that x

�

i

are the (unique) optimum to (5). By 
onstru
tion, it is 
lear that 0 � x

�

i

� 1

and x

�

i

= �

i

+ (1 � �

i

)x

�

i

P

j

M

ij

x

�

j

; and hen
e x

�

i

's form a feasible solution to (5). To prove it is

the optimum, we 
laim for every feasible solution a

i

's to (5) satis�es a

i

� x

(t)

i

and thus a

i

� x

�

i

.

We prove this 
laim by indu
tion. Assume a

i

� x

(t)

i

, for every i. Then

a

i

� �

i

+ (1� �

i

)a

i

X

j

M

ij

a

j

� �

i

+ (1� �

i

)x

(t)

i

X

j

M

ij

x

(t)

j

= x

(t+1)

i

:

This 
on
ludes the proof that the x

�

i

's are the unique optimum to (5).

Next we show that the revo
ation probability r

i

= x

�

i

. To do so, note �rst that r

i

satis�es the


ondition

r

i

= �

i

+ (1� �

i

)

X

j

M

ij

r

j

r

i

:

(Either the move onto i is revoked at the �rst step with probability �

i

, or we move to j with

probability (1� �

i

)M

ij

and then the move to j is eventually revoked with probability r

j

, and this

pla
es i again at the top of the sta
k, and with probability r

i

this move is revoked eventually.)

Thus r

i

's form a feasible solution and thus r

i

� x

�

i

. To prove that r

i

� x

�

i

, let us de�ne r

(t)

i

to

be the probability that a forward move onto vertex i is revoked in at most t steps. Note that

r

i

= lim

t!1

r

(t)

i

. We will show by indu
tion that r

(t)

i

� x

(t)

i

and this implies r

i

� x

�

i

. Noti
e �rst

that

r

(t+1)

i

� �

i

+ (1� �

i

)

X

j

M

ij

r

(t)

j

r

(t)

i

:

(This follows from a 
onditioning argument similar to the above and then noti
ing that in order

to revoke the move within t+ 1 steps, both the revo
ation of the move to j and then the eventual

revo
ation of the move to i must o

ur within t time steps.) Now an indu
tive argument as earlier

shows r

(t+1)

i

� x

(t+1)

i

. Thus we 
on
lude that x

�

i

= r

i

. This �nishes the �rst part of the lemma.

For the se
ond part, note that 
ondition D

i

is semide�nite is equivalent to the 
ondition r

i

q

i

�

�

i

. Substituting q

i

= 1�(1��

i

)

P

j

M

ij

r

j

turns this into the 
onstraint r

i

�(1��

i

)r

i

P

j

M

ij

r

j

� �

i

,

and thus establishing the (synta
ti
) equivalen
e of (5) and (6).

Lemma 4.16 If the entries of M and ~� are given by l-bit rationals, then an �-approximation to

the ve
tor of revo
ation probabilities 
an be found in time poly(n; l; log

1

�

).
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Proof. We solve the 
onvex program given by (5) approximately using the ellipsoid algorithm [3℄.

Re
all that the ellipsoid algorithm 
an solve a 
onvex programming problem given (1) a separation

ora
le des
ribing the 
onvex spa
e, (2) a point ~x inside the 
onvex spa
e, (3) radii � and R su
h

that the ball of radius � around ~x is 
ontained in the 
onvex body and the ball of radius R 
ontains

the 
onvex body. The running time is polynomial in the dimension of the spa
e and in log

R

r

.

The fa
t that (5) des
ribes a 
onvex program follows from the fa
t that it is equivalent to the

semide�nite program (6). Further, a separation ora
le 
an also be obtained due to this equivalen
e.

In what follows we will des
ribe a ve
tor ~x that is feasible, and an � � 2

� poly(n;l)

su
h that every

point y satisfying kx� yk

1

� � is feasible. Further it is trivial to see that every feasible point

satis�es the 
ondition that the ball of radius

p

n around it 
ontains the unit 
ube and hen
e all

feasible solutions. This will thus suÆ
e to prove the 
laim.

Re
all, from Se
tion 4.1, that sin
e (M; ~�) is null, there exists a � > 1 and a ve
tor ~w su
h that

(I �A)MA

�1

(~w) � �~w. (This held even in the 
ase where some �

j

= 0.) Note further that sin
e �

is the maximal eigenvalue of a matrix whose entries are poly(n; l) bit rationals, its value is at least

1 + 2

� poly(n;l)

. Let ~v = A

�1

~w, and let v

max

= max

i

v

i

and let v

min

= min

i

v

i

. Again we note that

v

min

� 2

� poly(n;l)

v

max

. S
aling ~v appropriately, we may assume v

max

= 1. We will use this � and ~v

below.

Before des
ribing the ve
tor ~x and �, we make one simpli�
ation. Noti
e that if �

i

= 1, then

r

i

= 1 and if �

i

= 0, then r

i

= 0. We �x this setting and then solve (5) for only the remaining


hoi
es of indi
es i. So hen
eforth we assume 0 < �

i

< 1 and in parti
ular the fa
t that �

i

� 2

�l

.

Let Æ =

��1

2�

. Note Æ > 2

� poly(n;l)

. Let � = 2

�(l+3)

v

min

�

��1

�

�

2

. We will set z

i

= 1 � Æv

i

and

show that z

i

� �

i

� (1� �

i

)z

i

P

j

M

ij

z

j

is at least 2�. Now letting x

i

= z

i

� �, we get the required

ve
tor ~x and �.

Consider

z

i

� �

i

� (1� �

i

)z

i

X

j

M

ij

z

j

= 1� Æv

i

� �

i

� (1� �

i

)(1 � Æv

i

)

X

j

M

ij

(1� Æv

j

)

= 1� Æv

i

� �

i

� (1� �

i

)(1 � Æv

i

)(1� Æ

X

j

M

ij

v

j

)

= (1� Æv

i

)

0

�

Æ

X

j

(1� �

i

)M

ij

v

j

1

A

� Æv

i

�

i

� (1� Æv

i

) (Æ��

i

v

i

)� Æv

i

�

i

� Æ�

i

v

i

(�� �Æv

i

� 1)

�

�

�� 1

2�

�

2

�

i

v

i

� 2�:

This 
on
ludes the proof.

Proof. [of Theorem 4.12℄ GivenM , ~� and �, let � be as given by Lemma 4.14. We �rst 
ompute a

� approximation to the ve
tor of revo
ation probabilities in time poly(n; l; log

1

�

) = poly(n; l; log

1

�

)

using Lemma 4.16. The output is a ve
tor ~r

0

of l

0

= poly(n; l; log

1

�

)-bit rationals. Applying

Lemma 4.14 to M , ~�, ~r and �, we obtain a �-approximation to the stationary probability ve
tor �

in time poly(n; l; l

0

; log

1

�

) = poly(n; l; log

1

�

).
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A Preliminaries

In this se
tion, we review ba
kground material essential to our proofs.

A.1 Perron-Frobenius Theorem

Theorem A.1 (Perron-Frobenius Theorem, see e.g., [4℄, p. 508) Let A be an irredu
ible, non-

negative n by n matrix. Then

� There exists ~v, with all 
omponents positive, and �

0

> 0 su
h that A~v = �

0

~v;

� if � 6= �

0

is any other eigenvalue of A, then j�j < �

0

; and

� the eigenspa
e asso
iated with �

0

is one-dimensional.

A.2 Martingale Tail Inequalities

We begin by reviewing the basi
 de�nitions.

De�nition A.2 � A sequen
e of random variables X

0

;X

1

; : : : is said to be a martingale if for

all i > 0, E[X

i

jX

0

; : : : ;X

i�1

℄ = X

i�1

.

� A sequen
e of random variables X

0

;X

1

; : : : is said to be a super-martingale if for all i > 0,

E[X

i

jX

0

; : : : ;X

i�1

℄ � X

i�1

.

� A sequen
e of random variables X

0

;X

1

; : : : is said to be a sub-martingale if for all i > 0,

E[X

i

jX

0

; : : : ;X

i�1

℄ � X

i�1

.

i



Theorem A.3 (Azuma's Inequality, see e.g., [8℄, p. 92) Let X

0

;X

1

; : : : be a martingale sequen
e

su
h that for ea
h k

jX

k

�X

k�1

j � 


k

;

where 


k

may depend on k. Then, for all t � 0 and any � > 0,

Pr[X

t

�X

0

j � �℄ � 2exp

 

�

�

2

2

P

1�k�t




2

k

!

:

Corollary A.4 Let X

0

;X

1

; : : : be a martingale sequen
e su
h that for all k

jX

k

�X

k�1

j � 
:

Then, for all t � 0 and any � > 0

Pr[X

t

�X

0

j � �


p

t℄ � 2e

��

2

=2

:

Corollary A.5 Let X

0

;X

1

; : : : be a sub-martingale su
h that

E(X

i

jX

0

; : : : ;X

i�1

) � X

i�1

+ �;

(� > 0) and for all k

jX

k

�X

k�1

j � 
:

Then, for all t � 0 and any � � 0

Pr(jX

t

�X

0

j � �) � 2e

�

�

�

2


2

�

t�

2�

�

��

:

Corollary A.6 Let X

0

;X

1

; : : : be a super-martingale su
h that

E(X

i

jX

0

; : : : ;X

i�1

) � X

i�1

� �;

(� > 0) and for all k

jX

k

�X

k�1

j � 
:

Then, for all t � 0

Pr(jX

t

+ �t�X

0

j � 
t) � 2e

�


2

t=(2


2

)

:

A.3 Renewal Theory

De�nition A.7 A renewal pro
ess fN(t); t � 0g is a non-negative integer-valued sto
hasti
 pro-


ess that registers the su

essive o

urren
es of an event during the time interval (0,t℄, where the

times between 
onse
utive events are positive, independent, identi
ally-distributed random variables.

Theorem A.8 (Corollary of Renewal Theorem, see e.g., [5℄, p. 203 ) Let N(t) be a renewal pro
ess

where the time between the ith and (i+ 1)st event is denoted by the random variable X

i

. Let Y

i

be

a 
ost or value asso
iated with the ith renewal 
y
le, where the values Y

i

, i � 1, are also positive,

independent, identi
ally-distributed random variables. Then

lim

t!1

E[

P

1�k�N(t)+1

Y

k

℄

t

=

E(Y

1

)

E(X

1

)

:
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A.4 A Basi
 Probability Fa
t

Proposition A.9 Let p : Z

+

! [0; 1℄ be a probability distribution (i.e.,

P

1

i=1

p(i) = 1) with

expe
tation at least � (i.e.,

P

1

i=1

ip(i) � �). Let Y

1

; : : : ; Y

N

; : : : ; be a sequen
e of independent

random variables distributed a

ording to p. Then, for every Æ > 0 and �

0

< �, there exists an

index N su
h that

Pr[

N

X

i=1

Y

i

> �

0

�N ℄ � 1� Æ:

Proof. Let K be an integer su
h that

P

K

i=1

ip(i) �

�

0

+�

2

. (Su
h an index exists sin
e the sequen
e

�

1

; �

2

; : : : ; �

j

; : : :, where �

j

=

P

j

i=1

ip(i) is monotone non-de
reasing and a
hieves a value of at

least �.) Let p

0

be the distribution with p

0

(i) = p(i) if i 2 f1; : : : ;Kg, p

0

(0) = 1 �

P

K

i=1

p(i) and 0

everywhere else. Note that the expe
tation of p

0

is at least

�

0

+�

2

, and all moments of p

0

are bounded

(by K). Thus we 
an apply the law of large numbers to 
on
lude that there exists an N su
h that

sampling n times from p

0

gives an average of at least �

0

�N with probability at least 1� Æ.

B Proof of Theorem 3.1

Theorem B.1 For given natural numbers � and t, and a state j, we have Pr [X

t

= j j `(H

t

) = �℄ =

q

�

(j):

Proof. Consider a string ! of \F"s and \B"s with the property the in every pre�x, the number

of \B"s is not more than the number of \F"s. Noti
e that every su
h string 
orresponds to a

legitimate auxiliary sequen
e for the ba
ko� pro
ess (ex
ept if �

i

= 0 or 1). Now 
onsider strings

! and !

0

su
h that ! = !

1

FB!

2

and !

0

= !

1

!

2

. Let ! be of length t and !

1

of length t

1

. Noti
e

that

Pr [X

t

= j j hS

1

; : : : ; S

t

i = !℄

=

X

��2S

Pr [H

t

1

= �� j hS

1

; : : : ; S

t

1

i = !

1

℄ � Pr [X

t

= j j hS

t

1

+1

; : : : ; S

t

1

i = FB!

2

and H

t

1

= ��℄

=

X

��2S

Pr [H

t

1

= �� j hS

1

; : : : ; S

t

1

i = !

1

℄ � Pr [X

t

= j j hS

t

1

+3

; : : : ; S

t

1

i = !

2

and H

t

1

+2

= ��℄

= Pr

�

X

t�2

= j j hS

1

; : : : ; S

t�2

i = !

0

�

This motivates the following notion of a redu
tion. A sequen
e ! of \F"s and \B"'s redu
es in one

step to a sequen
e !

0

if ! = !

1

FB!

2

and !

0

= !

1

!

2

. A sequen
e ! redu
es to a sequen
e !

00

if if

!

00


an be obtained from ! by a �nite number of \redu
tions in one step". Repeatedly applying

the 
laim from the previous paragraph, we �nd that if a string ! of length t redu
es to a string !

00

of length t

00

, then

Pr [X

t

= j j hS

1

; : : : ; S

t

i = !℄ = Pr

�

X

t

00

= j j hS

1

; : : : ; S

t

00

i = !

00

�

:

But every auxiliary sequen
e hS

1

; : : : ; S

t

i 
an eventually be redu
ed to a sequen
e of the form F

�

(i.e., 
onsisting only of forward steps), and further � = `(H

t

). This yields:

Pr [X

t

= j j hS

1

; : : : ; S

t

i; `(H

t

) = �℄ = Pr

h

X

�

= j j hS

1

; : : : ; S

�

i = F

�

i

= q

�

(j):
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C Proofs for Se
tion 4

C.1 Preliminaries

Proof [of Proposition 4.1℄. Let us 
all a state i transient if (M; ~�; i) is transient, and similarly for

the other properties (re
urrent, and its sub
lassi�
ations ergodi
 and null). We must show that if

some state is transient (resp., ergodi
, null) then every state is transient (resp., ergodi
, null). If

�

j

= 0 for some j, then every state i is transient. This is be
ause starting in state i, there is a

positive probability of eventually rea
hing state j, and the sta
k hi; : : : ; ji 
an never be unwound

ba
k to the original sta
k hii. So assume that �

j

> 0 for every j.

Assume that there is at least one transient state and at least one re
urrent state; we shall

derive a 
ontradi
tion. Assume �rst that there is some transient state j with �

j

< 1. Let i be a

re
urrent state. Starting in state i, there is a positive probability of eventually rea
hing state j.

This gives the sta
k hi; : : : ; ji. There is now a positive probability that the sta
k never unwinds

ba
k to hi; : : : ; ji (this follows from the fa
t that j is transient and that �

j

< 1). But if the sta
k

never unwinds to hi; : : : ; ji, then it never unwinds to hii. So there is a positive probability that the

sta
k never unwinds to hii, whi
h 
ontradi
ts the assumption that i is re
urrent. Hen
e, we 
an

assume that for every transient state j, we have �

j

= 1.

Let j be an arbitrary state. We shall show that j is re
urrent, a 
ontradi
tion. Assume that

the ba
ko� pro
ess starts in state j; we must show that with probability 1, the sta
k in the ba
ko�

pro
ess returns to hji. Assume that the next state is `, so that the sta
k is hj; `i. If ` is transient,

then with probability 1, on the following step the sta
k is ba
k to hji, sin
e �

`

= 1. Therefore,

assume that ` is re
urrent. So with probability 1, the sta
k is hj; `i in�nitely often. Sin
e �

`

> 0,

it follows that with probability 1, the sta
k must eventually return to hji, whi
h was to be shown.

We have shown that if some state is transient, then they all are. Assume that there is at least

one null state and at least one ergodi
 state; we shall derive a 
ontradi
tion. This will 
on
lude

the proof.

Assume �rst that there is some null state j with �

j

< 1. Let i be an ergodi
 state. There is

a positive probability that starting in state i in (M; ~�; i), the ba
ko� pro
ess eventually rea
hes

state j and then makes a forward move. Sin
e the expe
ted time in (M; ~�; j) to return to the

sta
k hji is in�nite, it follows that the expe
ted time in (M; ~�; i) to return to hii is in�nite. This


ontradi
ts the assumption that i is ergodi
. Hen
e, for every null state j, we have �

j

= 1.

Let j be an arbitrary state. We shall show that j is ergodi
, a 
ontradi
tion. For ea
h state i,

let h

i

be the expe
ted time to return to the sta
k hii in (M; ~�; i), after starting in state i. Starting

in state j in (M; ~�; j), the expe
ted time to return to the sta
k hji is

X

`

M

j`

(�

`

(2) + (1� �

`

)�

`

(h

`

+ 2) + (1� �

`

)

2

�

`

(2h

`

+ 2) + (1� �

`

)

3

�

`

(3h

`

+ 2) + � � �) (7)

The term M

j`

�

`

(2) represents the situation where the �rst step is to some state ` followed im-

mediately by a ba
kward step. The term M

j`

(1 � �

`

)�

`

(h

`

+ 2) represents the situation where

the �rst step is to some state ` other than j, followed immediately by a forward step, followed

eventually by a return to the sta
k hj; `i, followed immediately by a ba
kward step. The next term

M

j`

(1��

`

)

2

�

`

(2h

`

+2) represents the situation where the �rst step is to some state ` other than j,

followed immediately by a forward step, followed eventually by a return to the sta
k hj; `i, followed

immediately by a forward step, followed eventually by another return to the sta
k hj; `i, followed

immediately by a ba
kward step. The pattern 
ontinues in the obvious way.
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The 
ontribution to the sum by null states ` is �nite, sin
e �

`

= 1 for ea
h null state `. Let

z

`

= h

`

+ 2. Then

(1� �

`

)�

`

(h

`

+ 2) + (1� �

`

)

2

�

`

(2h

`

+ 2) + (1� �

`

)

3

�

`

(3h

`

+ 2) + � � �

is bounded above by

(1� �

`

)�

`

(z

`

) + (1� �

`

)

2

�

`

(2z

`

) + (1� �

`

)

3

�

`

(3z

`

) + � � �

This is bounded, sin
e

(1� �

`

) + (1� �

`

)

2

(2) + (1� �

`

)

3

(3) + � � � = (1� �

`

)=(�

`

)

2

:

Therefore, the expression (7), the expe
ted time to return to the sta
k hji, is �nite, so j is

ergodi
, as desired.

C.2 Proof of Claim 4.10

Proof [of Claim 4.10℄. It is 
lear by 
onstru
tion that 
 > 0 and thus ~w is admissible. We

now show that ��

~w

is admissible, by arguing that for every k, the 
omponent ��

~w;k

satis�es the


onditions of admissibility.

Case 1: �

k

= 1. In this 
ase the expe
ted 
hange in potential, ��

~w;k

, is �1 �w

k

= 0. (Note this

is admissible for ~� sin
e �

k

= 1.)

Case 2: �

k

= 0. (This in
ludes the 
ase k = j.) In this 
ase, we get the following expression for

the expe
ted 
hange in potential:

��

~w;k

=

X

k

0

M

kk

0

w

k

0

:

Sin
e all summands are nonnegative, it suÆ
es to prove one of them is stri
tly positive. Sin
e

(M; ~�) is irredu
ible, we have that there must be some k

0

su
h that M

kk

0

> 0 and �

k

0

< 1. By the

latter 
ondition and the admissibility of ~w, we get w

k

0

> 0 and thus M

kk

0

w

k

0

> 0. So ��

~w;k

> 0,

as desired.

Case 3: k 6= j, 0 < �

k

< 1. Let k

0

be su
h that M

kk

0

> 0 and d(k

0

; j) = d(k; j) � 1. We know

su
h a state k

0

exists (by de�nition of shortest paths). We have:

��

~w;k

= ��

k




d(k;j)

+ (1� �

k

)

X

l

M

kl




d(l;j)

� ��

k




d(k;j)

+ (1� �

k

)M

kk

0




d(k

0

;j)

= 


d(k

0

;j)

(��

k


 + (1� �

k

)M

kk

0

)

� 


d(k

0

;j)

(��

k


 + (1� �

max

)M

min

)

= 


d(k

0

;j)

(��

k


 + 2
�

max

)

� 


d(k

0

;j)

(��

k


 + 2
�

k

)

= 


d(k

0

;j)

(�

k


)

> 0:

So again, ��

~w;k

> 0, as desired.
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C.3 Proofs for the 
lassi�
ation algorithm

Lemma C.1 For an (M; ~�)-ba
ko� pro
ess, if there exists an admissible ~w s.t ��

~w

is also admis-

sible, then the (M; ~�)-ba
ko� pro
ess is transient.

Proof. We start by showing that the potential �

~w

(su

(su

(��))) has a stri
tly larger expe
tation

than the potential �

~w

(��). This, 
oupled with the fa
t that 
hanges in the potential are always

bounded in magnitude, allow us to apply martingale tail inequalities to the sequen
e f�

~w

(H

t

)g

t

and 
laim that it in
reases linearly with time, with all but an exponentially vanishing probability.

This allows us to prove that with positive probability the walk never returns to the initial history,

thus ruling out the possibility that it is re
urrent. Details below.

Claim C.2 There exists an � > 0 s.t. for all sequen
es H

0

; : : : ;H

t

of positive probability in the

(M; ~�; i)-Markov 
hain,

E [�(H

t+2

)��(H

t

)℄ > �:

Proof. We start by noti
ing that the potential must in
rease (stri
tly) whenever H

t

is the initial

history. This is true, sin
e in this 
ase the ba
ko� pro
ess is not allowed to ba
ko�. Further, by

irredu
ibility, there exists some state j with �

j

< 1 and M

ij

> 0. Thus the expe
ted in
rease in

potential from the initial history is at least �

1

def

=w

j

M

ij

. Let �

2

be the smallest non-zero entry of

��

~w

. We show that the 
laim holds for � = minf�

1

; �

2

g.

Noti
e �rst that both the quantities: E [�(H

t+1

)��(H

t

)℄ and E [�(H

t+2

)� �(H

t+1

)℄ are non-

negative (sin
e ��

~w

is nonnegative). So it suÆ
es to prove that at least one of these quantities

in
reases by at least �. We 
onsider several 
ases:

Case 1: �

top(H

t

)

< 1: In this 
ase E [�(H

t+1

)� �(H

t

)℄ = ��

~w;top(H

t

)

� �

2

, sin
e ��

~w

is

admissible.

Case 2: �

top(H

t

)

= 1 and `(H

t

) > 1: LetH

t

= h�

0

; : : : ; �

l�1

; �

l

i. Note thatH

t+1

= h�

0

; : : : ; �

l�1

i.

Further, note that �

top(H

t+1

)

< 1 (sin
e only the top or bottom of the history 
an be states j with

�

j

= 1). Thus, in this 
ase we have, E [�(H

t+2

)� �(H

t+1

)℄ � �

2

(again using the admissibility of

��

~w

).

Case 3: �

top(H

t

)

= 1 and `(H

t

) � 1: In this 
ase, either H

t

or H

t+1

is the initial history, and in

su
h a 
ase, we have that the expe
ted in
rease in potential is at least �

1

.

Next we apply a martingale tail inequality to 
laim that the probability that the history is the

initial history (or equivalently the potential is zero) grows exponentially small with time.

Claim C.3 There exists 
 <1, � < 1 su
h that for every integer t � 0, the following holds:

Pr[`(H

t

) = 0℄ � 
 � �

t

:

Proof. Sin
e the potential at the start state is zero, and the potential is expe
ted to go up by �

every two time steps, we have that the expe
ted potential at the end of t steps (when t is even) is at

least �t=2. Further noti
e that the sequen
e �

~w

(H

0

);�

~w

(H

2

);�

~w

(H

4

); : : : ; form a sub-martingale,

and that the 
hange in �

~w

(H

t

) is absolutely bounded: j�

~w

(H

t+2

)��

~w

(H

t

)j � 2 �max

i2f1;:::;ng

fw

i

g.

Therefore, we 
an apply a standard tail inequality (Corollary A.5) to show that there exist 
onstants


 <1, � < 1 su
h that

Pr [�

~w

(H

t

) = 0℄ � 
 � �

t

:

The 
laim follows by noti
ing that if the history is the initial history, then the potential is zero.
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We use the 
laim above to noti
e that for any time T , the probability that the (M; ~�; i)-pro
ess

rea
hes the initial history after time T is at most

P

1

t=T


 ��

t

� 
 ��

T

=(1��). Setting T suÆ
iently

large, we get that this quantity is smaller than 1. Thus the probability that the given (M; ~�; i)-

ba
ko� pro
ess returns to the initial history after time T is bounded away from 1, ruling out the

possibility that it is re
urrent.

Lemma C.4 For an (M; ~�)-ba
ko� pro
ess, if there exists an admissible ~w s.t the ve
tor ���

~w

is also admissible, then the (M; ~�)-ba
ko� pro
ess is ergodi
.

Proof. First noti
e that we 
an modify the ve
tor ~w so that it is positive and ��

~w

is negative, as

follows: Let � be the smallest non-zero entry of ���

~w

. For every j s.t. �

j

= 1, set w

0

j

= w

j

+ �=2.

The 
orresponding di�eren
e ve
tor, ��

~w

0

, is at most �=2 larger than ��

~w

in any 
oordinate; and

thus entries that were already negative in ��

~w

remain negative in ��

~w

0

. On the other hand, for

any j su
h that ��

~w;j

was 0 (implying �

j

= 1), the value of ��

~w

0

;j

is �w

0

j

= ��=2. Thus all the

zero entries are now negative.

Hen
eforth we assume, w.l.o.g., that ~w is positive and ��

~w

is negative. Let w

min

denote the

smallest entry of ���

~w

and w

max

denote the largest entry of ~w. At this stage we have that the

expe
ted w-potential always goes down ex
ept when the history is an initial history. Noti
e that

when the history is an initial history, the expe
ted in
rease is potential is at most w

max

. To deal

with initial histories, we de�ne an extended potential.

For a sequen
e H

0

; : : : ;H

t

; : : : of the (M; ~�; i)-Markov 
hain, let N

0

(t) denote the number of

times the initial history o

urs in the sequen
e H

0

; : : : ;H

t�1

. De�ne the extended potential  (t) =

 

H

0

;:::;H

t

;:::

~w

(t) to be

 (t) = �

~w

(H

t

)� (w

max

+ w

min

) �N

0

(t):

By 
onstru
tion, the extended potential of a sequen
e is expe
ted to go down by at at least

w

min

in every step. Thus we have

E[ (t)℄ � �w

min

� t:

Further, the sequen
e  (0); : : : ;  (t); : : : is a super-martingale and the 
hange in one step is abso-

lutely bounded. Thus, by applying a martingale tail inequality (Corollary A.6), we get that for

any � > 0, we �nd that with probability tending to 1, the extended potential after t steps is at most

�(1 � �)w

min

� t. (More formally, 8�; Æ > 0, there exists a time t

0

su
h that for every t � t

0

, the

probability that the extended potential  (t) is greater than �(1��)w

min

� t, is at most Æ.) Sin
e the

�

~w

part of the extended potential is always nonnegative, and ea
h time the sequen
e rea
hes the

initial history, it is redu
ed by at most (w

max

+ w

min

), this implies that a sequen
e with potential

�(1� �)w

min

� t must in
lude at least (1� �)

w

min

w

min

+w

max

� t initial histories.

Assume for 
ontradi
tion that the (M; ~�)-ba
ko� pro
ess is null or transient. Then, the expe
ted

time to return to an initial history is in�nite. Let Y

i

denote the length of the time between the

(i� 1)st and ith visit to the initial history. Using a straightforward appli
ation of the law of large

numbers (Proposition A.9), we �nd that for every Æ and 
 <1 there exists an integer N su
h that

su
h that with probability at least 1� Æ, the �rst N visits to the initial history take more than 
 �N

steps. Setting Æ =

1

2

and 
 = 2 �

w

min

+w

max

(1��)w

min

and t = 
N , we �nd that this 
ontradi
ts the 
on
lusion

of the previous paragraph. We 
on
lude that the (M; ~�)-ba
ko� pro
ess is ergodi
.

De�nition C.5 For a state j, de�ne the revo
ation probability as follows: Pi
k any non-initial

history �� = h�

0

; : : : ; �

l

i with top(��) = j. The revo
ation probability R

j

is the probability that the

(M; ~�; i)-Markov 
hain starting at state �� rea
hes the state ��

0

= h�

0

; : : : ; �

l�1

i. (Noti
e that this

probability is independent of l and �

0

; : : : ; �

l�1

; and thus the quantity is well-de�ned.)
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Before going on to 
hara
terize null pro
esses, we prove a simple proposition that we will need

in the next lemma.

Proposition C.6 If an (M; ~�)-ba
ko� pro
ess is transient, then there exists a state j with revo
a-

tion probability R

j

< 1.

Proof. If every state has revo
ation probability 1, then the �rst step is revoked with probability

1, indi
ating that the walk returns to the origin with probability 1, making it re
urrent.

The 
onverse is also true, but we do not need it, so we do not prove it.

Lemma C.7 For an (M; ~�)-ba
ko� pro
ess, if there exists an admissible ~w s.t the ve
tor ��

~w

=

~

0

then the (M; ~�)-ba
ko� pro
ess is null.

Proof. We �rst de�ne an extended potential as in the proof of Lemma C.4, but we will be a bit

more 
areful. Let � = E [�

~w

(H

1

)� �

~w

(H

0

)℄ be the expe
ted in
rease in potential from the initial

history. (Note � > 0.)

For a sequen
e H

0

; : : : ;H

t

; : : : of the (M; ~�; i)-Markov 
hain, let N

0

(t) denote the number of

o

urren
es of the initial history in time steps 0; : : : ; t� 1, and let the extended potential  (t) be

given by

 (t) = �

~w

(H

t

)� � �N

0

(t):

Noti
e that the extended potential is expe
ted to remain un
hanged at every step of the ba
ko�

pro
ess. Applying a martingale tail inequality again (Corollary A.4) we note that for every Æ > 0,

there exists a 
onstant 
 <1 su
h that the probability that the extended potential  (t) is greater

than 


p

t in absolute value is at most Æ. We will show that for an ergodi
 pro
ess the extended

potential goes down linearly with time, while for a transient pro
ess the extended potential goes up

linearly with time - thus 
on
luding that the given (M; ~�)-ba
ko� pro
ess �ts in neither 
ategory.

Claim C.8 If the (M; ~�)-ba
ko� pro
ess is transient, then there exist 
onstants � > 0 and b s.t.

for every time t, it is the 
ase that

E[ (t)℄ � �t� b:

Proof. Let j be a state with R

j

< 1. Let n be the number of states of the Markov 
hain M .

Noti
e that for ea
h t and ea
h history H

t

, there is a positive probability that there exists a time

t

0

2 [t+1; t+n℄ su
h that top(H

t

0

) = j and the move from H

t

0

�1

to H

t

0

is a forward move. Further,


onditioned on this event there is a positive probability (of 1 � R

j

) that this move to j is never

revoked. Thus in any interval of time of length at least n, there is a positive probability, say 
, that

the (M; ~�; i)-ba
ko� pro
ess makes a move that it never revokes in the future. Thus the expe
ted

number of su
h moves in t steps is 
t=n. Let w

min

be the smallest non-zero entry of ~w. Then the

expe
ted value of �

~w

(H

t

) is at least (
t=n)w

min

.

We now verify that the expe
ted value of � � N

0

(t) is bounded from above. This is an easy


onsequen
e of a well-known property of transient Markov 
hains, whi
h states that the expe
ted

number of returns to the initial state (or any state) is �nite. Let this �nite bound on E[N

0

(t)℄ be

B. Then for every t, we have E[� �N

0

(t)℄ � �B.

Thus the expe
ted extended potential after t steps is at least 
t=n� �B.

Claim C.9 If the (M; ~�)-ba
ko� pro
ess is ergodi
, then there exist 
onstants 
 > 0 and b < 1

su
h that for all t,

E [ (t)℄ � �
t+ b:
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Proof. We �rst argue that the \�� � N

0

(t)" part of the extended potential goes down linearly

with time. Let Y

j

denote the time between the (j � 1)st and jth return to the initial history.

Then the Y

j

's are independently and identi
ally distributed and have a bounded expe
tation, say

T . Then, applying the law of large numbers, we have that there exists a t

0

su
h that for all t � t

0

the probability that the number of visits to the origin in the �rst t time steps is less than t=2T is

at most

1

2

. Thus the expe
ted 
ontribution to the extended potential from this part is bounded

above by �� � (t� t

0

)=(4T ).

It remains to bound the 
ontribution from E[�

~w

(H

t

)℄. Let f(t) denote the smallest nonnegative

index su
h that the history H

t�f(t)

is an initial history. Noti
e then that E[�

~w

(H

t

)℄ is at most

w

max

� E[f(t)℄. We will bound the expe
ted value of f(t). Let F (t) denote this quantity. Let p be

the probability distribution on the return time to an initial history, starting from H

0

. Re
all that

P

i

ip(i) = T . Then F (t) satis�es the relation:

F (t) =

t

X

i=1

p(i)F (t� i) +

1

X

i=t+1

tp(i):

(If the �rst return to the initial history happens at time i and i > t, then f(t) = t, and if i � t

then f(t) = f(t� i).) We use this relation to prove, by indu
tion on t, that: For every � > 0, there

exists a 
onstant a su
h that F (t) � �t + a. Set a su
h that

P

i>a

ip(i) �

�

2

T . The base 
ases of

the indu
tion are with t � a and these easily satisfy the hypothesis, sin
e F (t) � t � a � �t + a.

For t > a, we get:

F (t) =

t

X

i=1

p(i)F (t � i) +

1

X

i=t+1

tp(i)

�

t

X

i=1

p(i)(�(t � i) + a) +

1

X

i=t+1

tp(i)

�

1

X

i=1

p(i)�t�

t

X

i=1

p(i)�i+

1

X

i=1

p(i)a+

1

X

i=t+1

ip(i)

= �t+ a�

1

X

i=1

p(i)�i +

1

X

i=t+1

(1 + �)ip(i)

� �t+ a� �T + (1 + �)(�=2)T

� �t+ a (Using � � 1).

The 
laim now follows by setting � =

�

8T

and b =

� �t

0

8T

+ l.

C.4 Existen
e of Cesaro Limits

In this se
tion we prove that the (M; ~�; i)-ba
ko� pro
ess always 
onverges to a Cesaro limit. The

proofs are di�erent for ea
h 
ase (ergodi
, null and transient), and so we divide the dis
ussion based

on the 
ase.

C.4.1 Ergodi
 
ase

The simplest argument is for the ergodi
 
ase.
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Theorem C.10 If the ba
ko� pro
ess (M; ~�) is ergodi
, then the (M; ~�; i)-ba
ko� pro
ess 
onverges

to a Cesaro limit.

Proof. We gave this proof in Se
tion 4.2.

C.4.2 Transient 
ase

In this se
tion, we 
onsider the transient 
ase (where the Polish matrix is transient).

Theorem C.11 If the (M; ~�)-ba
ko� pro
ess is transient, then the (M; ~�; i)-ba
ko� pro
ess 
on-

verges to a stationary distribution.

Proof. Sin
e the Polish matrix is transient, we know that for ea
h state �� of the Polish matrix

(whi
h is a sta
k of states of the ba
ko� pro
ess) where the top state top(��) has �

top(��)

6= 1, there

is a positive probability, starting in ��, that the top state top(��) is never popped o� of the sta
k.

It is 
lear that this probability depends only on the top state top(��) of the sta
k ��.

When the ba
ko� pro
ess is in a state (with a given sta
k), and that state is never popped o�

of the sta
k (by taking a ba
kedge), then we refer to this (o

urren
e of the) state as irrevo
able.

Te
hni
ally, an irrevo
able state should really be thought of as a pair 
onsisting of the state (of the

ba
ko� pro
ess) and the time, but for 
onvenien
e we shall simply refer to the state itself as being

irrevo
able.

We now de�ne a new matrix, whi
h we 
all the Turkish matrix, whi
h de�nes a Markov 
hain.

Just as with the Polish matrix, the states are again sta
ks of states of the ba
ko� pro
ess, but

the interpretation of the sta
k is di�erent from that of the Polish matrix. In the Turkish matrix,

the sta
k h�

0

; : : : ; �

`

i represents a situation where �

0

is irrevo
able, and where �

1

; : : : ; �

`

are not

irrevo
able. The intuition behind the state h�

0

; : : : ; �

`

i is that the top states of the sta
k of the

Turkish matrix (from �

0

on up) are �

0

; : : : ; �

`

. As with the Polish matrix, the states h�

0

; : : : ; �

`

i of

the Turkish matrix are restri
ted to being the attainable ones: in this 
ase this means (a) �

�

j

6= 1

for 0 � j < `; (b) �

�

j

6= 0 for 1 � j � `; and (
)M

�

i

�

i+1

> 0 for 0 � i < `. There is a subtlety if the

start state i has �

i

= 1, sin
e then the state hii is not rea
hable from any other state, and so we do

not 
onsider it to be a state of the Turkish matrix. One way around this issue is simply to assume

that the start state i has �

i

6= 1. This is an a

eptable assumption, sin
e with probability 1, the

ba
ko� pro
ess will rea
h a state j with �

j

6= 1 in a �nite number of steps, and ignoring a �nite

number of steps has no e�e
t on asymptoti
 probabilities.

We now de�ne the entries of the Turkish matrix T . If �� and ��

0

are states of the Turkish matrix,

then the entry T

����

0

is 0 unless either (a) ��

0

is the result of popping the top element o� of the sta
k

��, (b) ��

0

is the result of pushing one new element onto the sta
k ��, or (
) both �� and ��

0

ea
h


ontain exa
tly one element. The probabilities are those indu
ed by the ba
ko� pro
ess. Thus,

in 
ase (a), if ` � 1, then T

h�

0

;:::;�

`

ih�

0

;:::;�

`�1

i

equals the probability that the ba
ko� pro
ess takes

a ba
kedge from �

`

, given that the last irrevo
able state was �

0

, that the sta
k from �

0

on up

is h�

0

; : : : ; �

`

i, and that the remaining states �

1

; : : : ; �

`�1

on the sta
k are not irrevo
able. That

this 
onditional probability is well-de�ned (and is independent of the time) 
an be seen by writing

Pr [A j B℄ as Pr [A ^B℄ =Pr [B℄. Note that even though this 
onditional probability represents the

probability of taking a ba
kedge from state �

`

, it is not ne
essarily equal to �

�

`

, sin
e the event

of taking the ba
kedge is 
onditioned on other events, su
h as that �

0

is irrevo
able. Similarly, in


ase (b), we have that T

h�

0

;:::;�

`

ih�

0

;:::;�

`+1

i

equals the probability that the ba
ko� pro
ess takes a

forward edge from �

`

to �

`+1

and that �

`+1

is not irrevo
able, given that the last irrevo
able state

was �

0

, that the sta
k from �

0

on up is h�

0

; : : : ; �

`

i, and that the remaining states �

1

; : : : ; �

`

on

x



the sta
k are not irrevo
able. Finally, in 
ase (
) we have that T

h�

0

ih�

0

0

i

equals the probability that

the ba
ko� pro
ess takes a forward edge from to �

0

to �

0

0

and that �

0

0

is irrevo
able, given that �

0

is irrevo
able.

We now show that the Turkish matrix is irredu
ible, aperiodi
, and (most importantly) ergodi
.

We �rst show that it is irredu
ible. We begin by showing that from every state of the Turkish

matrix, it is possible to eventually rea
h ea
h (legal) state h�

0

i with only one element in the sta
k

(by \legal", we mean that �

�

0

6= 1). This is be
ause in the ba
ko� pro
ess, it is possible to

eventually rea
h the state �

0

, be
ause the ba
ko� pro
ess is irredu
ible; further, it is possible that

on
e this state �

0

is rea
hed, it is then irrevo
able. Next, from the state h�

0

i, it is possible to

eventually rea
h ea
h state h�

0

; : : : ; �

`

i with bottom element �

0

. This is be
ause it is possible to

take forward steps from �

0

to �

1

, then to �

2

, ..., and then to �

`

, with ea
h of the states �

1

; �

2

; : : : ; �

`

being non-irrevo
able (they 
an be non-irrevo
able, sin
e it is possible to ba
kup from �

`

to �

`�1

... to �

0

). Combining what we have shown, it follows that the Turkish matrix is irredu
ible.

We now show that the Turkish matrix is aperiodi
. Let i be a state with �

i

6= 1. Sin
e the

ba
ko� pro
ess is aperiodi
, the g
d of the lengths of all paths from i to itself is 1. But every path

from i to itself of length k in the ba
ko� pro
ess gives a path from hii to itself of length k in the

Turkish matrix (where we take the arrival in state i at the end of the path to be an irrevo
able

state). So the Turkish matrix is aperiodi
.

We now show that the Turkish matrix is ergodi
. It is suÆ
ient to show that for some state of

the Turkish matrix, the expe
ted time to return to this state from itself is �nite. We �rst show that

the expe
ted time between irrevo
able states is �nite. Thus, we shall show that the expe
ted time,

starting in an irrevo
able state �

0

in the ba
ko� pro
ess at time t

0

, to rea
h another irrevo
able

state is �nite. Let E

k

be the event that the time to rea
h the next irrevo
able state is at least k

steps (that is, takes pla
e at time t

0

+ k or later). It is suÆ
ient to show that the probability of E

k

is O(�

k

) for some 
onstant � < 1. Assume that the event E

k

holds. There are now two possible


ases. Case 1: There are no further irrevo
able states. In this 
ase the state of the Turkish matrix

is of the form h�

0

; �

1

i in�nitely often with probability 1. Case 2: There is another irrevo
able

state, that o

urs at time t

0

+ k or later. Assume that it o

urs for the �rst time at time t

0

+ k

0

,

where k

0

� k. It is easy to see that the state of the Turkish matrix at time t

0

+ k

0

is of the form

h�

0

; �

1

i. So in both 
ases, there is k

0

� k su
h that after k

0

steps, the size of the sta
k in the Polish

matrix has grown by only one.

Now sin
e the Polish matrix is transient, we see from Se
tion 4.1 that we 
an de�ne a potential

su
h that there is an expe
ted positive in
rease in the potential at ea
h step. So by a submartingale

argument (Corollary A.5), the probability that the size of the sta
k in the Polish matrix has grown

by only one after k

0

> k steps is O(�

k

0

) for some 
onstant � < 1. So the probability of E

k

is O(�

k

),

as desired.

We have shown that the expe
ted time between irrevo
able states is �nite. So starting in h�

0

i,

there is some state �

1

su
h that the expe
ted time to rea
h h�

1

i from h�

0

i is �nite. Continuing,

we see that there is some state �

2

su
h that the expe
ted time to rea
h h�

2

i from h�

1

i is �nite.

Similarly, there is some state �

3

su
h that the expe
ted time to rea
h h�

3

i from h�

2

i is �nite, and

so on. Let n be the number of states in the ba
ko� pro
ess. Then some state � appears at least

twi
e among �

0

; �

1

; : : : ; �

n

. Hen
e, the expe
ted time from h�i to itself in the Turkish matrix is

�nite. This was to be shown.

We have shown that the Turkish matrix is irredu
ible, aperiodi
, and ergodi
. So it has a

steady-state distribution. This gives us a stedy-state distribution in the ba
ko� pro
ess, where the

probability of state i is the sum of the probabilities of the sta
ks in the Turkish matrix with top

state i.
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C.4.3 Null 
ase

I like the use of the work \walk" in this se
tion. Can we make this legal?

In this se
tion we prove the following theorem.

Theorem C.12 The (M; ~�; i) pro
ess has a Cesaro limit if the (M; ~�) pro
ess is null.

The theorem is implied by the lemma below.

Lemma C.13 Let (M; ~�) be null. Let j be any state of M su
h that �

j

< 1. Let ~�

0

be the ve
tor

given by �

0

j

= 1 and �

0

j

0

= �

j

0

otherwise. Then (M; ~�

0

) is ergodi
 and hen
e has a Cesaro limit

distribution. Let i be any state of M . Then the (M; ~�; i) pro
ess has a Cesaro limiting distribution

whi
h is the same as the Cesaro limit distribution of the (M; ~�

0

; j) pro
ess.

Remark: There are some magi
al 
onsequen
es to the above lemma.

Proof. The �rst part of Lemma C.13 
laiming that (M; ~�

0

) is ergodi
, follows from a simple

monotoni
ity argument, proven in Claim C.16. We now move to the more hairy part. For this

part, we 
onsider a walk W of length t of the (M; ~�; i) pro
ess and break it down into a number of

smaller pie
es. This breakdown is a
hieved by a \skeletal de
omposition" as de�ned below.

Fix an (M; ~�; i) walk W with hX

0

; : : : ;X

t

i being the sequen
e of states visited, with auxiliary

sequen
e hS

0

; : : : ; S

t

i and asso
iated history sequen
e hH

0

; : : : ;H

t

i.

For every t

1

� t su
h that S

t

1

="F" (i.e., W makes a forward step at time t

1

), we de�ne a

partition of W into two walks W

0

and W

00

as follows: Let j be the state pushed onto the history

sta
k at time t

1

and let H

t

1

= �� be the history sta
k at time t

1

. Let t

2

> t

1

be the �rst time at

whi
h this history repeats itself (t

2

= t if this event never happens). Consider the sequen
e of time

steps h0; : : : ; t

1

; t

2

+1; : : : ; ti (and the asso
iated sequen
e of states visited and auxiliary sequen
es).

They give a new (M; ~�; i) walk W

0

that has positive probability. On the other hand the sequen
e

of time steps t

1

; t

1

+ 1; : : : ; t

2

de�ne a walk W

00

of an (M; ~�; j) pro
ess, of length t

2

� t

1

, with

initial history being hji. We 
all this partition (W

0

;W

00

) a j-division of the walk W . (Noti
e that

W

0

;W

00

do not suÆ
e to re
over W , and this is �ne by us.) A j-de
omposition of a walk W is an

(unordered) 
olle
tion of walks W

0

; : : : ;W

k

that are obtained by a sequen
e of j-de
ompositions of

W . Spe
i�
ally, W is a j-de
omposition of itself; and if W

0

; : : : ;W

l

is a j-de
omposition of W

0

;

W

l+1

; : : : ;W

k

is a j-de
omposition of W

00

; and W

0

;W

00

is a j-division of W , then W

0

; : : : ;W

k

is a

j-de
omposition of W . If a walk has no non-trivial j-divisions, then it is said to be j-indivisible.

A j-skeletal de
omposition of a walk W is a j-de
omposition W

0

; : : : ;W

k

of W , where ea
h W

l

is j-indivisible. Note that the skeletal de
omposition is unique and independent of the 
hoi
e of

j-divisions. We refer to W

0

; : : : ;W

k

as the skeletons of W . Note that the skeletons 
ome in one of

three 
ategories (assuming j 6= i).

� Initial skeleton: This is a skeleton that has hii as its initial history. Note that there is exa
tly

one su
h skeleton. (If i = j, we say there are no initial skeletons.)

� Closed skeletons: These are the skeletons with hji as their initial and �nal history.

� Open skeletons: These are the skeletons with hji as their initial, but not their �nal history.

Our strategy for analyzing the frequen
y of the o

uren
e of a state j

0

in the walk W is to

de
ompose W into its skeletons and then to examine the relative frequen
y of j

0

in these skeletons.

Roughly we will show that not too mu
h time is spent in the initial and open skeletons; and that the
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distribution of 
losed skeletons ofW is approximated by the distribution of random walks returning

to the initial history in an (M; ~�

0

; j)-ba
ko� pro
ess. But the (M; ~�

0

; j) pro
ess is ergodi
 and thus

the expe
ted time to return to the origin in su
h walks is �nite and thus in a large number of 
losed

j-skeletons, the frequen
y of o

uren
e of j

0


onverges (to its frequen
y in (M; ~�

0

; j)-pro
esses).

Simulation of W .

1. Pi
k an (in�nite) walk W

0

0

from the (M; ~�

0

; i) pro
ess.

2. Pi
k a sequen
e of walks W

0

1

;W

0

2

; : : : ; as follows: For ea
h k, W

0

k

starts at hji and walks

a

ording to (M; ~�

0

; j) and terminates the �rst time it returns to the initial history.

3. We now 
ut and paste from the W

0

i

's to get W as follows:

(a) We initialize W =W

0

0

and t

0

= 0, N = 0.

(b) We iterate the following steps till t

0

� t:

i. Let t

00

be the �rst visit to j o

urring at some time after t

0

in W . Set t

0

= t

00

.

ii. With probability �

j

do nothing, else (with probability 1 � �

j

, set N = N + 1 and

spli
e the walk W at time t

0

and insert the walk W

0

N

into W at this time.

(
) Trun
ate W to its �rst t steps and output it. Further, let W

i

denote the trun
ation of

W

0

i

up to the point to whi
h it is used in W .

The following proposition is easy to verify.

Proposition C.14 W generated as above has exa
tly the same distribution as that of the random

(M; ~�; i)-pro
ess. Further W

0

; : : : ;W

N

give the j-skeletal de
omposition of W .

Let W

0

denote a random walk obtained by starting at hji, walking a

ording to (M; ~�

0

; j) and

stopping the �rst time we rea
h the initial history. Sin
e the (M; ~�

0

; j) pro
ess is ergodi
, the

expe
ted length of W

0

is �nite. Let � denote the expe
tation of the length of the walk W

0

and let

�

j

0

denote the expe
ted number of o

urren
es of the state j

0

in W

0

. Note that �

j

0

=� = �

0

j

0

, where

�

0

denotes the stationary distribution of the (M; ~�

0

; j) pro
ess.

Let a

0

k

denote the number of visits to j

0

in W

0

k

and let b

0

k

denote the length of W

0

k

. Sin
e the

walks W

0

k

(k 2 f1; : : : ; Ng) are 
hosen independently from the same distribution as W

0

, we have

that the expe
tation of a

0

k

is �

j

0

and the expe
tation of b

0

k

is �. Let a

k

denote the number of visits

to j

0

in W

k

and let b

k

denote the length of W

k

. Noti
e our goal is to show that

P

N

k=0

a

k

=

P

N

k=0

b

k

approa
hes �

j

0

with probability tending to 1 as t tends to in�nity. Fix any � > 0. We will enumerate

a number of bad events, argue that ea
h one of them has low probability of o

uren
e and then

argue that if none of them happen, then

(1� �)�

j

0

�

N

X

k=0

a

k

=

N

X

k=0

b

k

� (1 + �)�

j

0

;

1. N is too small: In Claim C.17 we show that this event has low probability. Spe
i�
ally, there

exists a Æ > 0 su
h that for every � > 0 there exists a t

0

su
h that for all t � t

0

, the probability

that N is less that Æt is at most �.

2. W

0

is too long: Claim C.18 shows that for every � > 0, there exists t

1

su
h that for all t � t

1

,

the probability that W

0

is longer than �t is at most �.
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3. There are too many open skeletons: In Claim C.20, we prove that for every �

0

> 0, there exists

an t

2

su
h that if t � t

2

, then the probability that the number of open skeletons is more than

�

0

t is at most �

0

.

4.

P

N

k=1

b

k

is too large: By the law of large numbers, we have that for every � > 0, there exists

N

1

su
h that for all N � N

1

, the probability that

P

N

k=1

b

0

k

� (1 + �)�N is at most �. Using

the fa
t that b

k

� b

0

k

, we obtain the same upper bound on

P

k

b

k

as well.

5.

P

N

k=1

a

k

is too large: As above, we have that we have that for every � > 0, there exists N

2

su
h that for all N � N

2

, the probability that

P

N

k=1

a

k

� (1 + �)�

j

0

N is at most �.

6. (Informally)

P

N

k=1

b

k

is too small: The formal event 
onsidered here is that for some large

subset S � f1; : : : ; Ng, the quantity

P

k2S

b

0

k

turns out to be too small. Using the fa
t that

the b

0

k

's are independently and identi
ally distributed and have �nite mean �, Claim C.21


an be used to show that for every � > 0, there exists an �

1

> 0 and N

3

> 0, su
h that for

all N � N

3

the probability that there exists a subset S � f1; : : : ; Ng of 
ardinality at least

(1 � �

1

)N su
h that

P

k2S

b

0

k

� (1 � �)�N is at most �. Taking S to be the subset of 
losed

skeletons and using the fa
t that for a 
losed skeleton b

k

= b

0

k

, and relying on Item (3), we

get to the informal 
laim here.

7.

P

N

k=1

a

k

is too large: Obtained as above. Spe
i�
ally, for every � > 0, there exists an �

2

> 0

and N

4

> 0, su
h that for allN � N

4

the probability that there exists a subset S � f1; : : : ; Ng

of 
ardinality at least (1� �

2

)N su
h that

P

k2S

b

0

k

� (1� �)�N is at most �.

Given the above 
laims, the lemma may be proved as follows: Let Æ be as in Item (1) above.

Given any �, let � = minf�=7; �=(2 + 1=(�Æ)); �=(2 + 1=(�

j

0

Æ) + �)g. Let �

1

and �

2

be as given

in Items (6) and (7) above and let �

0

= minf�; �

1

Æ; �

2

Æg. For these 
hoi
es of � and �

0

, let

t

0

; t

1

; t

2

; N

1

; N

2

; N

3

; N

4

be as given in Items (1)-(7) and let t � maxft

0

; t

1

; t

2

;

1

Æ

N

1

;

1

Æ

N

2

;

1

Æ

N

3

;

1

Æ

N

4

g.

Then sin
e t is large enough, we have that for any of Items (1), (2), or (3) the probability of the

bad event listed there happens is at most �. If the bad event of Item (1) does not o

ur, then

N � fN

1

; N

2

; N

3

; N

4

g and thus the probability of any of the bad events list in Items (3)-(7) is at

most �. Summing over all bad events, we have the probability that no bad events happens is at

least 1� 7� � 1 � �. We now reason that if none of these events happen then

P

N

k=0

a

k

P

N

k=0

b

k

is between

(1 � �)�

0

j

0

and (1 + �)�

0

j

0

. We show the lower upper bound. The upper bound is similar. We �rst

upper bound

P

N

k=0

b

k

by Items (2) and (4). By Item (2) b

0

� �t �

�

Æ

N (where the se
ond inequality

uses Item (1).) By Item (4)

P

N

k=1

b

k

� (1 + �)�N and thus we have

N

X

k=0

b

k

� (1 + �+ �=(�Æ))�N:

Next to lower bound

P

N

k=0

a

k

, we use Item (3) to 
on
lude that the number of 
losed skeletons is

at least N � �

0

t � N � (�

0

=Æ)N � (1� �

2

)N . Let S denote the 
olle
tion of 
losed skeletons. Thus,

we have

N

X

k=0

a

k

�

X

k2S

a

k

=

X

k2S

a

0

k

� (1� �)�

j

0

N:

Putting the above together, we get

P

N

k=0

a

k

P

N

k=0

b

k

�

1� �

1 + �+ �=(�Æ)

�

j

0

�

� (1� �)�

0

j

0

;
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as desired. (The �nal inequality above uses �

0

j

0

= �

j

0

=� and � � �=(2+1=(�Æ)).) The upper bound

follows similarly, using the inequality � � �=(2 + 1=(�

j

0

Æ) + �). This 
on
ludes the proof of the

lemma, modulo Claims C.16-C.21.

For the following 
laims, letH denote the Hungarian matrix 
orresponding to the (M; ~�) pro
ess

and let H

0

denote the Hungarian matrix 
orresponding to the (M; ~�

0

) pro
ess. For a non-negative

matrix A, let �(A) denote its maximal eigenvalue. For n � n matri
es A and B, say A < B if

A

ik

� B

ik

for every i; k and there exists i, k su
h that A

ik

< B

ik

. Claim C.16 will use the following

simple 
laim.

Claim C.15 If A and B are n � n irredu
ible non-negative matri
es su
h that A < B, then

�(A) < �(B).

Proof. Noti
e �rst that it suÆ
es to prove that �(I +A) < �(I +B), sin
e �(I +M) = 1 + �(M).

Similarly it suÆ
es to prove that for some postive integer k. �((I + A)

k

) = �((I + B)

k

), sin
e

�(M

k

) = �(M)

k

. We will do so for k = 2n� 1. Let C = (I +A)

2n�1

and D = (I +B)

2n�1

.

We �rst show that for every pair i; j, C

ij

< D

ij

. Noti
e that the i; jth entry of a matrixM

k

has

the following 
ombinatorial interpretation: It 
ounts the sum of the weights of all walks of length k

between i and j where the weights of a walk is the produ
t of the weight of the edges it takes, and

the weight of an edge (u; v) is M

uv

. Thus we wish to show that for every i; j, there exists a walk

P from i to j of length 2n� 1 su
h that its weight under I +A is less than its weight under j. Let

A

lm

< B

lm

. By irredu
ibility of A we know there exists a path from i to l of positive weight and by

taking enough self-loops this 
an be 
onverted into a path P

1

of length exa
tly n� 1 with positive

weight in (I +A). The path has at least the same weight in I +B. Similarly we 
an �nd a path P

2

of positive weight in I +A from m to j of length exa
tly n� 1. Now the path P

1

Æ (l;m) Æ P

2

has

positive weight in both I +A and I +B and has stri
tly larger weight in I +B sin
e B

lm

> A

lm

.

Thus we �nd that C

ij

< D

ij

, for every pair i; j.

Now we use the properties of the maximal eigenvalue to show that �(C) < �(D). Noti
e that

�(C) = max

~x

min

i2f1;:::;ng

�

(C~x)

i

(~x)

i

�

:

Pi
k ~x that maximizes the right hand side above and now 
onsider

�(D) = max

~y

min

i2f1;:::;ng

�

(D~y)

i

(~y)

i

�

� min

i2f1;:::;ng

�

(D~x)

i

(~x)

i

�

> min

i2f1;:::;ng

�

(C~x)

i

(~x)

i

�

(Sin
e D

ij

> C

ij

and ~x 6= 0).

= �(C)(By our 
hoi
e of ~x.)

We are now ready to prove that the (M; ~�

0

) pro
ess is ergodi
.

Claim C.16 Let (M; ~�) be irredu
ible and null. Let j be a state su
h that �

j

< 1. Let ~�

0

be the

ve
tor obtained by setting �

0

j

0

= �

j

0

if j

0

6= j and �

0

j

> �

j

. Then (M; ~�

0

) is ergodi
 (though it may

not be irredu
ible).
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Proof. We �rst fo
us on the 
ase �

0

j

< 1. In this 
ase, we observe that (M; ~�

0

) is also irredu
ible.

For this part, we use the proof of Theorem 4.2 to rephrase this question in terms of the maximal

eigenvalues of the 
orresponding Hungarian matri
es. In parti
ular, we have �(H) = 1 and we need

�(H

0

) < �(H) = 1.

Note that for every k; l, we have

H

0

kl

= (1� �

0

k

)M

kl

�

0�1

l

� (1� �

0

k

)M

kl

�

�1

l

� (1� �

k

)M

kl

�

�1

l

= H

kl

Further, the �rst inequality is stri
t if l = j and M

kj

6= 0 (and su
h a k does exist, by the

irredu
ibility of M). Using Claim C.15 we now have �(H

0

) < �(H) = 1. and thus we have shown

the desired result for the 
ase �

0

j

< 1.

For the 
ase �

0

j

= 1, we �rst use the �rst part shown above to show that the (M; ~�

00

) pro
ess,

where �

j

< �

00

j

< 1 (and �

00

j

0

= �

j

0

for other j

0

), is ergodi
. Thus it suÆ
es to prove that (M; ~�

0

)

is ergodi
, given that (M; ~�

00

) is ergodi
. However, sin
e we may not have irredu
ibility, we need

to argue this individually for every (M; ~�

0

; i) pro
ess. We will do so by arguing that the expe
ted

return time of an (M; ~�

0

; i) pro
ess (to its initial history) is �nite. We use the fa
t that the expe
ted

return time of the (M; ~�

00

; i) pro
ess is �nite.

Given a walk W of the (M; ~�

00

; i) pro
ess, let I(W ) denote the initial skeleton W

0

in the j-

skeletal de
omposition of W . Let S(W

0

) denote the set of walks W su
h that I(W ) = W

0

. Let

p(W ) denote the probability of the walk W in the (M; ~�

00

; i) pro
ess; and let p

0

(W

0

) denote the

probability of the walk W

0

in the (M; ~�

0

; i) pro
ess. Noti
e that

P

W2S(W

0

)

p(W ) = p

0

(W

0

) and

the length of W

0

is at most the length of W for every W 2 S(W

0

). Putting these together, we

�nd the expe
ted length of W

0

in the (M; ~�

0

; i) pro
ess is at most the expe
ted length of W in the

(M; ~�

00

; i) pro
ess.

The next 
laim shows that N , the number of skeletons in a walk of length t, grows linearly in t.

Claim C.17 There exists a Æ > 0, su
h that for every � > 0 there exists a t

0

su
h that for all

t � t

0

, the probability that N is less than Æt is at most �.

Proof. Noti
e that the number of skeletons is lower bounded by the number of times j is pushed

on to the history sta
k in the walk W . We lower bound this quantity by using the fa
t that in any

sequen
e of n steps (where n is the size of the Markov 
hain M), there is a positive probability �

of pushing j onto the history sta
k in the next n steps. Thus the expe
ted number of times j is

pushed onto the history in t steps is at least �(t=n). Applying the law of large numbers, we get

that the there exists t

0

s.t. if t � t

0

, then the probability that j is pushed on the sta
k fewer than

1

2

�(t=n) times is at most �. The 
laim follows with Æ =

�

2n

.

Next we argue that the initial skeleton is not too long.

Claim C.18 For every � > 0, there exists a time t

1

su
h that for all time t > t

1

,

Pr[ Length of W

0

> �t℄ < �:
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Proof. We prove the 
laim in two steps. First we note that in a walk of length t, with high

probability, the (null) (M; ~�; i) pro
ess returns to the initial history o(t) times. Note that the

expe
ted time to return to the initial history is in�nite. Thus we get:

Sub 
laim 1: For every �

0

> 0, there exists a time t

0

1

su
h that for all t > t

0

1

, the probability that

an (M; ~�; i) walk of length t returns to the initial history more than �

0

t times is at most �

0

.

We then note that o(t) returns to the initial history of the (ergodi
) (M; ~�

0

; i) pro
ess are

unlikely to take �t time steps.

Sub 
laim 2: Let T be the expe
ted return time to the initial history in the (M; ~�

0

; i) pro
ess.

(Note T <1.) Then, for every �

00

, there exists an N

0

su
h that if N � N

0

and N

0

� N , then the

probability that N

0

returns to the origin take more than 2NT steps is at most �

00

.

>From the two sub-
laims, we get the 
laim as follows: Set �

00

= �=2 and �

0

= minf�=2; �=(2T )g.

Now let N

0

and T be as in Sub 
laim 2 and let t

0

= maxft

0

0

;

2N

0

T

�

g. Given t � t

0

, let N = (�t)=(2T ).

Noti
e N � N

0

. Let N

0

denote the number of returns to the initial history in W . Applying Sub


laim 1 with �

0

we get that probability that the number of returns to the initial history is more than

N is at most �

0

� �=2. Now applying Sub 
laim 2 with parameter �

00

, we get that the probability of

N returns to the origin taking more that 2NT = �t steps is at most �

00

= �=2. Thus the probability

that any of bad events listed in the Sub 
laims above o

ur is at most �, and if neither o

urs, then

the length of the initial skeleton is at most �t.

Next we show that not too many skeletons are open. We do it in two 
laims.

Claim C.19 If (M; ~�; i) is null, and ~w is a weight ve
tor as guaranteed to exist by Lemma 4.9,

then the ~w-potential �

~w

(H

t

) is expe
ted to grow as o(t).

Proof. Re
all the extended potential used in Lemma C.4 was expe
ted to be 0 after t steps.

Further, by Sub 
laim 1 of Claim C.18, the number of returns to the initial history is at most �

0

t,

with probability all but �

0

. Thus the expe
ted number of returns to the origin is at most 2�

0

t. Thus

the expe
ted value of �

~w

(H

t

) is also at most 2�

0

t.

Claim C.20 For every � > 0, there exists a t

2

su
h that for all t � t

2

. the probability that more

than �t of the skeletons W

1

; : : : ;W

N

are open is at most �.

Proof. Consider the event E that the history H

t


ontains more than �t o

uren
es of the state

j. We wish to show that the probability that E o

urs is at most �. Assume E o

urs with

probability at least �. Let ~w be the weight ve
tor as shown to exist in Lemma 4.9, and let �

~w

(H

t

)

be the potential of the historyH

t

. Noti
e that if E o

urs, then the potential �

~w

(H

t

) is at least w

j

�t.

Sin
e E happens with probability at least �, we have that the expe
ted potential, E[�(H

t

)℄ � �

2

w

j

t,

i.e., it is growing linearly in t. But this 
ontradi
ts the previous 
laim.

Finally we 
on
lude with a te
hni
al 
laim showing that large subsets of f1; : : : ; Ng 
an not

have a small sum.

Lemma C.21 For every distribution D on non-negative integers with �nite expe
tation �, and

every � > 0, there exists an �

1

> 0 and N

3

> 0, su
h that su
h that for all N � N

3

, if X

1

; : : : ;X

N

are N samples drawn i.i.d. from D, then

Pr

"

8S � [N ℄; jSj � (1� �

1

)N;

X

i2S

X

i

� (1� �)�N

#

� 1� �:
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Proof. We will pi
k � su
h that with high probability the �N -th largest element of X

1

; : : : ;X

N

is greater than or equal to � . We will then sum only those elements in the X

i

's whose value is at

most � and this will give a lower bound on

P

i2S

X

i

.

Let p(j) be the probability given to j by D. Let �

k

=

P

j�k

jp(j). Noti
e �

k

's 
onverge to �.

Let � be su
h that � � �

k

� (�=2)�. Let T (X) = X if X � � and 0 otherwise. Noti
e that for

X drawn from D, we have E[T (X)℄ � (1 � �=2)� (by de�nition of �). Thus by the law of large

numbers we have that there exists an N

0

3

su
h that for all N � N

0

3

, the following holds.

Pr

"

N

X

i=1

T (X

i

) � (1� �)N�

#

� �=2: (8)

Now set �

1

=

P

j>�

p(j)=2. Then the probability that X has value at least � is at least 2�

1

.

Thus, applying the law of large numbers again, we �nd that there exists an N

00

3

s.t. for all N � N

00

3

,

the following holds:

Pr [jfijX

i

� �gj < �

1

N ℄ � �=2: (9)

Thus, for N

3

= maxfN

0

3

; N

00

3

g and any N � N

3

, we have that with probability at least 1 � �

neither of the events mentioned in (8) or (9) o

ur. In su
h a 
ase, 
onsider any set S of 
ardinality

at least (1� �

1

)N , and let S

0

be the set of the (1� �

1

)N smallest X

i

's. We have

X

i2S

X

i

�

X

i2S

0

X

i

�

N

X

i=1

T (X

i

)

� (1� �)N�:

This proves the 
laim.

C.5 Computing Cesaro Limits in the Transient Case

Lemma C.22 Let the entries of M and ~� be l-bit rationals des
ribing a transient (M; ~�)-pre
ess

and let � be its stationary probability ve
tor. For every � > 0, there exists � > 0, with log

1

�

=

poly(n; l; log

1

�

), su
h that given any ve
tor ~r

0

of l

0

-bit rationals satisfying k~r

0

� ~rk

1

� �, a ve
tor

�

0

satisfying k�

0

� �k

1

� � 
an be found in time poly(n; l; l

0

; log

1

�

).

Proof. Let ~r

0

be su
h that k~r

0

� ~rk

1

� � (where � will be spe
i�ed later). We will assume

(without loss of generality) that for every i, r

0

i

� r

i

.

Let D, D

�

and X be as in the proof of Lemma 4.13. De�ne D

0

, D

0

�

and X

0

analogously. I.e.,

D

0

is the matrix given by

D

0

ij

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

0

k

;

and D

0


an be des
ribed as

D

0

=

"

D

0

�

X

0

0 0

#

;

where D

0

�

is irredu
ible. Noti
e �rst that X

0

= X, sin
e for any pair i; j s.t. �

j

= 1, D

ij

= D

0

ij

=

M

ij

(1� �

i

). Re
all our goal is to approximate the maximal left eigenve
tor � of D, s.t. k�k

1

= 1.

Write � =

1

1+l

B

[�

A

�

B

℄, where �

A

is a left eigenve
tor of D

�

with k�

A

k

1

= 1, �

B

= �

A

X and l

B

=
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k�

B

k

1

. We will show how to 
ompute �

0

A

; �

0

B

su
h that that k�

0

A

k

1

= 1, k�

0

A

� �

A

k

1

� �=(n+ 1)

and k�

0

B

� �

B

k

1

� �=(n+ 1). It follows then that if we set �

0

=

1

1+

k

�

0

B

k

1

[�

0

A

�

0

B

℄, then







�

0

� �







1

�

1

1 + l

B

maxf







�

0

A

� �

A







1

;







�

0

B

� �

B







1

g+ jl

B

�







�

0

B







1

j

�

�

n+ 1

+ j







�

0

B

� �

B







1

j

� �

as desired.

Further, if �

0

A

is any ve
tor su
h that k�

0

A

� �

A

k

1

�

�

n(n+1)

, then a �

0

B

satisfying k�

0

B

� �

B

k

1

�

�=(n + 1) 
an be obtained by setting �

0

B

= �

0

A

X. (Noti
e that max

ij

fX

ij

g � 1 and thus j(�

0

B

)

j

�

(�

B

)

j

j �

P

i

X

ij

j(�

0

A

)

i

� (�

A

)

i

j � n

�

n(n+1)

.)

Thus, below we show how to �nd �

0

A

that 
losely approximates �

A

, spe
i�
ally satisfying

k�

0

A

� �

A

k

1

� �=(n(n + 1)). Noti
e that this amounts to �nding a left eigenve
tor of the ma-

trix D. We will show how to approximate this using the matrix D

0

.

We �rst show that the entries of D

0

are 
lose to those of D, using the fa
t that jr

0

k

� r

k

j � �.

Assume, for notational simpli
ity, that r

0

k

� r

k

. Note that

D

0

ij

�D

ij

=

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

0

k

�

(1� �

i

)M

ij

1� (1� �

j

)

P

k

M

jk

r

k

= (1� �

i

)M

ij

(1� �

j

)

P

k

M

jk

(r

0

k

� r

k

)

�

1� (1� �

j

)

P

k

M

jk

r

0

k

�

(1� (1� �

j

)

P

k

M

jk

r

k

)

�

�

(1� (1� �

j

)

P

k

M

jk

r

k

)

2

:

Thus to upper bound this di�eren
e, we need an lower bound on the quantity 1�(1��

j

)

P

k

M

jk

r

k

.

If �

j

6= 0, then this quantity is at least �

j

� 2

�l

. Now 
onsider the 
ase where �

j

= 0. In su
h a


ase, for any k, either �

k

= r

k

= 1, or �

k

< 1 and in su
h a 
ase, we 
laim r

k

� 1 � 2

�2nl

. This

is true, sin
e the (M;�)-pro
ess is irredu
ible and hen
e there is a path 
onsisting only of forward

moves that goes from k to j, and this path has probability at least 2

�2nl

, and on
e we push j onto

the history sta
k, it will never be revoked. Further, by the irredu
ibility of the (M; ~�) pro
ess,

we have that there must exist a k su
h that M

jk

> 0 and r

k

� 1 � 2

�2nl

. Using M

jk

� 2

�l

and

substituting, we get that the quantity 1� (1� �

j

)

P

k

M

jk

r

k

is lower bounded by 2

�(2n+1)l

. Thus

we 
on
lude that

jD

0

ij

�D

ij

j � 2

(4n+2)l

�:

Next 
onsider the matrix B =

�

1

2

(I +D

�

)

�

n

. Noti
e that B has a (maximal) eigenvalue of

1, with a left eigenve
tor �

A

. We 
laim B is positive, with ea
h entry being at least 2

�(2l+1)n

.

To see this, �rst note that every non-zero entry of D

�

is at least 2

�2l

. Next 
onsider a sequen
e

i

0

= i; i

1

; i

2

; : : : ; i

l

= j of length at most n satisfying D

i

k

;i

k+1

> 0. Su
h a sequen
e does exist sin
e

D

�

is irredu
ible. Further B

ij

is at least 2

�n

Q

k

D

i

k

i

k+1

whi
h is at least 2

�n(l+1)

. Thus B is a

positive matrix and we are interested in 
omputing its left eigenve
tor. Lemma C.23 shows how

this may be 
omputed given a 
lose approximation to the matrix B.

Next we show that B

0

=

�

1

2

(I +D

0

�

)

�

n

is a 
lose enough approximation to B. Note that sin
e

max

ij

jD

ij

� D

0

ij

j � 2

(4n+2)l

�, we have max

ij

jB

0

ij

� B

ij

j � (1 + 2

(4n+2)l

�)

n

� 1), whi
h may be

bounded from above by (2

n

� 2

(4n+2)l

)� provided � � 2

�(4n+2)l

.

xix



Now let �

0

A

be any ve
tor satisfying k�

0

A

� �

0

A

B

0

k

1

� 2

n+l(4n+2)

� and k�

0

A

k

1

= 1. (Su
h a

ve
tor does exist. In parti
ular, �

A

satis�es this 
ondition. Further, su
h a ve
tor 
an be found

by linear programming.) Applying Lemma C.23 to B

T

; (B

0

)

T

; �

A

and �

0

A

with 
 = 2

�n(l+1)

,

� = Æ = 2

n+l(4n+2)

� yields k�

0

A

� �

A

k

1

�

p

�2

O(nl)

. Thus setting � = �

2

=2

�
(nl)

suÆ
es to get �

0

A

to be an �=(n(n+ 1)) 
lose approximation to �

A

. This 
on
ludes the proof.

Lemma C.23 Let B;C be n�n matri
es and x̂; ŷ be n-dimensional ve
tors satisfying the following


onditions:

1. For every i; j, B

ij

� 
 > 0, further �(B) = 1.

2. For every i; j, jC

ij

�B

ij

j < Æ.

3. kx̂k

1

= 1 and Bx̂ = x̂.

4. kŷk

1

= 1 and kCŷ � ŷk

1

� �.

Then kx̂� ŷk

1

� (1 +

p

n)

r

2(�

p

n+Æ)




3

n

.

Proof. We �rst 
onvert the statement above into one about `

2

norms. Let x =

x̂

kx̂k

2

and y =

ŷ

kŷk

2

.

Noti
e that

kCy � yk

2

�

p

nkCy � yk

1

=

p

n

kŷk

2

kCŷ � ŷk

1

�

p

n

kŷk

2

� � �

p

n:

Thus applying Claim C.24 with �

0

= �

p

n yields that kx� yk

2

�

r

2(�

p

n+Æ)




3

n

. Now applying

Claim C.25 to the ve
tors x and y and noti
ing x̂ =

x

kxk

1

and ŷ =

y

kyk

1

gives the desired bound.

Claim C.24 Let B;C be n�n matri
es and x; y be n-dimensional ve
tors satisfying the following


onditions:

1. For every i; j, B

ij

� 
 > 0; and further �(B) = 1.

2. For every i; j, jC

ij

�B

ij

j < Æ.

3. kxk

2

= 1 and Bx = x.

4. kyk

2

= 1 and kCy � yk

2

� �

0

.

Then kx� yk

2

�

q

2(�

0

+Æ)




3

n

.

Proof. Note that B is positive and sin
e x is a non-negative eigenve
tor, 1 is a maximal eigenvalue

of B. This fa
t is often used below.

Roughly the proof uses standard numeri
al analysis methods and impli
itly goes through the

following steps: (1) Argues that the maximal right eigenve
tor x and the maximal left eigenve
tor,

say z, of the matrix B have a large inner produ
t. (2) Use this to argue that the se
ond eigenvalue

of B is small. (3) Resolve the ve
tor y into two 
omponents, one parallel to x and the other

orthogonal to z, and argue, using the se
ond eignevalue of B, that the 
omponent orthogonal to

z is small. (4) Argue that y and x must be 
lose, if the 
omponent of y orthogonal to z is small.

Details below.
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1. kBy � yk

2

� (�

0

+ Æ): (This will get rid of C is all future steps.) Let B = C +�. Noti
e that

j�

ij

j � Æ.

kBy � yk

2

= kCy +�y � yk

2

� kCy � yk

2

+ k�yk

2

� �

0

+ Ækyk

2

= �

0

+ Æ

2. Let z be the left maximal eigenve
tor of B, with kzk

2

= 1. Then z

T

x � 


2

n: We argue this

by arguing that every 
oordinate of z and x is at least 
. Consider x

i

, the ith 
oordinate of

x. Let v

i

be the ith row of B. Note every 
oordinate of v

i

is at least 
 and x

i

= v

T

i

x. Thus

x

i

� 
kxk

1

� 
. Similarly we 
an argue z

i

� 
. Thus z

T

x � 


2

n as desired.

3. Let L =

1

z

T

x

xz

T

, � < 


3

n, and B

0

= B��L. Then B

0

> 0 and has a maximal eigenvalue equal

to 1� �.

To see that B

0

is positive, �rst noti
e that every entry of xz

T

is at most 1, sin
e kxk

2

; kzk

2

� 1.

Next we have that any entry of �L is at most

�




2

n

< 
 sin
e z

T

x is at least 


2

n. Sin
e every

entry of B is at least 
, the 
laim on the positivity of B

0

follows.

Next we noti
e that x is a non-negative eigenve
tor of B

0

with eigenvalue 1� �, sin
e B

0

x =

Bx �

�

z

T

x

(xz

T

)x = x �

�

z

T

x

x(z

T

x) = x �

�

x

= (1 � �)x. This step follows by the Perron-

Frobenius theorem (Theorem A.1) whi
h says that 1 � � is the unique maximal eigenvalue

of B

0

.

4. Let y = y

k

x

+ y

?

z

, where y

k

x

=

y

T

z

x

T

z

x. Then










y

?

z










2

�

�

0

+Æ




3

n

.

Noti
e that the 
hoi
e of the ve
tor y

k

x

makes y

k

x

parallel to x and y

?

z

orthogonal to z. For

the latter, noti
e

(y

?

z

)

T

z = y

T

z � (y

k

x

)

T

z = y

T

z �

y

T

z

x

t

z

x

T

z = 0:

We use this fa
t, or a
tually the equivalent fa
t z

T

y

?

z

= 0 to bound










y

?

z










2

below. First we

note that:

By � y = B(y

k

x

+ y

?

z

)� (y

k

x

+ y

?

z

)

= (By

k

x

� y

k

x

) + (By

?

z

� y

?

z

)

=

y

T

z

x

T

z

(Bx� x) + (By

?

z

� y

?

z

)

= By

?

z

� y

?

z

= (B

0

+ �L)y

?

z

� y

?

z

= (B

0

y

?

z

� y

?

z

) +

�

z

T

x

xz

T

y

?

z

= (B

0

y

?

z

� y

?

z

)

We now use the fa
t that kB

0

vk

2

� �(B

0

)kvk

2

for l every ve
tor v, and �(B

0

) = 1�� to 
laim

that










B

0

y

?

z










2

� (1� �)










y

?

z










2

. Thus

�

0

+ Æ � ky �Byk

2

=










y

?

z

�B

0

y

?

z










2

�










y

?

z










2

�










B

0

y

?

z










2

� (1� (1� �))










y

?

z










2

= �










y

?

z










2

:

This step follows by noti
ing � 
an be any real number smaller than 


3

n.

xxi



5. ky � xk

2

�

q

2(�

0

+Æ)




3

n

:

The 
ru
ial observation underlying this step is that the length of the proje
tion of y on the

dire
tion orthogonal to x is no larger than ve
tor y above. Note that the proje
tion of y onto

the dire
tion orthogonal to x is given by y � (x

T

y)x. We noti
e

y � (x

T

y)x = (y

k

x

+ y

?

z

)� (x

T

(y

k

x

+ y

?

z

))x

= (y

k

x

� (x

T

y

k

x

)x) + (y

?

z

� (x

T

y

?

z

)x)

= (y

k

x

� y

k

x

) + (y

?

z

� (x

T

y

?

z

)x)

= y

?

z

� (x

T

y

?

z

)x;

Thus










y � (x

T

y)x










2

=










y

?

z

� (x

T

y

?

z

)x










2

�










y

?

z










2

�

�

0

+ Æ




3

n

;

where the �rst inequality uses the fa
t that the proje
tion of any ve
tor v onto a dire
tion

orthogonal to a unit ve
tor u has length less than the length of v.

Applying triangle inequality to the LHS above, we get

kyk

2

� (x

T

y)kxk

2

: �

�

0

+ Æ




3

n

:

Using kxk

2

= kyk

2

= 1, we get

(x

T

y) � 1�

�

0

+ Æ




3

n

:

Now using the fa
t that ky � xk

2

=

q

2� 2(x

T

y), we get ky � xk

2

�

q

2(�

0

+Æ)




3

n

.

This 
on
ludes the proof of the 
laim.

Claim C.25 Let x; y 2 <

n

satisfy kxk

2

; kyk

2

= 1 and kx� yk

2

� Æ. Then










x

kxk

1

�

y

kyk

1










1

�

Æ(1 +

p

n).

Proof. First we observe kx� yk

1

�

p

nkx� yk

2

� Æ

p

n. Similarly, kx� yk

1

� kx� yk

2

� Æ.

Finally, kxk

1

; kyk

1

� 1 and kyk

1

� 1. The 
laim now follows from the following sequen
e of

inequalities.
















x

kxk

1

�

y

kyk

1
















1

�
















x

kxk

1

�

y

kxk

1
















1

+
















y

kxk

1

�

y

kyk

1
















1

�

1

kxk

1

kx� yk

1

+

�

�

�

�

�

1

kxk

1

�

1

kyk

1

�

�

�

�

�

kyk

1

� Æ +

�

�

�

�

�

kxk

1

� kyk

1

kxk

1

kyk

1

�

�

�

�

�

� Æ(1 +

p

n):
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