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Abstract

Suppose someone gives us an extremely fast program P that we can call as a black box
to compute a function f � Should we trust that P works correctly� A self�testing�correcting
pair for f allows us to� ��� estimate the probability that P �x� �� f�x� when x is randomly
chosen	 �
� on any input x� compute f�x� correctly as long as P is not too faulty on average�
Furthermore� both ��� and �
� take time only slightly more than the original running time of
P �

We present general techniques for constructing simple to program self�testing
correcting
pairs for a variety of numerical functions� including integer multiplication� modular multi�
plication� matrix multiplication� inverting matrices� computing the determinant of a matrix�
computing the rank of a matrix� integer division� modular exponentiation and polynomial
multiplication�

� Introduction

Consider the task of writing a program P to evaluate a function f � One of the main di�culties is
that when P is implemented it is di�cult to verify that P �x� � f�x� for all inputs x� There are
two traditional approaches to this problem� program veri�cation and program testing� Program
veri�cation has had fairly limited success because even relatively simple programs are hard to prove
correct� Furthermore� even if the proof is correct it only makes a statement about the program
as it is written on paper� not about the compiled code nor about the hardware on which it runs�
Traditional testing has two drawbacks� First� the test inputs typically do not cover all inputs
encountered when the program is actually used� and thus on a particular input the user has no
guarantee that the program output is correct� Second� often during testing another program P �

is used to compute f to compare against the answer of P � and thus there is a reliance on the
correctness of another program P � that is in no quanti�able way di	erent than the program P it
is being used to test�
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The theory of result checking� introduced in �
�� Blum
� provides an attractive supplement to
traditional approaches for verifying that a program is correct �see also �
�� Blum Kannan
� �

�
Blum Raghavan
� ���� Kannan
�� Informally� the idea is to write a very simple program C� called
the result checker� which is to be run in conjunction with P to verify that P �x� � f�x� in the
following sense� If P is correct for all inputs �and thus also P �x� � f�x�� then the result checker
outputs �PASS�� but if P �x� �� f�x� then the result checker outputs �FAIL��� The result checker
C may call P on inputs other than x� but it may only access P as a black box� and does not have
access to the program code of P � The result checker C is written for a speci�c function f � but C
must work for all programs P that purport to compute f �

��� Self�Testing�Correcting

Although a result checker can be used to verify whether P �x� � f�x�� it does not give a method for
computing the correct answer in the case that P is found to be faulty� In this paper�� we introduce
the theory of self�testing�correcting� which is an extension of the theory of result checkers that
is meant to address this issue� Intuitively� a probabilistic program Tf is a self�tester for f if� for
any program P that supposedly computes f � Tf can make calls to P to estimate the probability
that P �x� �� f�x� for a random input x� We call this probability the error probability of P �
A probabilistic program Cf is a self�corrector for f if� for any program P such that the error
probability of P is su�ciently low� for any input x� Cf can make calls to P to compute f�x�
correctly� Thus� the advantage of self�testing�correcting over result checkers is that on a given
input x a result checker only veri�es that P �x� � f�x�� whereas a self�corrector can be used to
compute f�x� correctly making calls to P � even in the case when P �x� �� f�x�� as long as P is
veri�ed to be correct for most inputs using the self�tester�

The question remains� how to verify that the self�testing�correcting pair meets its speci�cations�
Although there is no �nal answer to this question� there are some partial answers� First� it has
been our experience that the code for the self�testing�correcting pairs we have designed is often
much simpler than reasonably fast programs for computing f directly� and is therefore more likely
to be correct on these grounds alone� Moreover� a lot of time can be spent in the design of a
self�testing�correcting pair to try and ensure that it is correct� because a self�testing�correcting
pair can be used on all revisions in the future to the currently used program P for computing
f � In the case of result checkers� �Blum ��
 suggests that the result checker should be in some
quanti�able way �di	erent� than any program P that correctly computes f directly� because then
it is unlikely that the result checker makes mistakes of the same type as those made by P � We
adopt this same philosophy� and require that our self�testing�correcting pair be �di	erent� in the
following sense� We call the running time of Tf � not counting the time for calls to the program P �
the incremental time of Tf � We say that Tf is di�erent if the incremental time of Tf is faster than
the running time for any correct program for computing f directly� Analogous de�nitions apply to
Cf � We insist that both Tf and Cf be di	erent� which ensures that the self�testing�correcting pair
is doing something quanti�ably di	erent than computing f directly� because there is not enough
time for this�

�Note that there is no speci�cation of the behavior of C when P �x� � f�x� but P incorrectly computes f on some
inputs other than x� The �natural� requirement would be that in this case the output of C is �PASS�� However�
this can be easily shown to imply that C has to correctly compute f�x� on its own without any calls to P � which is
clearly not in the spirit of allowing C to be a much simpler program than any correct program for f �

�A preliminary version of this paper appeared in ���� Blum� Luby� Rubinfeld��
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We call the running time of Tf � counting the time for calls to the program P � the total time
of Tf � We say that Tf is e�cient if the total time is linear in the running time of P � We insist
that both Tf and Cf be e�cient� which ensures that the advantages we gain by using the self�
testing�correcting pair are not overwhelmed by an inordinate running time slowdown�

A self�testing�correcting pair �Tf � Cf� for a function f is a powerful tool� A user can take any
program P that supposedly computes f and self�test it with Tf � If P passes the self�test then�
on any input x� the user can call Cf � which in turn makes calls to P � to correctly compute f�x��
Even a program P that computes f incorrectly for a small but signi�cant fraction of the inputs
can be used with con�dence to correctly compute f�x� for any input x� In addition� if in the future
somebody designs a faster program P � for computing f � then the same pair �Tf � Cf� can be used to
self�test�correct P � without any further modi�cations� Thus� it makes sense to spend a reasonable
amount of time designing self�testing�correcting pairs for functions commonly used in practice and
for which a lot of e	ort is spent writing super�fast programs� For example� integer multiplication
and matrix multiplication are commonly used functions for which fast but complicated programs
have been written and implemented ��
�� Coppersmith Winograd
� ���� Strassen
� ���� Sch�onhage
�
���� Sch�onhage Strassen
�� Thus� the self�testing�correcting pairs we develop may be useful in
practice�

We develop general techniques for constructing simple to program self�testing�correcting pairs
for a variety of numerical functions� Roughly speaking� we develop techniques to correct random
self�reducible functions� to test linear functions and to test by bootstrapping functions that are both
random self�reducible and downward self�reducible� Our techniques apply to integer multiplication�
the mod function� modular multiplication� integer division� polynomial multiplication� modular
exponentiation� matrix multiplication� determinant� matrix inversion and matrix rank� For all
of these functions� except for modular exponentiation in the case when the factorization of the
modulus is not known� the incremental time is linear in the input size and the total time is linear
in the running time of P � Thus� for these functions� the self�testing�correcting pair is both di	erent
and e�cient� For modular exponentiation in the case when the factorization of the modulus is not
known� the self�testing�correcting pair is di	erent and close to e�cient�

The theory of self�testing leads to interesting mathematical questions about properties that
characterize a function� We show that certain properties that characterize a function which hold
on every input can be replaced by the same property which only holds for a large fraction of inputs�
For example� suppose f is a function that maps a group G to a group H� We say that f is linear if�
for all x and y in G� f�x�G y� � f�x� �H f�y� �where �G and �H are the group operations over
G and H� respectively�� The results in Section � relax the condition required for linearity in the
following sense� they show that if� for a large fraction of x� y� f�x�G y� � f�x��H f�y�� then there
is a linear function g such that f�x� is equal to g�x� for most x� Thus f is still essentially a linear
function� ��
� Gemmell Lipton Rubinfeld Sudan Wigderson
 shows that a similar property and
relaxation holds for polynomials� Since it is computationally much easier to determine whether a
property is satis�ed most of the time than it is to determine whether it is always satis�ed� this
relaxation is important for self�testing�

��� Libraries

Often programs for related functions are grouped in packages� common examples include packages
that solve statistics problems or packages that do matrix manipulations� We extend the theory
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proposed in �
�� Blum
 to allow the use of several programs� or a library� to aid in self�testing and
self�correcting� We show that the library approach allows one to construct self�testing�correcting
pairs for functions which did not previously have e�cient self�testing or self�correcting programs�
or even result checkers� Working with a library of programs rather than with just a single program
is a key idea� enormous di�culties arise in attempts to design a self�testing�correcting pair for the
determinant or for computing the rank in the absence of programs for matrix multiplication and
inverse�

The typical situation where the library approach is useful is for a function f where the natural
way to compute f is by making a small number of calls to another function f �� where the running
time to compute f � is of the same order of magnitude as the running time to compute f � The
running time to compute f � makes it hard to design a self�testing�correcting pair for f based on
making calls to f � that is di	erent� However� if it is possible to design a self�testing�correcting pair
for f � that is di	erent� then we can use the approach described in the next paragraph to design a
self�testing�correcting pair for f �

The idea of the library approach is to �rst design a self�testing�correcting pair �T �� C�� for f ��
and then to design a self�testing�correcting pair �T�C� for f that makes calls to C� to compute f �

instead of computing f � directly� Let P be the program that supposedly computes f and let P �

be the program that supposedly computes f �� The incremental time of T is the running time of
T � not counting calls to either C � or P � plus the incremental time for C� multiplied by the number
of times C� is called� The total time of T counts the time for all calls to P and C�� and within
C� counts the time for calls to P �� The incremental and total times of C are de�ned analogously�
The way the library of self�testing�correcting pairs is used in this example is as follows� First� T �

tests that P � is not too faulty� Then� T tests that P is not too faulty� T makes calls to C�� which
in turn makes calls to P �� Finally� C computes f by making calls to both P and C�� which in turn
makes calls to P �� The properties are that if either P or P � is too faulty� then one of T � or T will
output �FAIL�� whereas if both P and P � are not too faulty� then C correctly computes f on all
inputs with high probability�

��� Related Work and Extensions

�
�� Blum Micali
 construct a pseudo�random generator� where a crucial ingredient of the construc�
tion can be thought of as a self�correcting program for the discrete log function� ��
� Rubinfeld

introduces result checking for parallel programs� and uses self�testing to design a constant depth
circuit to check the majority function� A self�testing�correcting pair for a function f implies a result
checker for f � A result checker for f implies a self�tester for f � but it is not known whether a result
checker also implies a self�corrector� Previous to our work� ���� Kaminski
 gives result checkers for
integer and polynomial multiplication� Independently of our work� �
� Adleman Huang Kompella

give result checkers for integer multiplication and modular exponentiation� Both of these papers
use very di	erent techniques than ours� Previous to our work� ���� Freivalds
 introduces a result
checker for matrix multiplication over a �nite �eld� We make use of this result checker when
designing the self�testing�correcting pair for matrix multiplication over a �nite �eld�

���� Lipton
� independently of our work� discusses the concept of self�correcting programs and for
several functions uses it to construct a testing program with respect to any distribution assuming
that the programs are not too faulty with respect to a particular distribution� To highlight the
importance of being able to self�test� consider the mod function� To self�correct on input x and
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modulus R� the assumption in ���� Lipton
 and here is that the program is correct for most inputs
x with respect to the particular modulus R� This requires a di	erent assumption for each distinct
modulus R� Our self�testing algorithm for the mod function on input R can be used to e�ciently
either validate or refute this assumption�

Previously� ���� Kannan
 provides an elegant result checker for computing the determinant of
a matrix� but it is not e�cient� Our self�correcting�testing pair for determinant is e�cient� but it
relies heavily on allowing the pair to call a library of linear algebra programs instead of restricting
calls to a single program that supposedly computes determinant�

In this paper� we assume that the program�s answer on a particular input does not depend
on previous inputs� �
�� Blum Luby Rubinfeld
 considers the case when the program adaptively
decides its answer based on previous inputs�

Recently� �
�� Cleve Luby
 have shown how to use these techniques to design a self�testing��
correcting pair for the trigonometric functions sin and cosin� ��
� Gemmell Lipton Rubinfeld
Sudan Wigderson
 extend these results to design a self�testing�correcting pair for any polynomial
function over �nite �elds and ���� Rubinfeld Sudan
 extend this to polynomial functions over
rational domain� ���� Rubinfeld
 introduces an extension of this theory to the case when the
program�s answer is considered correct when it is a good approximation to the actual value of the
function� and designs a self�testing�correcting pair for the quotient function�

The techniques in this paper have been applied to the theory of interactive proofs �see ���� Gold�
wasser Micali Racko	
� ��� Babai
 and ��� Ben�Or Goldwasser Kilian Wigderson
 for the discussion
of interactive proofs�� ���� Nisan
 uses the self�testing�correcting technique based on bootstrapping
developed in Section � and the observation about the permanent problem in ���� Lipton
 �which
is based on ��� Beaver Feigenbaum
� to construct a two�prover interactive proof system for the
permanent problem� which led to the eventual discovery that IP � PSPACE ��
�� Fortnow Karlo	
Lund Nisan
� ���� Shamir
� ��� Babai
��

The results in this paper are related to those in ��� Babai Fortnow Lund
� In order to show that
the multi�prover version of IP is equal to NEXPTIME� ��� Babai Fortnow Lund
 give a test for
verifying that a given program P � which depends on n input variables� computes a function which
is usually equal to some multi�linear function f of the n variables� Their results can be viewed
as providing a self�tester for multi�linear multi�variate functions� assuming the ability to correctly
compute linear functions of one variable� Combining their results with the self�testers for linear
functions of one variable given in this paper yields a much simpler self�tester for multi�linear multi�
variate functions� which uses only additions� comparisons and calls to P � and which is �di	erent�
in the sense used in this paper�

� The Basics

Definition ��
 �distribution on inputs� For expository purposes� we restrict ourselves to the case
when f is a function of one input from some universe I� Let I�� I�� � � � be a sequence of subsets
of I such that I � �n�NIn� The subscript n indicates the 	size
 of the input to the function� Let
D � fDnjn � Ng be an ensemble of probability distributions such that Dn is a distribution on In�

Definition ��� �error� Let P be a program that supposedly computes f � Let error�f� P�Dn� be the
probability that P �x� �� f�x� when x is randomly chosen in In according to Dn�
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Definition ��� �probabilistic oracle program� A probabilistic program M is an oracle program if
it makes calls to another program that is speci�ed at run time� We let MA denote M making calls
to program A�

Definition ��� �self�testing program� Let � � �� � �� � 
� An ���� ����self�testing program for
f with respect to D is a probabilistic oracle program Tf that has the following properties for any
program P on input n and con�dence parameter � � ��

�� If error�f� P�Dn� � �� then TPf outputs 	PASS
 with probability at least 
� ��


� If error�f� P�Dn� � �� then TPf outputs 	FAIL
 with probability at least 
� ��

To simplify the code somewhat� we make the convention that the self�tester immediately halts once
it outputs an answer� either �PASS� or �FAIL�� The value of �� should be as close as possible to
�� to allow as faulty as possible programs P to pass test TPf and still have self�corrector CP

f work
correctly�

Definition ��� �self�correcting program� Let � � � � 
� An ��self�correcting program for f with
respect to D is a probabilistic oracle program Cf that has the following property on input n� x � In
and � � �� If error�f� P�Dn� � � then CP

f �x� � f�x� with probability at least 
� ��

Definition ��� �self�testing�correcting pair� A self�testing�correcting pair for f is a pair of prob�
abilistic programs �Tf � Cf � such that there are constants � � �� � �� � � � 
 and an ensemble of
distributions D such that Tf is an ���� ����self�testing program for f with respect to D and Cf is
an ��self�correcting program for f with respect to D�

Definition ��� �running time� Let MP be a probabilistic oracle machine M making oracle calls
to P � The incremental time of MP is the maximum over all inputs x of length n of the running
time of MP �x�� not counting the time for calls to P � The total time of MP is the maximum over
all inputs x of length n of the running time of MP �x�� counting the time for calls to P �

Definition ��� �di	erent� We say that self�testing�correcting pair �Tf � Cf� is di	erent if� for all
programs P � the incremental time of both TPf and CP

f is smaller than the running time of the
fastest known program for computing f directly�

Definition ��� �e�cient� We say that self�testing�correcting pair �Tf � Cf � is e�cient if� for all
programs P � the total time of both TPf and CP

f is linear in the running time of P and the input
size�

We insist that a self�testing�correcting pair be both di	erent and e�cient� although for mod�
ular exponentiation when the factorization of the modulus is unknown we are forced to relax the
e�ciency requirement somewhat� In the de�nitions of di�erent and e�cient� we ignore the run�
ning time dependence on the con�dence parameter �� which is typically a multiplicative factor of
O�ln�
������

�In this paper� ln� denote the natural log of �� In some cases� ln� is to be thought of as an integer� in which
case it is the least integer greater than or equal to ln��
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Because self�testers must be di�erent� the strategy used by TPf cannot be the naive technique
of choosing x � In according to Dn and seeing if P �x� � f�x�� because this requires computation
of f�x�� Similarly� CP

f cannot simply call P on input x and hope that P �x� � f�x�� because P is
allowed to be faulty on a fraction of the inputs� and in particular it might be faulty on input x�
In many of the self�testers and self�correctors we design� we exploit the ability to compute f�x�
indirectly by computing f on random inputs� This property is explained in the following de�nition�

Definition ��
� �random self�reducibility property� Let x � In� Let c � 
 be an integer� We say
that f is c�random self�reducible if f�x� can be expressed as an easily computable function Frandom

of x� a�� � � � � ac and f�a��� � � � � f�ac�� where a�� � � � � ac are easily computable given x and each ai is
randomly distributed in In according to Dn�

� By easily� we mean that the total computation time
of the random self�reduction is smaller than that of computing f�x��

One of the strengths of this property is that it can be used to transform a program that is
correct on a large enough fraction of the inputs into a program that computes f�x� correctly with
high probability for any input x�

Many of the functions we consider are on the integers or on initial segments of the integers�
We often use the following notation�

Definition ��

 �arithmetic notation� For any positive integer R� let ZR denote the set of integers
f�� � � � � R� 
g� let �R denote integer addition mod R and let �R denote integer multiplication mod
R� Let Z�

R � fx � ZR � gcd�x�R� � 
g�

For simplicity� in the description of all of our self�correcting�testing programs we omit the
following simple but crucial piece of the code�

Definition ��
� �range�check code� Whenever the self�corrector or self�tester makes a call to P �
it veri�es that the answer returned by P is in the proper range� e�g� for f�x�R� � x mod R the
proper range is ZR� If the answer is not in the proper range� then the program resets the answer
to a default value in the range� e�g� for f�x�R� � x mod R� the default value could be ��

The range�check code in e	ect modi�es the original P into a modi�ed P � However� the modi�ed
P is at least as correct for computing f as the original P � For correctness� it is crucial that the
self�tester and the self�corrector both use the same default value in the range�check code� This is
because we want the self�corrector and self�tester to be calling as an oracle the same P � In most
cases� the range�check code is straightforward� and we discuss it in those cases where it is not�

We often consider uniform probability distributions on sets� Thus� we introduce the following
notation�

Definition ��
� �uniform probability distribution� For any set X� let UX denote the uniform
probability distribution on X� For example� UZ�n is the uniform distribution on Z�n � whereas
UfRg� where R is a positive integer� is the probability distribution such that R has probability one�
We let x �U X denote that x is randomly and uniformly distributed in X�

�However� no independencebetween these randomvariables is needed� e�g� given the value of a� it is not necessary
that a� be randomly distributed in In according to Dn�

�



� Self�Correcting

In this section� we describe self�correctors for a variety of numerical functions� We start with
self�correcting because the self�correctors for our applications are much more intuitive than the
corresponding self�testers� and in addition the self�correctors are substantially easier to prove cor�
rect�

In the following subsections� we show the speci�c details of the self�correcting programs for
the mod function� integer multiplication� modular multiplication� modular exponentiation� integer
division� matrix multiplication and polynomialmultiplication� All of these self�correcting programs
follow the same outline and rely on the random self�reducibility property �de�ned in the preceding
subsection� of the given function� In Subsection ��� we give a self�correcting program that works
for any random self�reducible function� ���� Lipton
 uses the same basic outline to develop a
self�correcting program for any polynomial over a �nite �eld�

��� Mod Function

We consider computing an integer modR for a positive number R� In this case� f�x�R� � x mod
R� Assume that we have a program P such that error�f� P�UZR�n � UfRg� � 
��� The following
program is a 
���self�correcting program for f making oracle calls to P with respect to UZR�n

�UfRg�
The input to the program is n� R� x � ZR�n and the con�dence parameter ��

Program Mod Function Self�Correct�n�R� x� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Call Random Split�R�n� x� x�� x�� c�
answerm 	 P �x�� R� �R P �x�� R�

Output the most common answer among fanswerm � m � 
� � � � � Ng

Function Random Split �M� z� z�� z�� e�

Choose z� �U ZM
If z� � z then e	 � else e	 

z� 	 eM � z � z�

We need the following proposition in the proof of correctness of this and many subsequent
programs�

Proposition � Let x�� � � � � xm be independent ��� valued random variables such that for each
i � 
� � � � �m� Pr�xi � 

 � ���� Then�

Pr

�
mX
i��

xi � m��

�
� 
� e�m����

PROOF� Use standard Cherno	 bounds�
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Lemma � The above program is a 
���self�correcting program for the mod function�

PROOF� For i � f
� �g� xi �U ZR�n � Thus� by the properties of P � P �xi� R� �� xi mod R with
probability at most 
��� and consequently both calls to P in a single loop return the correct answer
with probability at least ���� Because x � x� � x� � cR�n� x mod R � x� mod R �R x� mod R�
Thus� if both calls to P are correct� answerm � x mod R� The lemma follows from Proposition 
�

The mod function self�correcting program is very simple to code� the only operations used are
integer additions� comparisons and calls to the program P � This is true because in the computation
of answerm because of the implicit range�check code �see page ��� both P �x�� R� and P �x�� R� are
in ZR� Thus� to compute P �x�� R��RP �x�� R� consists of one integer addition� one comparison and
possibly one subtraction� Note that the self�correcting program is di	erent because the incremental
time is linear in n� and it is also e�cient� because the total time is linear in the running time of P �

��� Integer Multiplication

For integer multiplication� f�x� y� � x �y� Suppose that both x and y are in the range Z�n for some
positive integer n� Assume that we have a program P such that error�f� P�UZ�n

� UZ�n
� � 
�
��

The following program is a 
�
��self�correcting program for f making oracle calls to P with respect
to UZ�n �UZ�n � The input to the program is n �the length of the inputs�� x� y � Z�n �the numbers
to be multiplied together� and the con�dence parameter ��

Program Integer Multiplication Self�Correct�n� x� y� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Call Random Split��n� x� x�� x�� c�
Call Random Split��n� y� y�� y�� d�
answerm 	 P �x�� y�� � P �x�� y�� � P �x�� y�� � P �x�� y�� � cy�n � dx�n � cd��n

Output the most common answer among fanswerm � m � 
� � � � � Ng

Lemma � The above program is a 
�
��self�correcting program for integer multiplication�

PROOF� For i� j � f
� �g� the pair �xi� yj� �U Z�n � Z�n � Thus� by the properties of P �
P �xi� yj� �� xi � yj with probability at most 
�
�� and consequently all four calls to P in a single
loop return the correct answer with probability at least ���� Because x � x� � x� � c�n and
y � y� � y� � d�n� x � y � x� � y�� x� � y�� x� � y�� x� � y�� cy�n � dx�n� cd��n� Thus� if all four
calls to P are correct� answerm � x � y� The lemma follows from Proposition 
�

The integer multiplication self�correcting program is very simple to code� the only operations used
are integer additions� shifts� comparisons and calls to the program P �

��� Modular Multiplication

We now consider multiplication of integers modR for a positive number R� In this case� f�x� y�R�
� x �Ry� Suppose that both x and y are in the range ZR�n for some positive integer n� Assume that

�



we have a program P such that error�f� P�UZR�n
�UZR�n

�UfRg� � 
�
�� The following program is
a 
�
��self�correcting program for f making oracle calls to P with respect to UZR�n

�UZR�n
�UfRg�

The input to the program is R� x� y � ZR�n and the con�dence parameter ��

Program Modular Multiplication Self�Correct�R� x� y� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Call Random Split�R�n� x� x�� x�� c�
Call Random Split�R�n� y� y�� y�� d�
answerm 	 P �x�� y�� R� �R P �x�� y�� R� �R P �x�� y�� R� �R P �x�� y�� R�

Output the most common answer among fanswerm � m � 
� � � � � Ng

Lemma � The above program is a 
�
��self�correcting program for modular multiplication�

PROOF� For i� j � f
� �g� the pair �xi� yj� �U ZR�n � ZR�n � Thus� by the properties of P �
P �xi� yj� �� xi � yj with probability at most 
�
�� and consequently all four calls to P in a single
loop return the correct answer with probability at least ���� Because x � x� � x� � cR�n and
y � y� � y� � dR�n� x �R y � �x� �R y�� �R �x� �R y�� �R �x� �R y�� �R �x� �R y��� Thus� if all four
calls to P are correct� answerm � x �R y� The lemma follows from Proposition 
�

��� Modular Exponentiation

We now consider exponentiation of integers modR for a positive number R� In this case� f�a� x�R�
� ax mod R� We restrict attention to the case when gcd�a�R� � 
 and when we know the
factorization of R� and thus we can easily compute 	�R�� where 	 is Euler�s function� Suppose
that x is in the range Z��R��n � Assume that we have a program P such that error�f� P�Ufag �
UZ��R��n

�UfRg� � 
��� The following program is a 
���self�correcting program for f making oracle
calls to P with respect to Ufag � UZ��R��n

� UfRg� The input to the program is R� a� x � Z��R��n
and the con�dence parameter ��

Program Modular Exponentiation Self�Correct �R� a� x� ��

N 	 
� ln�
���
Do for m � 
� � � � � N

Call Random Split�	�R��n� x� x�� x�� c�
answerm 	 P �a� x�� R� �R P �a� x�� R��

Output the most common answer among fanswerm � m � 
� � � � � Ng

Lemma � The above program is a 
���self�correcting program for modular exponentiation�

PROOF� For i � f
� �g� xi �U Z��R��n � Thus� by the properties of P � P �a� xi� R� �� axi mod R
with probability at most 
��� and consequently both calls to P in a single loop return the correct
answer with probability at least ���� Because x � x� � x� � c	�R��n� and because gcd�a�R� � 

implies that a��R� � 
 mod R� ax mod R � ax� mod R�R a

x� mod R� Thus� if both calls to P are
correct� answerm � ax mod R� The lemma follows from Proposition 
�


�



The modular exponentiation self�correcting program is very simple to code� The hardest op�
eration to perform is the modular multiplication P �a� x�� R� �R P �a� x�� R�� The self�correcting
program can compute this multiplication directly� but another alternative is to use the library
approach described informally here and in more detail in a subsequent section�

Let f be the modular exponentiation function and let f � be the modularmultiplication function�
Let P be a program that supposedly computes f and let P � be a program that supposedly computes
f �� Let C� be the modularmultiplication self�correcting program described in a previous subsection
and let C be the modular exponentiation self�correcting program just described� If error�f� P�Ufag�
UZ��R��n

� UfRg� � 
�� and if error�f �� P ��UZR � UZR � UfRg� � 
�
� then we can use C� making
calls to P and making calls to C�� which in turn makes to P �� to self�correct f � Using this approach�
the only operations computed by either C or C� are integer additions� comparisons and calls to the
programs P and P �� The self�correcting program is di	erent because the incremental time �which
excludes the time for calls to both P and P �� is linear in n� and it is also e�cient� because the
total time �which counts the time for calls to both P and P �� is within a constant multiplicative
factor of the running time of P assuming that P � runs at least as quickly as P �

��� Integer Division

We now consider division of integers by R for a positive number R� In this case� f�x�R� �
�x div R� xmod R�� Suppose that x is in the range ZR�n � Assume that we have a program P such
that error�f� P�UZR�n �UfRg� � 
��� The following program is a 
���self�correcting program for f
making oracle calls to P with respect to UZR�n � UfRg� The input to the program is R� x � ZR�n
and the con�dence parameter ��

We refer to the output of P as P �x�R� � �Pdiv�x�R�� Pmod�x�R���

Program Integer Division Self�Correct�R� x� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Call Random Split�R�n� x� x�� x�� c�
Divansm 	 �Pdiv�x�� R� �Pdiv�x�� R�� � �Pmod�x�� R� �Pmod�x�� R�� div R� c � �n

Modansm 	 Pmod�x�� R� �R Pmod�x�� R�
Output the most common answer among f�Divansm �Modansm� � m � 
� � � � � Ng

Lemma � The above program is a 
���self�correcting program for integer division�

PROOF� Follows the outline of the proof of Lemma ��

As in the self�corrector for the mod function� both the mod and div computed by the self�
corrector are easy to code� This is true because in the computation of Modansm� the range�
check code �see page �� ensures that both Pmod�x�� R� and Pmod�x�� R� are in ZR� Thus� to
compute Pmod�x�� R��RPmod�x�� R� consists of one integer addition� one comparison and possibly
one subtraction� In the computation of Divansm � computing �Pmod�x�� R� � Pmod�x�� R�� div R
consists of one integer addition and one comparison�







��	 Matrix Multiplication

We consider multiplication of matrices over a �nite �eld� Let Mn�n�F 
 be the set of n�n matrices
over the �nite �eld F � Then� for all A�B � Mn�n�F 
� f�A�B� � A � B� Assume that we have a
program P such that error�f� P�UMn�n �F 	� � 
�
�� The following program is a 
�
��self�correcting
program for f making calls to oracle P with respect to UMn�n �F 	 � The input to the program is
A�B �Mn�n�F 
 and the con�dence parameter ��

Program Matrix Multiplication Self�Correct�A�B� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Choose A�� B� �U Mn�n�F 

A� 	 A �A�

B� 	 B �B�

answerm 	 P �A�� B�� � P �A�� B�� � P �A�� B�� � P �A�� B��
Output the most common answer among fanswerm � m � 
� � � � � Ng

Lemma 	 The above program is a 
�
��self�correcting program for matrix multiplication�

PROOF� Follows the outline of the proof of Lemma ��

��
 Polynomial Multiplication

We consider multiplication of polynomials over a ring� Let Rd�x
 denote the set of polynomials
of degree d with coe�cients from some ring R� and let URd�x	�Rd �x	 be the uniform distribution

on Rd�x
 � Rd�x
� In this case� f�p�x�� q�x�� � p�x� � q�x�� where p� q � Rd�x
� Assume that we
have a program P such that error�f� P�URd�x	�Rd �x	� � 
�
�� The following program is a 
�
��self�
correcting program for f making oracle calls to P with respect to URd �x	�Rd �x	� The input to the

program is p� q � Rd�x
 and the con�dence parameter ��

Program Polynomial Multiplication Self�Correct�p� q� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Choose p� �U Rd�x

Choose q� �U Rd�x

p� 	 p� p�
q� 	 q � q�
answerm 	 P �p�� q�� � P �p�� q�� � P �p�� q�� � P �p�� q��

Output the most common answer among fanswerm � m � 
� � � � � Ng

Lemma 
 The above program is a 
�
��self�correcting program for polynomial multiplication�

PROOF� Follows the outline of the proof of Lemma ��


�



��� Generic Self�Correcting Program

Let c be a positive integer and let f be any c�random self�reducible function �see page � for the
de�nition�� Assume that we have a program P such that error�f� P�Dn� �

�
�c � The following

program is a �
�c �self�correcting program for f making oracle calls to P with respect to Dn� The

input to the program is n� x � In and a con�dence parameter ��

Program Generic Self�Correct�n� x� ��

N 	 
� ln�
���
Do for m � 
� � � � � N
Randomly generate a�� � � � � ac based on x
For i � 
� � � � � c� 
i 	 P �ai�
answerm 	 F �x� a�� � � � � ac� 
�� � � � � 
c�

Output the most common answer among fanswerm � m � 
� � � � � Ng

Theorem � If f is a function that is c�random self�reducible then there is a �
�c �self�correcting

program for f �

PROOF� We show that the above program is such a self�correcting program for f � Suppose that
error�f� P�Dn� �

�
�c � Because� for each k � 
� � � � � c� ak is randomly distributed in In according to

Dn� all c outputs of P are correct with probability at least ��� each time through the loop� If all
c outputs of P are correct� then by the random self�reducibility property� answerm � f�x�� The
theorem follows from Proposition 
�

� Linearity and Self�Testing

Although the most interesting of our self�testing methods leads to self�testers that are almost as
simple to code as the self�correctors described above� the proofs that they meet their speci�cations
are more di�cult� interesting and involve some probability theory on groups that may have other
applications� This method applies to integer multiplication� the mod function� modular multipli�
cation� modular exponentiation when the 	 function of the modulus is known� and integer division�
The resulting self�testers are simple to code� and are both di	erent and e�cient�

To give some idea of how the method works� we concentrate on the mod function� We then de�ne
the linearity property� and give a generic tester that works for any function with this property� We
then show the speci�c testers that result from applying this generic tester to integer multiplication�
modular multiplication� modular exponentiation and integer division�

��� Mod Function

For positive integers x and R� let f�x�R� � x mod R� Because the self�correcting program for
the mod function relies on a program that is correct for most inputs with respect to a particular
modulos R� the self�testing program for the mod function is designed to self�test with respect to a
�xed modulus R� This is an important motivation for constructing e�cient self�testing programs�


�



because the self�testing program is executed each time a new modulus is used� Similar remarks
hold for modular multiplication and modular exponentiation�

For �xed R� we view f as a function of one input x� There are two critical tests performed by
the self�tester� Let x� �U ZR�n and x� �U ZR�n be independently chosen� and set x	 x��R�n x��
Note that f�x�R� � f�x�� R� �R f�x�� R�� i�e� f is a �modular� linear function of its �rst input�
The linear consistency test is

�Does P �x�R� � P �x�� R� �R P �x�� R����

and the linear consistency error is the probability that the answer to the linear consistency test is
�no�� Let z �U ZR�n � and set z� 	 z�R�n 
� Note that f�z�� R� � f�z�R��R 
� i�e� in addition to
being linear in its �rst input� f also has �modular� slope one as a function of its �rst input� The
neighbor consistency test is

�Does P �z�� R� � P �z�R� �R 
���

and the neighbor consistency error is the probability that the answer to the neighbor consistency
test is �no��

Our main theorem with respect to the self�tester for f is that there are constants � � � � 

and �� � 
 such that error�f� P�UZR�n � UfRg� is at least � times the minimum of the linear
consistency error and the neighbor consistency error� and that error�f� P�UZR�n �UfRg� is at most
�� times the maximumof the linear consistency error and the neighbor consistency error� Thus� we
can indirectly approximate error�f� P�UZR�n �UfRg� by instead estimating the linear and neighbor
consistency errors�

The proof of the theorem shows that any function which usually satis�es the linearity property
is essentially a linear function� in the sense that there is some linear function which is almost always
equal to the original function�

Program Mod Function Self�Test�n�R� ��

N � ��� ln�����
t	 �
Do for m � 
� � � � � N
Call Mod Linear Test �n�R� answer�
t	 t� answer

If t�N � 
��� then output �FAIL�

N � � �� ln�����
t� 	 �
Do for m � 
� � � � � N �

Call Mod Neighbor Test �n�R� answer�
t� 	 t� � answer

If t��N � � 
�� then output �FAIL� else output �PASS�

Mod Linear Test �n�R� answer�


�



Choose x� �U ZR�n
Choose x� �U ZR�n
x	 x� �R�n x�
If P �x�� R� �R P �x�� R� � P �x�R� then answer 	 � else answer 	 


Mod Neighbor Test �n�R� answer��

Choose z �U ZR�n
z� 	 z �R�n 

If P �z�R� �R 
 � P �z�� R� then answer 	 � else answer 	 


Theorem � The above program is an �
����� 
����self�testing program for the mod function with
any modulus R�

PROOF� This is a corollary of Theorem � from the next subsection�

The only non�trivial lines of code in the self�testing program are generation of random numbers�
calls to the program P � integer additions and integer comparisons�

��� Generic Linear Self�Testing

In this section� we describe a generalization of the mod function self�tester to functions f mapping
a group G into another group G�� In addition to the mod function� we will show how to apply this
generic self�tester to integer multiplication� modular multiplication and modular exponentiation�
In all cases� the resulting self�testing program is extremely simple to code� di	erent and e�cient�

The function f is speci�ed in the following way� Let �G� 
� be a �nite group with group elements
G and group operation 
 generated by the set fg�� � � � � gcg and with identity element �� For y � G�
let y�� denote the inverse of y� Let G� be a group with group operation 
� and identity element
��� For 
 � G�� let 
�� denote the inverse of 
� Let f � G� G�� Intuitively� f is hard to compute
compared to either the 
 or 
� operations� For simplicity� we assume that both groups are abelian�
our results can be generalized to non�abelian groups as well� but our applications are to abelian
groups�

If there are no �nite subgroups of G� other than f��g then the rest of the characterization of f
is solely in terms of a function Flinear as described below� If there are �nite subgroups of G� other
than f��g �including possibly G� itself� then� in addition to Flinear� the rest of the characterization is
in terms of a function F i

neighbor for each i � 
� � � � � c� The fact that f is completely characterized by
this information follows as a corollary from the theorems proved in the remainder of this subsection�

Definition ��
 �Flinear and linear consistency� For any pair x�� x� � G� Flinear�x�� x�� � G� and
furthermore f�x� 
 x�� � f�x�� 
� f�x�� 
� Flinear�x�� x��� We call this property linear consistency�

In all of our applications except for integer multiplication� Flinear�x�� x�� � �� for all inputs x�� x��
in which case f is a group homomorphism�


�



Definition ��� �F i
neighbor and neighbor consistency� For each generator gi � G� for any z � G�

F i
neighbor�z� � G� and furthermore f�z 
 gi� � f�z� 
� F i

neighbor�z�� We call this property neighbor
consistency�

The functions F i
neighbor are not needed to characterize integer multiplication �because the group

corresponding to G� is in�nite with no �nite subgroups other than f��g in that application�� For
all of the other applications� both G and G� are generated by a single element denoted 
 and 
��
respectively� �i�e� they are both cyclic groups�� and F �

neighbor is a constant function�

The assumptions we are making is that the self�tester can easily compute the 
 and 
� oper�
ations and the function Flinear� Furthermore� we assume that the self�tester can easily determine
membership in G and G�� and can easily choose a random element from G uniformly� In the case
when G� has �nite subgroups other than f��g� for each i � 
� � � � � c we assume that gi is easy to
compute and that F i

neighbor is easy to compute� The implicit assumption is that it is much harder
to compute f directly then any one of these computations� In all of our applications� this is the
case� We say a function f that is characterized as above has the linearity property�

The linearity property is a special case of ��random self�reducibility� This can be seen as follows�
Given x� choose x� �U G and let x� 	 x
x��

� � Then� f�x� � Frandom�x� x�� x�� f�x��� f�x���� where
Frandom�x� x�� x�� f�x��� f�x��� is de�ned to be f�x�� 
� f�x�� 
� Flinear�x�� x���

Let P be a program that supposedly computes f such that� for all y � G� P �y� � G�� Generic
Self�Test � is an ������ ���self�tester for f with respect to UG when G� has no �nite subgroups
other than f��g� The self�tester for integer multiplication is based on Generic Self�Test �� where
G � Z�n with ��n as the group operation� and G� � Z with � as the group operation� The
integer division self�tester is also based on Generic Self�Test �� Generic Self�Test � is an
������ ���self�testing program for f with respect to UG for all other G�� The self�tester for the mod
function described in Subsection ��
� for modular multiplication and for modular exponentiation
are all based on Generic Self�Test �� To avoid unnecessary complications in the description� as
before �see page �� we assume that whenever the program P is called that the self�tester checks to
see if the answer returned is in G�� and if it is not then the returned value is set to ���

Program Generic Self�Test ���� ��

�When G� has no �nite subgroups other than f��g�
in which case there are no F i

neighbor functions speci�ed��

N 	 
�
�
ln�����

t	 �
Do for m � 
� � � � � N

Call Generic Linear Test�answer�
t	 t � answer

If t�N � ��� then output �FAIL� else output �PASS�

Program Generic Self�Test ���� ��

�When G� has �nite subgroups �possibly G� itself� other than f��g�
in which case the F i

neighbor functions are speci�ed��

N 	 
�
� ln�����


�



t	 �
Do for m � 
� � � � � N
Call Generic Linear Test�answer�
t	 t� answer

If t�N � ��� then output �FAIL�

N � 	 �� ln��c���
t� 	 �
Do for m � 
� � � � � N �

answer 	 �
For i � 
� � � � � c� call Generic Neighbor Test�i� answer�
t� 	 t� � answer

If t��N � � 
�� then output �FAIL� else output �PASS�

Generic Linear Test �answer�

Choose x� �U G�
Choose x� �U G�
If P �x� 
 x�� � P �x�� 
� P �x�� 
� Flinear�x�� x�� then answer 	 � else answer	 


Generic Neighbor Test �i� answer�

Choose z �U G�
If P �z 
 gi� �� P �z� 
� F i

neighbor�z� then answer 	 


Before giving proofs� we �rst introduce some notation and provide intuition for why the self�testers
work� For each y � G� de�ne the discrepancy of y to be

disc�y� � f�y� 
� P �y����

Note that P computes f correctly for all inputs if and only if the discrepancy function de�nes a
homomorphism from G into f��g�

Because of linear consistency and because the self�testing program computes Flinear�x�� x��
correctly on its own� P �x� 
 x�� � P �x�� 
� P �x�� 
� Flinear�x�� x�� if and only if

disc�x� 
 x�� � disc�x�� 

� disc�x���

If this equality holds for all x�� x� � G then the discrepancy function de�nes a homomorphism h
from G into G�� Intuitively�Generic Linear Test veri�es that the discrepancy function is �close�
to some homomorphism h�

Suppose that G� has no �nite subgroup other than f��g� Then� because G is �nite� h is the
trivial mapping from G to f��g� Now suppose G� has a �nite subgroup other than f��g� Because of
neighbor consistency and because the self�testing program computes F i

neighbor�z� correctly on its

own� P �z 
 gi� � P �z� 
� F i
neighbor�z� if and only if

disc�z 
 gi� � disc�z��


�



If� for all z � G and for all i � 
� � � � � c� disc�z 
 gi� � disc�z� then h is the trivial mapping from G
to f��g� and Generic Neighbor Test is used to verify this�

The following notation is used throughout the rest of this section�

Notation�


 � � Pr�disc�x� 
 x�� �� disc�x�� 
� disc�x��
 when x� �U G and x� �U G are independently
chosen�


 For all i � 
� � � � � c� �i � Pr�disc�z� �� disc�z 
 gi�
 when z �U G�


 � � Pr�disc�y� �� ��
 when y �U G�

Theorems � and � are the heart of the proof that programs Generic Self�Test � and Generic
Self�Test � meet their speci�cations� respectively�

Theorem � Let G� be a group with no �nite subgroups except for f��g� Then� � � �����

Theorem � Let G� be any group� If� for all i � 
� � � � � c� �i � 
��� then � � �����

The speci�c proofs we give of Theorems � and �� due largely to Don Coppersmith� are simpler
than our original proofs� A full exposition of some related general probability results will appear
in ��� Ben�Or Coppersmith Luby Rubinfeld
� We now introduce some more notation and prove
some intermediate lemmas that are used in the proofs of Theorems � and ��

Uncapitalized letters from the end of the alphabet denote elements chosen randomly from G
according to UG� e�g� x� y and z� whereas uncapitalized letters from the beginning of the alphabet
denote �xed elements of G� e�g� a� b� c� For Lemmas �� 
�� 

 and 
�� we assume that � � ����
Let �� be de�ned as the solution to the equality ���
� ��� � �� Because � � ���� �� � 
���

Lemma � �a � G� �a� � G� such that Pr�disc�x 
 a� � disc�x� 
� a�
 � 
� ���

PROOF� By the de�nition of � and because x 
 a is distributed in G according to UG and a 
 y
is distributed in G according to UG�

Pr�disc�x 
 a� 
� disc�y� � disc�x 
 a 
 y�

� disc�x� 
� disc�a 
 y�
 � 
� ���

So
Pr�disc�x 
 a� 
� disc�x��� � disc�y 
 a� 
� disc�y���


� 
� ���

This is the sum� over all a� � G�� of the square of the probability

Pr�disc�x 
 a� 
� disc�x��� � a�
�

Since � � ���� this sum exceeds ��� and thus there must be one value a� with

Pr�disc�x 
 a� 
� disc�x��� � a�
 � 
� ��

where �
� ���� � ��� � 
� �� and �� � 
��� This leads to ���
� ��� � ��


�



Definition ��� �the function h� Lemma � leads to the de�nition of the function h from G to G�

de�ned as follows� For all a � G� let h�a� � a�� where a� is the element of G� described in Lemma ��

Lemma �
 The function h is a group homomorphism from G to G�� i�e� for all a� b � G� h�a
b� �
h�a� 
� h�b��

PROOF� Using Lemma � three times� for all a� b � G�

Pr�disc�x� 
� h�a� 
� h�b� � disc�x 
 a� 
� h�b� �

disc�x 
 a 
 b� � disc�x� 
� h�a 
 b�
 � 
� ����

This probability is strictly greater than zero because �� � 
��� and thus h�a 
 b� � h�a� 
� h�b��

Lemma ��

��� If G� is a group with no �nite subgroups except for f��g then for all a � G� h�a� � ���

��� If G� is any group and� for all i � 
� � � � � c� �i � 
��� then for all a � G� h�a� � ���

PROOF� By Lemma 
�� h is a group homomorphism and thus the image of h is a �nite subgroup
of G�� In case �
�� the only �nite subgroup of G� is f��g� In case ���� consider a �xed i � f
� � � � � cg�
Because 
� �i � 
�� and using Lemma � and the fact that 
� �� � ����

Pr�disc�x� � disc�x 
 gi� � disc�x� 
� h�gi�
 � 
���

and thus there is some x � G such that disc�x� � disc�x� 
� h�gi� which implies that h�gi� � ���
Thus� for all i � 
� � � � � c� h�gi� � ��� Because g�� � � � � gc are generators for G it follows that for all
a � G� h�a� � ���

Lemma �� Under the same conditions as ��� and �
� in Lemma ��� Pr�disc�x� � disc�x 
 y�
 �

� ���

PROOF� By Lemma 

� h�a� � �� for all a � G� On the other hand� Lemma � says that

Pr�disc�x 
 a� � disc�x� 
� h�a�
 � 
� ��

for every a � G� and thus certainly this is true when a is replaced with a random y� Thus�
Pr�disc�x 
 y� � disc�x�
 � 
� ���

PROOF� �of Theorem �
 Assume �rst that � � ���� By de�nition of � and using Lemma 
��
Pr�disc�x� � disc�x 
 y� � disc�x� 
� disc�y�
 � 
 � �� � �� and thus Pr�disc�y� � ��
 � 
 � �� � �
which implies that � � � � ��� Because �� � 
��� 
� �� � ��� which implies that �� � ����� This
implies that � � ����� On the other hand� if � � ���� then because � � 
 it follows that � � �����

PROOF� �of Theorem �
 Analogous to the proof of Theorem ��

Theorems � and � provide the upper bounds on � in terms of � and ��� � � � � �c� We now develop
the easier to prove lower bounds on ��


�



Lemma �� Let G� be any group� Then� �� � ��

PROOF� Because 
�� � Pr�disc�y� � ��
� Pr�disc�x� 
x�� � disc�x�� � disc�x�� � ��
 � 
� ���
and consequently � � Pr�disc�x� 
 x�� �� disc�x�� 
� disc�x��
 � ���

Lemma �� Let G� be any group� Then� for all i � 
� � � � � c� � � �i���

PROOF� For all i � 
� � � � � c� if disc�z 
 gi� �� disc�z� then either disc�z 
 gi� �� �� or disc�z� �� ���
Thus� � � �i���

The following proposition is used to quantify the number of random samples needed to guarantee
good estimates of � and ��� � � � � �c with high probability� This proposition can be proved using
standard techniques from an inequality due to Bernstein cited in ���� R enyi
� For a proof of this
proposition� see for example ���� Karp Luby Madras
�

Proposition �� Let Y�� Y�� � � � be independent identically distributed ����valued random variables

with mean 
� Let � � �� If N � �
� �

� ln�����
�� then Pr��
 � ��
 � !Y � �
 � ��

 � 
 � �� where

!Y �
PN

i�� Yi�N �

Corollary �� Let Y�� Y�� � � � be independently distributed ����valued random variables with means

�� 
�� � � � � respectively�

��� If� for all i� 
i � 
 and N � �
� � 
� ln����� then Pr� !Y � 
��
 � �� where !Y �

PN
i�� Yi�N �

�Use � � 
����

��� If� for all i� 
i � 
 and N � �
� � � ln����� then Pr� !Y � �

 � �� where !Y �

PN
i�� Yi�N � �Use

� � 
��

Theorem � Let f be a function as speci�ed above in the case when G� has no �nite subgroups
other than f��g� Then� for any input parameter � � � � 
� Generic Self�Test � is an ������ ���
self�tester for f �

PROOF�

�� � �� By Theorem �� this implies that � � ����� Letting 
 � ���� and letting N � �
� �


� ln����� � 
�
�
ln����� and using the Corollary 
�� Part �
� yields Pr�total�N � ���
 � ��

On the other hand� if total�N � ��� then the output of the program is �FAIL�� Thus� if
� � �� the program outputs �FAIL� with probability at least 
� ��

�� � ����� Lemma 
� implies that � � ��
�� Letting 
 � ��
� and letting N � �
� � � ln����� �


�
� ln����� and using the Corollary 
�� Part ���� yields Pr�total�N � ���
 � �� On the other
hand� if total�N � ��� then the output of the program is �PASS�� Thus� if � � ����� the
program outputs �PASS� with probability at least 
� ��

��



Theorem � Let f be a function as speci�ed above in the case when G� has �nite subgroups other
than f��g� Then� for any input parameter � � � � 
� Generic Self�Test � is an ������ ���self�
tester for f �

PROOF�

�� � �� We partition the possibilities into two subcases� �
� For all i � 
� � � � � c� �i � 
��� ��� There
is an i � 
� � � � � c such that �i � 
��� Case �
� is similar to the � � � case of Theorem ��
using Theorem � in place of Theorem �� which yields that the program outputs �FAIL�
with probability at least 
� ���� In case ���� because of the Corollary 
�� Part �
�� letting

 � 
�� and letting N � �� ln��c��� yields Pr�total��N � � 
��
 � �

�c � On the other hand� if
total��N � � 
�� then the output of the program is �FAIL�� and thus the program outputs
�FAIL� with probability at least 
 � �

�c � Thus� in either case� the program outputs �FAIL�
with probability at least 
� ��

�� � ����� We partition the possibilities into two subcases� �
� For all i � 
� � � � � c� �i � 
��� ���
There is an i � 
� � � � � c such that �i � 
��� A portion of case �
� is similar to the � � ����
case of Theorem �� which yields Pr�total�N � ���
 � ���� Also in case �
�� using the
Corollary 
�� Part ���� letting 
 � 
�� and letting N � �� ln��c��� and� using the fact that
the union of c probabilities is upper bounded by their sum� yields Pr�total��N � � 
��
 � ����
Thus� in case �
� the program outputs �PASS� with probability at least 
� �� In case ����
because of Lemma 
�� there is some i such that �i � 
�� implies that � � 
�
� � ���� since
� � 
� Thus case ��� is impossible�

��� Integer Multiplication

For positive integers x and y� let f�x� y� � x � y� We now describe in what sense integer multiplica�
tion has the linearity property� For any triple of integers x�� x� and y� x� �y�x� �y � �x��x�� �y�
Thus� for a �xed value of y� integer multiplication is a linear function� For the following discus�
sion� �x y to an arbitrary value� In this case� f can be viewed of as a function of one input with
domain G � Z�n where 
 is ��n � and range G� � Z where 
� is �� For x�� x� � Z�n � let c � 

if x� � x� � �n and let c � � otherwise� and let x � x� � x� � c�n � x� ��n x�� At the heart of
the integer multiplication self�testing program is the fact that f�x�� y� � f�x�� y� � f�x� y� � yc�n�
Note that Flinear�x�� x�� � yc�n is easily computable�

Based on Generic Self�Test � with � � 
�
�� the following program is an �
����� 
�
���self�
testing program for f making oracle calls to P with respect to UZ�n � UZ�n � The input to the
program is n and the con�dence parameter ��

Program Integer Multiplication Self�Test�n� ��

N � 

�� ln�����
total 	 �
Do for m � 
� � � � � N
Call Int Mult Linear Consistency�n� answer�
total 	 total � answer

�




If total�N � 
�
�� then output �FAIL� else output �PASS�

Int Mult Linear Consistency�n� answer�

Choose y �U Z�n

Choose x� �U Z�n

Choose x� �U Z�n

x	 x� ��n x�
c	 �x� � x�� div �n

If P �x�� y� � P �x�� y� � P �x� y� � cy�n then answer 	 � else answer	 


Theorem 	 The above program is a �
����� 
�
���self�testing program for integer multiplication�

PROOF� Similar to the proof of Theorem �� except that for each y there is a di	erent value for
��y� and � is the average of ��y� over all y� For the �rst part of the proof� note that ��y� � ���y���
for each value of y� Thus� if � � E���y�
 � � then � � E���y�
 � ����� The rest of the proof is the
same for case 
� Similar comments hold for the second case of the proof�

The integer multiplication self�testing program is both di	erent and e�cient� The only non�
trivial lines of code in the self�testing program are generation of random numbers� calls to the
program P � integer additions� shifts and integer comparisons�

��� Modular Multiplication

For positive integers x� y and R� let f�x� y�R� � x �R y� For �xed value for R and y� f can be
thought of as a function of x� In this case� the domain of f can be thought of as G � ZR�n where

 is �R�n and the range of f is G� � ZR where 
� is �R� The heart of the modular multiplication
self�testing program is the fact that� for any pair x�� x� � ZR�n � f�x�� y� R� �R f�x�� y� R� �
f��x� �R�n x��� y� R�� Thus� Flinear�x�� x�� � ��� The generator for G is 
� It is easy to see that
f��z �R�n 
�� y� R� � f�z� y�R� �R y� and thus F �

neighbor�z� � y�

Based on Generic Self�Test � with � � 
�
�� the following program is an �
����� 
�
���self�
testing program for f with respect to UZR�n � UZR�n � UfRg� The input to the program is n� R
and the con�dence parameter ��

Program Modular Multiplication Self�Test�n�R����

N � 

�� ln�����
total 	 �
Do for m � 
� � � � � N
Call Mult Mod Linear Consistency�n�R� answer�
total 	 total � answer

If total�N � 
�
�� then output �FAIL�

N � � �� ln�����
total� 	 �
Do for m � 
� � � � � N �

Call Mult Mod Neighbor Consistency�n�R� answer�

��



total� 	 total� � answer
If total��N � � 
�� then output �FAIL� else output �PASS�

Mult Mod Linear Consistency�n�R� answer�

Choose y �U ZR�n
Choose x� �U ZR�n
Choose x� �U ZR�n
x	 x� �R�n x�
If P �x�� y� R� �R P �x�� y� R� � P �x� y�R� then answer	 � else answer 	 


Mult Mod Neighbor Consistency�n�R� answer��

Choose y �U ZR�n
Choose z �U ZR�n
z� 	 z �R�n 

If P �z� y�R� �R y � P �z�� y� R� then answer	 � else answer 	 


Theorem 
 The above program is an �
����� 
�
���self�testing program for modular multiplica�
tion�

PROOF� See the proof of Theorem �� and combine this with some of the aspects of the proof of
Theorem ��

The only non�trivial lines of code in the self�testing program are generation of random num�
bers� calls to the program P � integer additions and integer comparisons� except for the line �If
P �z� y�R� �R y � P �z�� y� R� then � � � � in the Mult Mod Neighbor Consistency program�
The problem is that although P �z� y�R� and P �z�� y� R� are both in ZR� y is in the much larger
range ZR�n and thus y mod R cannot be calculated easily using just additions and comparisons�

This suggests using the library approach to get around this problem� i�e� use a library of
functions including modular multiplication and the mod function� We have already presented a
self�testing�correcting pair �T �� C�� for the modR function� The modularmultiplication self�testing
program can then call C � to compute y mod R� C� computes this correctly with high con�dence
using any program P � for the mod R function that passes the test T �� Note that any modular
multiplication program has the mod R function embedded in it� when restricting the inputs to
multiplication by 
� The resulting modular multiplication self�testing program is both di	erent
and e�cient�

��� Modular Exponentiation

For positive integers x� a and R� let f�a� x�R� � ax mod R� Fix a and R to be positive integers� and
as before we restrict attention to a and R such that gcd�a�R� � 
 and we assume that we know the
factorization of R and thus can easily compute 	�R�� In this case� the domain of f is G � Z��R��n

where 
 is ���R��n and the range of f is G� � Z�
R and 
� is �R� Because gcd�a�R� � 
� a��R� �


 mod R� The heart of the modular exponentiation self�testing program is the fact that� for any
pair x�� x� � Z��R��n � f�a� x�� R� �R f�a� x�� R� � f�a� x����R��n x�� R�� Thus� Flinear�x�� x�� � ���

��



The generator for G is 
� It is easy to see that f�a� �z ���R��n 
�� R� � f�a� z�R� �R a� and thus
F �
neighbor�z� � a�

Based on Generic Self�Test � with � � 
�
�� the following program is an �
����� 
�
���self�
testing program for f making oracle calls to P with respect to Ufag � UZ��R��n

� UfRg� The input
to the program is n� a� R and the con�dence parameter ��

Program Modular Exponentiation Self�Test�n� a�R���

N � 

�� ln�����
total 	 �
Do for m � 
� � � � � N
Call Mod Exp Linear Consistency�n� a�R� answer�
total 	 total � answer

If total�N � 
�
�� then output �FAIL�

N � � �� ln�����
total� 	 �
Do for m � 
� � � � � N �

Call Mod Exp Neighbor Consistency�n� a�R� answer�
total� 	 total� � answer

If total��N � � 
�� then output �FAIL� else output �PASS�

Mod Exp Linear Consistency�n� a�R� answer�

Choose x� �U Z��R��n
Choose x� �U Z��R��n
x	 x� ���R��n x�
If P �a� x�� R� �R P �a� x�� R� � P �a� x�R� then answer 	 � else answer 	 


Mod Exp Neighbor Consistency�n� a�R� answer��

Choose z �U Z��R��n
z� 	 z ���R��n 

If P �a� z�R� �R a � P �a� z�� R� then answer 	 � else answer 	 


Theorem � The above program is an �
����� 
�
���self�testing program for modular exponentia�
tion�

PROOF� Analogous to the proof of Theorem � �page ����

The modular exponentiation self�testing program consists solely of integer additions� integer
comparisons and calls to P except in two lines of code� �
� The line �If P �a� x�� R� �RP �a� x�� R� �
P �a� x�R� � � � � in the programMod Exp Linear Consistency� ��� The line �If P �a� z�R��Ra �
P �a� z�� R� � � � � in the program Mod Exp Neighbor Consistency� We propose computing
these two lines using the library approach� We can use the modular multiplication self�correcting
program presented above to compute �
� and ��� which uses a program P � for computing multipli�
cation modR� where we �rst use the modular multiplication self�testing program to verify that P �

��



is not too faulty� In addition to these two lines of code� in the implicit range�check code �see page ��
we need to verify that the answer 
 to a call to P is in range� i�e� in Z�

R� This can be done by
verifying that 
 � ZR �this is easy� and that gcd�
�R� � 
� If R is a prime� the gcd computation
is trivial �just verify that 
 �� ��� If the prime factorization of R is

Q�
i�� p

ei
i where � is a small

positive integer then to verify that gcd�
�R� � 
� we can use the mod function self�correcting
program to compute 
 mod pi for all i � 
� � � � � � and verify that none of the answers are zero�
This requires that the mod function is not too faulty for modpi computations for all i � 
� � � � � ��
In subsection ��� we show how to reduce this requirement to the case where the mod function is not
too faulty for modR computations� In this same subsection we present a self�testing�correcting
pair for modular exponentiation when the prime factorization of R and 	�R� are not known� at
the expense of some loss in e�ciency�

��	 Integer Division

We now consider division of integers by R for a positive number R� in this case� f�x�R� �
�x div R� xmod R�� We write fdiv�x�R� � x div R and fmod�x�R� � x mod R� We have already
seen that the mod function has the linearity property� We now describe in what sense integer
division has the linearity property� For any triple of integers x�� x� and R� x� div R� x� div R�
�x� mod R�x� mod R� div R � �x��x�� div R and x� mod R�R x� mod R � x��R x�� For the
following discussion� �x R to an arbitrary positive integer� In this case� f can be viewed of as a
function of one input with domain G � ZR�n where 
 is �R�n � The range G� of f is isomorphic
to Z� where 
� corresponds to �� An element of G� is a pair of integers �a� b�� where a � Z and
b � ZR� For any pair of elements �a� b�� �c� d� � G�� �a� b� 
� �c� d� � �a� c� �b� d� div R� b�R d��
For x�� x� � ZR�n � let c � �x� � x�� div R�n and let x � x� � x� � cR�n � x� �R�n x�� At the
heart of the integer division self�testing program is the fact that fdiv�x�R� � c�n � fdiv�x�� R� �
fdiv�x�� R���fmod�x�� R��fmod�x�� R�� div R and that fmod�x�R� � fmod�x�� R��R fmod�x�� R�

Based on Generic Self�Test � with � � 
�
�� the following program is an �
����� 
�
���self�
testing program for f with respect to UZR�n � UfRg� The input to the program is n�R and the
con�dence parameter �� We refer to the output of P as P �x�R� � �Pdiv�x�R�� Pmod�x�R���

Program Integer Division Self�Test�n�R� ��

N � 

�� ln�����
total 	 �
Do for m � 
� � � � � N
Call Int Div Linear Consistency�n�R� answer�
total 	 total � answer

If total�N � 
�
�� then output �FAIL� else output �PASS�

Int Div Linear Consistency�n�R� answer�

Choose x� �U ZR�n
Choose x� �U ZR�n
x	 x� �R�n x�
c	 �x� � x�� div R�n

answer 	 �

��



If Pdiv�x�� R� � Pdiv�x�� R� � �Pmod�x�� R� � Pmod�x�� R�� div R �� Pdiv�x�R� � c�n

then answer 	 

If Pmod�x�� R� �R Pmod�x�� R� �� Pmod�x�R� then answer 	 


Theorem �
 The above program is a �
����� 
�
���self�testing program for integer division�

PROOF� Similar to the proof of Theorem � �page ����

� Libraries

Often programs for related functions are grouped in packages� common examples include packages
that solve statistics problems or packages that do matrix manipulations� It is reasonable therefore
to use programs in these packages to help test and correct each other� We extend the theory
proposed in �
�� Blum
 to allow the use of several programs� or a library� to aid in testing and cor�
recting� We show that this allows one to construct self�testing�correcting pairs for functions which
did not previously have e�cient self�testing or self�correcting programs� or even result checkers�
Thus� the self�testing�correcting pair is given a collection of programs� all of which are possibly
faulty� and may call any one of them in order to test or correct a particular program� Working with
a library of programs rather than with just a single program is a key idea� enormous di�culties
arise in attempts to result check a determinant or rank program in the absence of programs for
matrix multiplication and inverse�

The notion of libraries is useful for another reason as well� Consider again the problem of
designing a self�testing�correcting pair for the determinant� Many of the proposed solutions require
matrix multiplication� However� matrix multiplication and determinant are equivalent problems
with respect to asymptotic running times ��� Aho Hopcroft Ullman
� Therefore� a determinant self�
testing�correcting pair using matrix multiplicationwill not be quanti�ably di	erent from a program
for the determinant� On the other hand� since matrix multiplication can be self�tested�corrected�
one should not consider the complexity of the matrix multiplication routine towards the complexity
of the self�testing�correcting pair for the determinant� In other words� the complexity of the self�
testing�correcting pair should be evaluated as the complexity of the unchecked parts of the self�
testing�correcting pair� The notion of libraries gives us a clean way of evaluating the complexity
of the unchecked parts of the self�testing�correcting pair�

As an example of self�testing�correcting pairs written for a library of programs� we show how
to self�test�correct a library of possibly fallible programs for matrix multiplication� matrix inverse�
determinant and rank� As we informally discussed before� a library of self�testing�correcting pairs
based on similar principles can be constructed for the following functions� integer mod� modular
multiplication� modular exponentiation� and multiplicative inverse mod R� With such a library�
the self�testing�correcting for all functions can be done with only a small number of additions�
subtractions� comparisons and generation of random numbers�

��� De�nitions

We give the following de�nitions� which generalize the previously given self�testing�correcting
de�nitions�

��



Definition ��
 �library� A library is a family of functions f�� � � � � fc for some positive constant
c� An input set for a library is a family �I��D��� � � � � �Ic�Dc�� where Di

n is a distribution on inputs
Iin to f i� An error set for a library is a family of constants ��� � � � � �c� where � � �i � 
�

Definition ��� �library self�testing� A self�testing program for a library f�� � � � � fc with input set
�I��D��� � � � � �Ic�Dc�� error set ���� � � � � �

c
� and error set ���� � � � � �

c
�� where� for each i � 
� � � � � c�

�i� � �i�� is a probabilistic program T that has input n and � and makes calls to P �� � � � � P c� where
P i supposedly computes f i� T has the following properties�

�� If� for all i � 
� � � � � c� error�f i� P i�Di
n� � �i� then T outputs 	PASS
 with probability at least


� ��


� If� for some i � 
� � � � � c� error�f i� P i�Di
n� � �i� then T outputs 	FAIL
 with probability at

least 
� ��

Definition ��� �library self�correcting� A self�correcting program for f� with respect to a library
f�� � � � � fc with input set �I��D��� � � � � �Ic�Dc� and error set ��� � � � � �c is a probabilistic program C
that on input n� x � I�n and � makes calls to P �� � � � � P c to compute C�x�� C has the property that
if� for all i � 
� � � � � c� error�f i� P i� Di

n� � �i then� for all x � I�n� C�x� � f��x� with probability at
least 
� ��

Definition ��� �library self�testing�correcting pair� A self�testing�correcting pair for f� with re�
spect to a library f�� � � � � fc is a pair of probabilistic programs �T�C� with the following properties�
T is a self�testing program for the library with some input set �I��D��� � � � � �Ic�Dc� and pair of
error sets ���� � � � � �

c
� and ���� � � � � �

c
�� C is a self�correcting program for f� with respect to the li�

brary with the same input set �I��D��� � � � � �Ic�Dc� and with an error set ��� � � � � �c� where for all
i � 
� � � � � c� � � �i� � �i� � �i � 
�

As before� we require that both T and C be di	erent than any correct program for f�� To
enforce this condition� we say that T and C are di�erent than any correct program for f� if the
incremental times of T and C� not including the time for calls to the programs P �� � � � � P c� are
smaller than the fastest known running time of any correct program for computing f�� We say that
T and C are e�cient if the total time of T and C� including the time for the calls to the program
P �� � � � � P c� are within a constant multiplicative factor of the running time of P �� assuming that
the running times of P �� � � � � P c are reasonable with respect to the running time of P ��

A typical way to build a self�testing�correcting pair �T�C� for f� with respect to a library f�� f�

is as follows� First� build a self�testing�correcting pair �T �� C�� for f�� Now consider building the
self�testing program T for f�� where program P � supposedly computes f� and P � supposedly
computes f�� The typical situation is that T � in order to self�test P �� needs to compute f� on
various inputs� Instead of computing f� directly� T �rst uses T � to test how well P � computes f��
If P � passes the test then T uses the self�corrector C� for f�� which makes calls to P �� to correctly
compute f� whenever needed� Similarly� the self�corrector C may need to compute f� on various
inputs� in which case it uses C� which in turn makes calls to P ��

��



� The Linear Algebra Library

We now show how to self�test�correct a library of possibly fallible programs for matrix multi�
plication� matrix inverse� determinant and rank� We use the following notation throughout this
subsection�

Definition ��
 �matrix notation� Let Mn�n�F 
 be the set of n � n matrices with entries from a
�eld F � and let UMn�n �F 	 be the uniform distribution on Mn�n�F 
� For all A � Mn�n�F 
� let
det�A� be the determinant of A and let rank�A� be the rank of A� For all r � f�� � � � � ng� let Irn�n
be the n � n matrix where all entries are � except that the �rst r entries along the main diagonal
are �� and thus Inn�n is the identity matrix� For all r � f�� � � � � ng� M r

n�n�F 
 be the set of matrices
in Mn�n�F 
 of rank r� and let UMr

n�n
�F 	 be the uniform distribution on M r

n�n�F 
� Thus� Mn
n�n�F 


is the set of invertible matrices in Mn�n�F 
�

	�� Matrix Multiplication

The input to matrix multiplication is A�B � Mn�n�F 
� and the output is A � B� The input to
matrix inverse is A �Mn�n�F 
� and the output is A�� if it exists� and �NO� otherwise� The input
to determinant is A �Mn�n�F 
� and the output det�A�� The input to rank is A �Mn�n�F 
� and
the output is rank�A��

For the analysis of the running time� we assume that �eld operations can be performed in
constant time� and that an element from F can be randomly chosen uniformly in constant time�
The self�testing�correcting pairs that we present are all di�erent and e�cient�

Program Freivalds Checker described below is due to ���� Freivalds
�

Speci�cations of Matrix Mult Self�Correct�n�A�B� ���
If error�f� P�UMn�n�F 	 � UMn�n �F 	� � 
�� then the probability that the output is equal to A �B is
at least 
� ��

Program Matrix Mult Self�Correct�n�A�B� ��

Do for i � 
� � � � ��
Choose A� �U Mn�n�F 

Choose B� �U Mn�n�F 

A� 	 A �A�

B� 	 B �B�

C 	 P �A�� B�� � P �A�� B�� � P �A�� B�� � P �A�� B��
If Freivalds Checker�n�A�B�C� �� ��PASS� then output C and HALT

Speci�cations of Freivalds Checker�n�A�B�C� ���
If C �� A �B then output �FAIL� with probability at least 
��� If C � A �B then output �PASS��
The running time is O�n� ln�
�����

Program Freivalds Checker�n�A�B�C� ��

��



Do for j � 
� � � � � ln�
���
Choose n�vector R �� R�� � � � � Rn �� where independently for each i� Ri �U F
If C �R �� A � �B �R� then output �FAIL� and RETURN

Output �PASS�

Lemma �	 Matrix Mult Self�Correctmeets the speci�cations� Furthermore� the expected total
time is O�T �n� � n� ln�
����� where T �n� is the running time of P on inputs from Mn�n�F 
 �
Mn�n�F 
�

PROOF� A� �U Mn�n�F 
� A� �U Mn�n�F 
� B� �U Mn�n�F 
� B� �U Mn�n�F 
 and� although A�

may depend on A� and B� may depend on B�� A� and A� are independent of B� and B�� Hence
P �Ai� Bj� �� Ai �Bj with probability at most 
��� and thus C � A �B with probability at least 
��
at each iteration� Let p be the probability that the �nal output of Matrix Mult Self�Correct
is equal to A � B� With probability at least 
�� in the �rst iteration C � A � B� in which case
Freivalds Checker returns �PASS�� With probability at most 
�� in the �rst iteration� C �� A�B�
in which case Freivalds Checker returns �FAIL� with probability at least 
� �� and the second
iteration starts� Thus p � �

�
� �

�
�
� ��p� From this� it can be veri�ed that 
� p is at most ��

The expected total time ofMatrix Mult Self�Correct is at most O�T �n��n� ln�
���� times
the expected number of iterations until C � A �B� which is at most two�

The self�testing program for matrix multiplication program is simple� The following step is
executed O�ln�
���� times to obtain a good estimate of error�f� P�UMn�n�F 	 � UMn�n�F 	�� In�
dependently choose A �U Mn�n�F 
 and B �U Mn�n�F 
 and set C 	 P �A�B�� If the output
of Freivalds Checker�n�A�B�C� 
��� is �PASS�� then the answer is � from the step� and if
the output is �FAIL� then the answer is 
� It is easy to verify that if error�f� P�UMn�n�F 	 �
UMn�n �F 	� � 
�� then the fraction of 
 answers is at least 
�
� with probability at least 
 � ��
and if error�f� P�UMn�n�F 	 �UMn�n �F 	� � 
��� then the fraction of 
 answers is at most 
�
� with
probability at least 
� �� This yields a �
���� 
����self�tester for matrix multiplication�

	�� Matrix Inversion

We next design a self�correcting program for matrix inversion� Hereafter� we call Matrix Mult
Self�Correct �abbreviated MMSC� whenever we want to multiply matrices together� The as�
sumption is that MMSC uses a program P� has already been self�tested and �PASSED� to com�
pute matrix multiplications� To avoid cluttering the explanation with messy details� we assume
that P� �PASSED� for good reason� i�e� it has error probability at most 
��� and thus MMSC
does self�correct�

We use program Gen Inv Matrix�n� as a subroutine in our code to choose A �U Mn
n�n�F 
�

Gen Inv Matrix�n� is due to ���� Randall
� and a description of it can be found there� The
incremental time of Gen Inv Matrix�n� is O�n��� excluding the time for computing the one
required matrix multiplication� We assume that Gen Inv Matrix�n� calls MMSC in order to
compute the matrix multiplication� Thus� Gen Inv Matrix�n� has a small probability of error�
which we ignore for purposes of clarity� Gen Inv Matrix�Det�n�� also due to ���� Randall
� in
addition to outputting A �U Mn

n�n�F 
� also outputs det�A��

Speci�cations of Matrix Inv Self�Correct�n�A� ���

��



If error�f� P�UMn
n�n

�F 	� � 
�� and A is invertible then the output is A�� with probability at least


� �� If A is not invertible then the output is �NO� with probability at least 
� ��

Program Matrix Inv Self�Correct�n�A���

N 	 
� ln�
���
Do for i � 
� � � � � N
R	Gen Inv Matrix�n�
R� 	MMSC�n�A�R� 
����
R�� 	 P �R��
If R�� � �NO� then answeri 	 �NO�
Else
A� 	 MMSC�n�R�R��� 
����
If Inn�n �� MMSC�n�A�A�� 
���� then answeri 	 �NO� else answeri 	 A�

Output the most common answer among fansweri � i � 
� � � � � Ng

Lemma �
 Matrix Inv Self�Correct meets the speci�cations�

PROOF� Suppose that A is invertible� Then� because R � UMn
n�n

�F 	� A�R �U UMn
n�n

�F 	 � If the �rst

call to MMSC is correct then R� � A �R� Because the �rst call is correct with probability at least
�
���� the distance between the distribution on R� and UMn

n�n
�F 	 is at most 
���� Consequently

R�� � P �R�� � R��� � R�� � A�� with probability at least ��� � 
���� If R�� � R�� � A�� and
the second call to MMSC is correct then A� � A��� If the third call to MMSC is correct then
answeri � A��� Since these last two calls to MMSC are both correct with probability at least

��
�� answeri � A�� with probability at least ��� � 
��� � 
�
� � ���� Now suppose that
A is not invertible� Then� for every A�� Inn�n �� A� � A� Since the last call to MMSC is wrong
with probability at most 
���� it follows that answeri � �NO� with probability at least �
����
Proposition 
� shows that 
� ln
�� trials are su�cient to guarantee the result�

As was the case for the self�testing program for matrix multiplication� the self�tester for matrix
inversion is simple� Notice that inputs need only be self�tested with respect to UMn

n�n
�F 	� The

following step is executed O�ln�
���� times to obtain a good estimate of error�f� P�UMn
n�n

�F 	�� Set

R	 Gen Inv Matrix�n�� and set R� 	 P �R�� If Inn�n � MMSC�R�R�� 
���� then the answer
is � from the step� and otherwise the answer is 
� It is easy to verify that if error�f� P�UMn

n�n
�F 	�

� 
�� then the fraction of 
 answers is at least 
�
� with probability at least 
 � �� and if
error�f� P�UMn

n�n
�F 	� � 
��� then the fraction of 
 answers is at most 
�
� with probability at

least 
� �� This yields a �
���� 
����self�tester for matrix inversion�

	�� Determinant

We next design a self�correcting program for determinant� Hereafter� we call Matrix Inv Self�
Correct �abbreviated MISC� whenever we want to �nd the inverse of a matrix� The assumption
is that MISC uses a program P� has already been self�tested and �PASSED� to compute matrix
inversions� To avoid cluttering the explanation with messy details� we assume that P� �PASSED�
for good reason� i�e� it has error probability at most 
��� and thus MISC does self�correct�

��



Speci�cations of Determinant Self�Correct�n�A� ���
If error�f� P�UMn

n�n
�F 	� � 
�
� then the output is det�A� with probability at least 
� ��

Program Determinant Self�Correct�n�A���

N 	 O�ln�
����
Do for i � 
� � � � � N
If MISC�n�A� ���� � �NO� then answeri 	 �
Else
R	Gen Inv Matrix�n�
R� 	MMSC�n�A�R� 
�
��
dR 	 P �R�
dR� 	 P �R��
If dR � � then answeri 	 � else answeri 	 dR�dR�

Output the most common answer among fansweri � i � 
� � � � � Ng

One can easily prove the following lemma�

Lemma �� Determinant Self�Correct meets the speci�cations�

As was the case for the self�testing program for matrix inversion� the self�tester for deter�
minant is simple and the inputs need only be self�tested with respect to UMn

n�n
�F 	� The fol�

lowing step is executed O�ln�
���� times to obtain a good estimate error�f� P�UMn
n�n�F 	

�� Set

�R� d�	 Gen Inv Matrix�Det�n�� and set d� 	 P �R�� If d � d� then the answer is � from the
step� and otherwise the answer is 
� It is easy to verify that if error�f� P�UMn

n�n
�F 	� � 
�� then the

fraction of 
 answers is at least 
�
� with probability at least 
� �� and if error�f� P�UMn
n�n

�F 	� �


��� then the fraction of 
 answers is at most 
�
� with probability at least 
 � �� This yields a
�
���� 
����self�tester for matrix determinant�

	�� Matrix Rank

We �nally design a self�testing�correcting pair for Matrix Rank� One interesting aspect of the
matrix rank self�corrector is that to self�correct an n� n matrix we call the program on �n� �n
matrices�

Definition ��� �distribution for matrix rank� Let Dn be the distribution de�ned by B randomly
chosen as follows� Choose r �U f�� � � � � ng and then choose B �U M r

n�n�F 
�

Let A �Mn�n�F 
�

Speci�cations of Matrix Rank Self�Correct�n�A� ���
If error�f� P�D�n� � 
�
� then the output is rank�A� with probability at least 
� ��

Program Matrix Rank Self�Correct�n�A���

�




N 	 O�ln�
����
Do for i � 
� � � � � N
Choose r �U f�� � � � � ng

A� 	

�
A I�n�n

I�n�n Irn�n

�
R	Gen Inv Matrix��n�
R� 	MISC��n�R� 
�
��
S 	 MMSC��n�A�� R� 
�
��
T 	MMSC��n�R�� S� 
�
��
answeri 	 P �T �� r

Output the most common answer among fansweri � i � 
� � � � � Ng

Lemma �
 Matrix Rank Self�Correct meets the speci�cations�

PROOF� If the call to MISC and the two calls to MMSC are correct then R� � R��� S �
A� � R and T � R�� � A� � R in which case rank�T � � rank�A�� � rank�A� � r� Let E�n be the
distribution de�ned by B where B is randomly chosen as follows� Choose r �U f�� � � � � ng and

B �U M
r�rank�A�
�n��n �F 
� Because R �U M�n

�n��n�F 
� we claim that the distribution E ��n on T can be
expressed in the form

E ��n �

�


�
E�n �

�


�
F�n�

where F�n is some distribution on M�n��n�F 
� The case when T is chosen according to E�n with
probability ��

�
 corresponds to the case when each call to MISC and MMSC is correct� which
happens with probability at least ��

�
 independent of R� and thus in addition rank�T � � rank�A��r�
It is not hard to verify that for all B � M�n��n�F 
� E�n�fBg
 � �D�n�fBg
� From this and the
assumption that error�f� P�D�n� �

�
�
 it follows that

Pr�P �B� �� rank�B�
 �



�

when B is randomly chosen according to E�n� From this and the fact that E ��n � ��
�
E�n�

�
�
F�n it

follows that

Pr�P �T � �� rank�A� � r
 �

�


�
�



�
�

�


�
�

�


�
�

Thus� for each i� Pr�answeri � rank�A�
 � ��
�


� �
�
� The lemma follows from a slight modi�cation

of Proposition 
�

As was the case for the self�testing program for matrix inversion� the self�tester for matrix rank
is simple�

Speci�cations of Matrix Rank Self�Test�n� ���

��� If error�f� P�Dn� � 
��� then the output is �PASS� with probability at least 
� ��

��� If error�f� P�Dn� � 
�
� then the output is �FAIL� with probability at least 
� ��

Program Matrix Rank Self�Test�n� ��

��



answer 	 �
N 	 O�ln�
����
Do for i � 
� � � � � N
Choose r �U f�� � � � � ng
R	Gen Inv Matrix�n�
R� 	MISC�R� 
�����
S 	 MMSC�Irn�n� R� 
�����
T 	MMSC�R�� S� 
�����
r� 	 P �T �
If r �� r� then answer 	 answer � 


If answer � N��� then output �FAIL� then output �PASS�

Lemma �� Matrix Rank Self�Test meets the speci�cations�

PROOF� It is easy to verify that if error�f� P�Dn� � 
�
� then the fraction of 
 answers is at least

��� with probability at least 
� � and if error�f� P�Dn� � 
��� then the fraction of 
 answers is
at most 
��� with probability at least 
� ��

� Bootstrap Self�Testing

In this section we introduce another method of designing self�testers� It is easier to prove that this
method of self�testing meets its speci�cations than it is for self�testing based on linearity� This
method works for all the applications that the linear self�testing works for� as well as for polynomial
multiplication� matrix multiplication� modular exponentiation when the 	 function of the modulus
is not known� and integer division� The drawback is that this method is often less e�cient and
that the code is slightly more complicated�

The two requirements for this method to work are random self�reducibility and�

Definition ��
 �smaller self�reducibility� We say that f is c�self�reducible to smaller inputs if for
all x � In� f�x� can be expressed as an easily computable function Fsmaller of x� a�� � � � � ac and
f�a��� � � � � f�ac�� where a�� � � � � ac are each in In�� and easily computable from x� Furthermore�
for all x � I�� f�x� is easy to compute directly�

For example� for integer multiplication� where f�x�� x�� � x� � x�� this condition is ful�lled as
follows� Let x � �x�� x��� where x�� x� � Z�n and where n is a power of two� Let xL� be the most
signi�cant half of the bits of x� and let xR� be the least signi�cant half of the bits of x�� De�ne
xL� and xR� analogously with respect to x�� Let a� � �xR� � x

R
� �� a� � �xL� � x

R
� �� a� � �xR� � x

L
� � and

a� � �xL� � x
L
� �� Then� f�x� � Fsmaller�x� a�� � � � � ac� f�a��� � � � � f�ac�� � f�a����f�a���f�a����n���

f�a���n�

The overall idea behind this method is that once smaller size inputs have been self�tested� larger
inputs can be self�tested by choosing a random input x� decomposing x into smaller inputs� self�
correcting the smaller inputs using random self�reducibility �which works because smaller inputs
have been self�tested�� and then comparing the answer against the answer the program gives on
input x� This method of bootstrapping can be continued until the desired input size is reached�
We now give more speci�c details�

��



We say that x � In is bad if P �x� �� f�x�� and otherwise x is good� Generic Self�Correct is
the program described on page 
�� Program Rec Self�Test� described below� veri�es that most
of the inputs in In are good given that� recursively� most of the inputs in In�� are good�

Speci�cations of Rec Self�Test�n� ���

��� If at least a fraction of �
�c of the inputs in In are bad and at most a fraction of �

�c of the inputs
in In�� are bad then Rec Self�Test outputs �FAIL� with probability at least 
� ��

��� If at most a fraction of �
�
c of the inputs in In are bad and at most a fraction of �

�c of the
inputs in In�� are bad then Rec Self�Test outputs �PASS� with probability at least 
� ��

Program Rec Self�Test�n� ��

N 	 O�c ln�
����
Do for m � 
� � � � � N
answerm 	 �
Choose x �U In
If n � 
 then�
Compute f�x� directly
If f�x� �� P �x� then answerm 	 


Else n � 
 then�
Generate smaller inputs a�� � � � � ac based on x
For k � 
� � � � � c� yk 	 Generic Self�Correct�n� 
� ak�

�
�
c� �

If Fsmaller�x� a�� � � � � ac� y�� � � � � yc� �� P �x� then answerm 	 

If "N

k��answerk�N � �
�
c then �FAIL� else �PASS�

Lemma �� Rec Self�Test meets the speci�cation�

PROOF�

��� Because of the speci�cations for Generic Self�Correct and because it is called with con��
dence parameter �

�
c� � the probability that there is an incorrect yk for k � 
� � � � � c is at most
�
�
c

� Therefore� in each iteration Pr�answerm � 

 � �
�c
�
� �

�
c
� � ��


�c
� �

�
c
�

��� In each iteration Pr�answerm � 

 � �
�
c �

�
�
c �

�
�
c �

�
�
c �

Thus� the average of answerm over O�c ln�
���� iterations is at least �
�
c with probability at least


� � in case 
 and at most �
�
c with probability at least 
� � in case ��

Finally� we describe the main program Generic Bootstrap Self�Test� We make the conven�
tion that if any call to one of the subroutines returns �FAIL� then �nal output is �FAIL� and
otherwise the output is �PASS��

Speci�cations of Generic Bootstrap Self�Test�l� x� ���

��� If there is an i� 
 � i � l� such that the fraction of of bad inputs in Ii is at least �
�c � then

output �FAIL� with probability at least 
� ��

��



��� If for all i� 
 � i � l� the fraction of bad inputs in Ii is at most �
�
c then output �PASS� with

probability at least 
� ��

Program Generic Bootstrap Self�Test�l� x� ��

For i � 
� � � � � l� call Rec Self�Test�i� ��l��

Theorem �� Generic Bootstrap Self�Test meets the speci�cations�

PROOF�

��� If there is an i� 
 � i � l such that for all 
 � j � i � 
� the fraction of bad inputs in Ij
is at most �

�c and the fraction of bad inputs in Ii is at least
�
�c then Rec Self�Test�i� ��l�

outputs �FAIL� with probability at least 
� ��l � 
� ��

��� If� for all i� 
 � i � l� the fraction of bad inputs in Ii is at most �
�
c then Rec Self�Test�i� ��l�

outputs �FAIL� with probability at most ��l� Thus� over the l calls� the probability that all
answers are �PASS� is at least 
� ��


�� Matrix Multiplication

We showed in Subsection ��
 how to get a self�tester for matrix multiplication using Freivalds �
Checker� To illustrate the method� we show in this subsection how to get a self�tester based on
bootstrapping� We retain the matrix notation introduced on page ���

random self�reducibility� Let A�B � Mn�n�F 
� Independently choose A� �U Mn�n�F 
�
B� �U Mn�n�F 
 and let A� 	 A�A�� B� 	 B �B�� Then �A�� B��� �A�� B��� �A�� B��� �A�� B��
are each distributed according to UMn�n �F 	 � UMn�n�F 	 and f�A�B� � f�A�� B�� � f�A�� B�� �
f�A�� B�� � f�A�� B���

smaller self�reducibility� Let A�B �M�n��n�F 
 where

A �

�
A�� A��

A�� A��

�
� B �

�
B�� B��

B�� B��

�

and A��� A��� A��� A��� B��� B��� B��� B�� �Mn�n�F 
� Then

f�A�B� �

�
f�A��� B��� � f�A��� B��� f�A��� B��� � f�A��� B���
f�A��� B��� � f�A��� B��� f�A��� B��� � f�A��� B���

�
�

Since matrix multiplication is randomly self�reducible and self�reducible to smaller inputs� the
method of bootstrapping can be used to self�test the matrix multiplication function� The self�tester
makes O�log�n�� calls to the program� However� the self�tester makes only a constant number of
the calls to the program on n�n matrices� only a constant number of the calls to the program are
on n���n�� matrices� etc� Thus� the incremental time of the self�tester is linear in the size of the
input� and the total time is linear in the running time of the program�

��




�� Polynomial Multiplication

We consider multiplication of polynomials over �nite �elds� in this case f�p� q� � p � q where p� q
are two degree n polynomials with coe�cients from �nite �eld F � Using Kaminski�s polynomial
multiplication result checker� one can get a self�tester for polynomial multiplication� We show how
to get a self�tester based on the method of bootstrapping�

Let Pn�F 
 be the set of degree n polynomials where each coe�cient is an element of the �nite
�eld F � Let Un be the distribution on pairs of degree n polynomials where each coe�cient is chosen
independently and uniformly from the �nite �eld F �

random self�reducibility� Let p� q � Pn�F 
� Independently choose p� �U Pn�F 
� q� �U Pn�F 
�
and let p� 	 p � p�� q� 	 q � q�� Then �p�� q��� �p�� q��� �p�� q��� �p�� q�� are distributed according
to Un and f�p� q� � f�p�� q�� � f�p�� q�� � f�p�� q�� � f�p�� q���

smaller self�reducibility� Let p� q � P�n�F 
 where p � p�x
n � p�� q � q�x

n � q�� and
p�� p�� q�� q� � Pn�F 
� Then f�p� q� � f�p�� q��x�n � �f�p�� q�� � f�p�� q���xn � f�p�� q���

Since polynomial multiplication is randomly self�reducible and self�reducible to smaller inputs�
the method of bootstrapping can be used to self�test the polynomial multiplication function� The
self�tester makes O�logn� calls to the program� and has incremental time linear in the size of the
input� and the total time is linear in the running time of the program�


�� Modular Inverse

In this subsection� we develop some programs that are used in the modular exponentiation self�
tester developed in the next subsection� For simplicity� we assume that we are using a correct
program for modular multiplication in the code� all of the code can be modi�ed to use the library
approach described earlier� where all modular multiplications are computed by a self�correcting
program that makes calls to a program for modular multiplication that has been self�tested�

Let R be a positive integer of length n� For x � Z�
R� let f�x�R� be the mod R inverse of x� i�e�

f�x�R� �R x � 
� Let P be a program that supposedly computes f � We assume that P satis�es
the following condition� When x �U ZR� P �x�R� �R x � 
 with probability at least �

c ln�n� for some

constant c � �� We can easily estimate this probability by randomly choosing several independent
x �U ZR and computing the fraction of these x that satisfy P �x�R� �R x � 
� For all R � ��
#�R� � jZ�

Rj �
R


 ln�n� ���� Rosser� Schoenfeld
� and thus if P is correct for a constant fraction � of

the x � Z�
R then the above condition is true with c � ����

We now describe a random generator Gen Inv Mod�R� which makes calls to P to generate
x �U Z�

R�

Function Gen Inv Mod�R�

Repeat forever
Choose x �U ZR
Choose y �U ZR
z 	 x �R y
z� 	 P �z�R�

��



If z� �R z � 
 then return x and EXIT

Lemma �� If Gen Inv Mod�R� returns x� then x �U Z�
R� Furthermore� if P �w�R� �R w � 


with probability at least �
c ln�n� when w �U ZR� then the expected number of executions of the repeat

loop before Gen Inv Mod�R� halts is O�c� ln��n���

PROOF� P �z�R� �R z � 
 can be true only if z � Z�
R� which in turn can only be true if both

x � Z�
R and y � Z�

R� The conditional probability of choosing x such that x � Z�
R is uniform�

Furthermore� the conditional probability of choosing y such that y � Z�
R is uniform given x� Since

the distribution de�ned by x �Rw� where x is �xed in Z�
R and w �U Z�

R� is the uniform distribution
UZ�

R
� the conditional probability of choosing z such that z � Z�

R is uniform given x � Z�
R� Thus�

the probability that P �z�R� �R z � 
 is independent of x as long as x � Z�
R� This implies that each

x � Z�
R is equally likely to be the output of Gen Inv Mod�R��

The running time analysis is straightforward� noting that x � Z�
R with probability at least

�
c ln�n�

� and independently y � Z�
R with probability at least �

c ln�n�
�

The incremental time of Gen Inv Mod�R�� not counting the time for calls to the modular
multiplication program� is O�c�n ln��n��� The total time is O�c� ln��n�T �n��� where T �n� is the
running time of the modular multiplication program�

We next develop a function that on input x � Z�
R and R outputs the mod R inverse of x� This

function makes calls to both P and Gen Inv Mod� As before� we assume that P satis�es the
condition described above�

Function Mod Inv Self�Correct�x�R�

Repeat O�c ln�n�� times
w	 Gen Inv Mod�R�
y 	 x �R w
y� 	 P �y�R�
z 	 y� �R y
If z � 
 then EXIT repeat loop

If z �� 
 then return x� � 
 else return x� � w �R y�

Mod Inv Self�Correct �hereafter abbreviated Mod InvSC� has the property that if x � Z�
R

then with very high probability the output x� satis�es x� �R x � 
� For simplicity� hereafter we
assume that if x � Z�

R then the x� �R x � 
 always�

The expected incremental time of Mod InvSc�x�R� is O�c�n ln��n�� and the total time is
O�c� ln��n�T �n��� where T �n� is the running time of the modular multiplication program plus the
running time of the modular inverse program�


�� Modular Exponentiation

Let R be a positive integer of length m and let a � Z�
R� Let n be a positive integer that is a

power of � and let x � Z�n � Let f�a� x�R� � ax mod R� In previous sections we developed a self�
testing�correcting pair for f when the factorization of R is known� In this subsection� we develop
a self�testing�correcting pair for f without this assumption� Let P be a program that supposedly

��



computes f � We make the convention that if the second argument in a call to P is � �i�e� the
exponent is �� then the call to P is not actually made and the answer is automatically set to 
�

Speci�cations of Mod Expon Self�Correct�n� a� x�R� ���
If error�f� P�UZ�

R
� UZ�n

� UfRg� � 
��� then the output is ax mod R with probability at least

� ��

Program Mod Expon Self�Correct�n� a�x�R� ��

N 	 
� ln�
���
For i � 
� � � � � N do
Choose x� �U Z�n

If x� � x then � 	 � else � 	 

x� 	 x� x� � ��n

Choose x� �U Z�n

x� 	 �n � 
� x�
b	 Gen Inv Mod�R�

� 	 P �a �R b� x�� R�

� 	 P �a �R b� x�� R�

� 	 P �b� �x�� R�

� 	 P �b� �x�� R�

� 	Mod InvSC�P �b� x�� R�� R�


 	Mod InvSC�P �b� x�� R�� R�


 	Mod InvSC�P �a �R b� �x�� R�� R�

� 	Mod InvSC�P �a �R b� �x�� R�� R�
answeri 	 
� �R 
� �R 
� �R 
� �R 
� �R 

 �R 

 �R 
� �R ��a�

Output the most common answer among fanswerm � m � 
� � � � � Ng

Lemma �� Mod Expon Self�Correct meets the speci�cations�

PROOF� It can be veri�ed that x� �U Z�n � x� �U Z�n � x� �U Z�n and x� �U Z�n � Furthermore�
b �U Z�

R� and from this and because a � Z�
R� a �R b �U Z�

R� Thus� in all eight calls to P the input
distribution is UZ�

R
� UZ�n � UfRg �except in the case when � � �� in which case four of the calls

to P are not actually made and the answer is automatically 
�� Thus� with probability at least
���� all eight calls to P return the correct answer� It is not hard to verify that if all eight calls to
P return the correct answer� then by the properties of Mod InvSC� answeri � ax mod R� The
lemma follows from Proposition 
�

Hereafter� we refer to Mod Expon Self�Correct as Mod ExpSC� The incremental time of
Mod ExpSC� not counting time for calls to the programs for modular multiplication and modular
inverse� is O�n � c�m ln��m��� The total time of Mod ExpSC is O�c� ln��m�T �m� � T ��n�m���
where T �m� is the running time of the program for modular multiplication plus the running time
of the program for computing modular inverse and T ��n�m� is the running time of the program
for computing modular exponentiation�

We now describe the recursive self�tester for modular exponentiation�

Speci�cations of Rec Mod Expon Self�Test�n�R� ���

��



��� If error�f� P�UZ�

R
� UZ

�n��
� UfRg� � 
��� and error�f� P�UZ�

R
� UZ�n

� UfRg� � 
�
�� then
the output is �PASS� with probability at least 
� ��

��� If error�f� P�UZ�

R
� UZ

�n��
� UfRg� � 
��� and error�f� P�UZ�

R
� UZ�n

� UfRg� � 
��� then
the output is �FAIL� with probability at least 
� ��

Program Rec Mod Expon Self�Test�n�R���

answer 	 �
N 	 O�ln�
����
Do for i � 
� � � � � N
b	 Gen Inv Mod�R�
Choose y �U Z�n

Let y � y��n�� � y�� where y�� y� � Z�n��


� 	Mod ExpSC�n��� b� y�� 
��
��

� 	Mod ExpSC�n��� 
�� �

n��� 
� 
��
�� �R 
�


� 	Mod ExpSC�n��� b� y�� 
��
��
If P �b� y�R� �� 
� �R 
� then answer 	 answer � 


If answer � N��� then output �FAIL� then output �PASS�

Lemma �� Rec Mod Expon Self�Test meets the speci�cations�

PROOF� By design� b �U UZ�

R
and y �U UZ�n � Because b � Z�

R and by the properties of
Mod ExpSC� 
� �� by� mod R with probability at most 
��
� independent of b and y�� If


� � by� mod R� then 
� � Z
�
R� In this case� 
� �� 
�n����

� �R 
� � by��
n��

mod R with probability
at most 
��
�� Similarly� 
� �� by� mod R with probability at most 
��
�� Thus� the probability
that 
� �R 
� �� by mod R is at most ���
�� From this and Proposition 
 it can be veri�ed that
the lemma follows�

The incremental and total time of Rec Mod Expon Self�Test are linear in the incremental
and total time of Mod ExpSC�n�R� ��� respectively�

We �nally describe the self�tester for modular exponentiation� which is based on Generic
Boostrap Self�Test� We make the convention that if any call to one of the subroutines returns
�FAIL� then �nal output is �FAIL� and otherwise the output is �PASS��

Speci�cations of Mod Expon Bootstrap Self�Test�n�R� ���

��� If� for all i � 
� � � � � log�n�� error�f� P�UZ�

R
� UZ�i

� UfRg� � 
�
�� then output �PASS� with
probability at least 
� ��

��� If� for some i � 
� � � � � log�n�� error�f� P�UZ�

R
�UZ�i

�UfRg� � 
��� then output �FAIL� with
probability at least 
� ��

Program Mod Expon Bootstrap Self�Test�n�R� ��

For i � 
� � � � � log�n�� call Rec Mod Expon Self�Test��i� R� �� log�n��

��



Lemma �� Mod Expon Bootstrap Self�Test meets the speci�cations�

PROOF� Similar to the proof of Theorem 

 �page ����

The incremental and total time of Mod Expon Bootstrap Self�Test are linear in the incre�
mental and total time of Mod ExpSC�n�R� �� log�n��� respectively�

�
� Adleman Huang Kompella
 have independently discovered a method of result checking the
exponentiation function without the restriction that a and R be relatively prime� Their method
uses similar ideas of testing by bootstrapping� The incremental time of their result checker is O��n�
m� log�n��� not counting calls to the modularmultiplicationprogram or the modular exponentiation
program� The total time of their result checker is O��T �n�m� � T ��n�m�� log�n��� where T �n�m�
is the running time of the modular multiplication program for multiplying two n bit numbers mod
a number of length m� and T ��n�m� is the running time of the modular exponentiation program
where both the base and modulus are of length m and the exponent is of length n�

	 Future Work


 Are there self�testing�correcting pairs for other important functions� In this paper� we have
shown self�testing�correcting pairs for functions with the linearity property� Work in ���
Beaver Feigenbaum
 and ���� Lipton
 and ��
� Gemmell Lipton Rubinfeld Sudan Wigderson

has extended this to functions which compute polynomials over �nite �elds and this has
been extended in ���� Rubinfeld Sudan
 to work over rational domains� A variety of other
problems� have result checkers� and thus also self�testers� It would be interesting to �nd
self�correctors for such problems� An example is sorting�


 Is it possible to show that some functions are not going to have a self�testing�correcting
pair� Some progress can be found in �
�� Feigenbaum Kannan Nisan
� ���� Yao
� ��� Beigel
Feigenbaum
�


 Are there applications of the combinatorial theorems introduced in this paper in other areas�
We suggest the development of more probabilistic tools long these lines� Signi�cant progress
in this direction has been made in a series of papers by ��
� Gemmell Lipton Rubinfeld Sudan
Wigderson
�


 One area of practical concern for self�testing�correcting pairs is the overhead incurred by
running the self�tester and self�corrector� Recently a batch self�corrector for any function
with the linearity property has been designed which reduces the overhead to a small additive
factor if it is infrequent that P answers incorrectly for some input in a batch ���� Rubinfeld
�
We would like to design batch self�correctors for other important functions�
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