
Sublinear time algorithms

Ravi Kumar

�

Ronitt Rubinfeld

y

With the reent tremendous inrease in omputational power and heap storage, we are blessed

with a multitude of available, and possibly useful, information. It is always nie to have something

for (almost) nothing. However, this blessing is also something of a urse, for we may also be asked

to do something meaningful with all of this data. The sale of these data sets, oupled with the

typial situation in whih there is very little time to perform our omputations, raises the question

of whih omputations ould one hope to aomplish extremely quikly? In partiular, what an

one solve in sublinear time?

Sublinear time is a daunting goal sine it allows one to read only a minisule fration of the

input. Still, there are problems for whih deterministi exat sublinear time algorithms are known.

However, sine any sublinear time algorithm an only view a small portion of the input, for most

natural problems the algorithm must use randomization and must give an answer whih is in some

sense approximate. There is a growing body of work aimed at �nding sublinear time algorithms for

various problems. Reent results have shown that there are optimization problems whose values

an be approximated in sublinear time. In addition, property testing, an alternative notion of

approximation for deision problems, has been applied to give sublinear algorithms for a wide

variety of problems. One an also test various properties of distributions, where aess to the

distribution is given through samples generated aording to the distribution, in time sublinear

in the size of the support of the distribution. Several useful tehniques, inluding the use of the

Szemer�edi Regularity lemma and low rank approximations of matries, have emerged for designing

sublinear algorithms. Still, the study of sublinear algorithms is very new, and muh remains to be

understood about their sope.

We attempt to give some avor of the types of results that one an ahieve in sublinear time.

We will not survey the known results or give muh histori perspetive of their development. For

suh treatments, we refer the reader to some very good surveys on property testing [15, 27, 11℄.

Instead, we give a few simple examples meant to illustrate the range and sope of tehniques that

have been used in this area.

There is also muh interest in the related area of streaming algorithms, where the input is to be

read just one and the workspae (though not the time) is restrited to be sublinear in the size of

the input. We will not disuss streaming algorithms any further here, though we reommend the

surveys of [4, 25℄.

1 Traditional approximation algorithms

In reent years, sublinear time algorithms have been developed to estimate the quality of the optimal

solution for several optimization problems onerning graphs, strings, et. For many problems,

sublinear time approximations do not exist. However, there are often plausible assumptions that

�

IBM Almaden Researh Center, 650 Harry Road, San Jose, CA 95120. Email: ravi�almaden.ibm.om

y

NEC Laboratories Ameria In., 4 Independene Way, Prineton, NJ 08540. Email: ronitt�ne-labs.om

1



an be made on the input whih allow one to make a sublinear time approximation. For example,

one an approximate the size of the maximum ut in onstant time when the input is a dense

graph [17, 14℄, and in fat, one an approximate all dense problems in Max-SNP in onstant time

[3, 14, 2℄. It is interesting to note that often, but not always, sublinear time algorithms an output

an impliit representation of a near optimal solution.

In the following we desribe two sublinear time approximation algorithms, for lustering and a

linear programming problem respetively, both of whih sample the data and use the solution on

the subproblem to estimate the optimum value of the whole problem. In the former example, a

representation of a near optimal solution is given.

1.1 Clustering

The question of sublinear time algorithms for k-median lustering on bounded metri spaes is

onsidered by Mishra, Oblinger, and Pitt [23℄. They analyze an algorithm that samples points in

the spae and obtains an approximate k-median lustering of the sample points. They show that

using a number of samples that is sublinear in the size of the input, one an ahieve an output that

is quite lose to the optimum. (For other results on various lustering problems see [1, 7, 24℄).

Consider a �nite metri spae X with distane funtion d : X �X ! [0;M ℄. In the k-median

problem, we are given a set R � X of points and are required to �nd k luster enters suh that the

sum of distanes of eah point in R to its losest luster enter is minimized. The disrete version of

this problem requires eah luster enter to be in R while the ontinuous version permits the luster

enters to be in XnR. Given k luster enters C = f

1

; : : : ; 

k

g, it is natural to think of a lustering

funtion f

C

(x) = min

2C

d(x; ); the ost of this lustering is

P

x2X

f

C

(x) = jXj � E

X

(f

C

). In

other words, the k-median problem an be thought of as hoosing a lustering funtion f

C

(�) suh

that E

X

(f

C

) is minimized. We use C

�

(resp. C

�

R

) to denote the optimum in the ontinuous (resp.

disrete) ase. It is an easy fat using triangle inequality (e.g., [21℄) that the ontinuous and disrete

optimum di�er only by a fator of two: E

X

(f

C

�

) � E

X

(f

C

�

R

) � 2 � E

X

(f

C

�

). An algorithm is an

�-fator approximation algorithm for k-median if it outputs

~

C suh that E

X

(f

~

C

) � � � E

X

(f

C

�

).

Theorem 1 ([23℄). Let A be an �-fator k-median algorithm that runs in T (n) time. Then,

there is an algorithm that runs in T

�

�

8�M

�

�

2

�

k lnn+ ln

4

Æ

�

�

time and outputs

~

C

S

suh that with

probability at least 1� Æ, E

X

(f

~

C

S

) � 2� �E

X

(f

C

�

) + �.

Proof. The algorithm is the following. Choose a set S of i.i.d. samples from X suh that jSj �

�

8�M

�

�

2

�

k lnn+ ln

4

Æ

�

. Run the algorithm A on S and delare the output of A as the �nal answer.

The running time of this algorithm is T (jSj).

The main idea in the proof of orretness is to relate the lustering ost in S to the lustering

ost in X. Suh a relationship is made possible by the following uniform onvergene lemma, whih

says that the mean of a funtion f on a domain X, E

X

(f), an be approximated by its mean on a

random subset S of the domain, E

S

(f), if the subset S is suÆiently large.

Lemma 1 (Uniform onvergene [22, 26℄). Let F be a �nite family of funtions on X with

0 � f(x) � M for all f 2 F ; x 2 X. If S is a set of i.i.d. samples from X suh that jSj �

M

2

2�

2

�

ln jFj+ ln

2

Æ

�

, then Pr[9f 2 F ; jE

X

(f)�E

S

(f)j � �℄ � Æ.

The funtion family we will be working with is F = ff

C

j C � [n℄; jCj = kg, so ln jFj � k lnn.

Applying the uniform onvergene lemma, the hoie of jSj yields E

X

(f

~

C

S

) � E

S

(f

~

C

S

) + �=(4�),

with probability at least 1� Æ=2. Using the fat that A is an �-fator approximation algorithm and

the relationship between ontinuous and disrete optima, E

S

(f

~

C

S

) � � � E

S

(f

C

�

S

) � 2� � E

S

(f

C

�

).

2



Applying the uniform onvergene lemma one more time, E

S

(f

C

�

) � E

X

(f

C

�

) + �=(4�), with

probability at least 1� Æ=2. Putting these together, the proof is omplete.

1.2 Linear programming

In this setion we desribe a result by Alon, Fernandez de la Vega, Kannan, and Karpinski [2℄

whih says the following: Given a Linear Program (LP) where the variables are onstrained to

the range [0; 1℄ and the oeÆients in the onstraints are bounded, one an get a good indiation

of the optimal value of the LP by hoosing uniformly at random a small number of the variables

and solving the indued subprogram. We use the notation (x)

�

= min(x; 0) and if for a vetor

x, 8i; 0 � x

i

� 1, then we say that 0 � x � 1. For a vetor x = x

1

; : : : ; x

n

, let kxk

1

denote

max

n

i=1

jx

i

j and let kxk

1

denote

P

n

i=1

jx

i

j.

Theorem 2 ([2℄). There is an algorithm that, given an LP

max

x



T

x subjet to Ax � b; 0 � x � 1; A 2 R

m�n

; ; x 2 R

n

; b 2 R

m

;

an upper bound � on the value of the LP, and an integer 0 < q � n, runs in time O(q) and outputs

Q � [n℄; jQj = q, suh that for any � > 0, with probability at least 1� 4 exp(��

2

=4),

q

n

�+ �

p

qkk

1

� max

x

X

i2Q



i

x

i

subjet to

X

i2Q

A

i

x

i

�

q

n

b� �

p

qkAk

1

� 1

m�1

:

If there is a lower bound on the value of the LP, then it is easy to obtain a lower bound on the

value of the LP restrited to a random subset Q. To show the above theorem, we need the other

diretion|i.e., that if there is no good solution to the full LP, then there will also not be a good

solution to the restrited LP. A lever use of duality [2℄ onverts the problem bak into the easy

ase. (For more reent results on this topi, see [9℄.)

Proof of Theorem. From the statement of the theorem, the following system is infeasible (s 2 R; t 2

R

m

are the slak variables):

�



T

�1 0

1�m

A 0 I

m�m

�

�

0

�

x

s

t

1

A

=

�

�

b

�

;

0

�

x

s

t

1

A

� 0:

We use Farkas' lemma, whih says that exatly one of the following holds: 9z;Mz = w; z � 0 or

9z

0

;M

T

z

0

� 0; z

0T

w < 0. Applying Farkas' lemma, 9y

0

2 R

m+1

, written as y

0

= (��; y) where �

is a salar and y 2 R

m

, satisfying: 8i;��

i

+ (y

T

A)

i

� 0; y

i

� 0, � � 0, and ��� + y

T

b < 0.

Clearly, for any vetor x 2 R

n

; 0 � x � 1,

P

n

i=1

(��

i

+(y

T

A)

i

)x

i

� 0 > ���+ y

T

b. In partiular,

let us hoose x suh that x

i

= 1 whenever (y

T

A

i

� �

i

) = (y

T

A � �)

i

< 0. This implies that

P

n

i=1

(y

T

A� �)

�

i

> y

T

b� ��.

Also, we an bound the maximum of the entries of (y

T

A� �). For every i,





(y

T

A� �)

i





1

=













0

�

X

j

y

j

A

ji

1

A

� �

i













1

� kAk

1

kyk

1

+ kk

1

�:

This will be used to bound





y

T

A� �





1

.

3



Consider the following event E :

X

i2Q

(y

T

A� �)

�

i

�

q

n

(y

T

b� ��) � �

p

q (kAk

1

kyk

1

+ kk

1

�) :

The �rst laim is that E implies the onlusion of the theorem. To see this, assume the on-

trary. Then, we have that there is a solution x to the sub-program that satis�es

P

i2Q



i

x

i

>

(q=n)� + �

p

qkk

1

with the onstraint

P

i2Q

A

i

x

i

� (q=n)b � �kAk

1

p

q � 1

m�1

. Multiplying the

�rst inequality by �� and the seond inequality by y

T

(keeping in mind that both � and y

T

are

non-negative) and summing them yields

X

i2Q

(y

T

A� �)

i

x

i

� (q=n)(y

T

b� ��)� �

p

q(kAk

1

kyk

1

+ kk

1

�):

But,

P

i2Q

(y

T

A� �)

�

i

�

P

i2Q

(y

T

A� �)

i

x

i

. This ontradits E .

The seond laim is that Pr[E ℄ � 1 � 4 exp(��

2

=4). This is by Cherno�{Hoe�ding bounds of

the following form: if Z

1

; : : : ; Z

q

are i.i.d. random variables kZ

i

k

1

� 1 and Z = Z

1

+ � � �+Z

q

, then

Pr[kZ �E[Z℄k

1

� Æ℄ � 4 exp(�Æ

2

=(4q)): Setting Z

i

= (y

T

A � �)

�

i

=





y

T

A� �





1

, Æ = �

p

q; and

noting that

E[Z℄ =

q

n

P

n

i=1

(y

T

A� �)

�

i

ky

T

A� �k

1

�

q

n

y

T

b� ��

ky

T

A� �k

1

�

q

n

y

T

b� ��

kAk

1

kyk

1

+ kk

1

�

;

the laim follows.

2 Property testing

Given an input, a property tester tries to distinguish whether the input is \in the ballpark" or \out

of the ballpark" with respet to having a ertain property. More formally, given a set of strings P

with a �xed property and an input x, the goal is to deide whether x has the property (i.e., x 2 P )

or x is �-far from having the property (i.e., x has large distane from every member of P , aording

to a spei�ed distane metri, suh as Hamming distane). Property testing is de�ned in [28, 17℄.

Beause of the nature of the approximation, property tests with running times and query

omplexity whih are sublinear in the size of the input an often be ahieved. In fat, there are

properties with testers that use a number of queries to the input whih is independent of the size

of the input, and depends only on the distane parameter.

Property testing an be viewed as an alternate type of an approximation problem. There

are situations where the information yielded by property tests is the natural question to ask.

Furthermore, suh an approximation might be just as good as an exat answer when the data is

onstantly hanging, or might be used as a fast sanity hek to rule out very \bad" inputs before

running a slow but more exat algorithm. Property testers and the tehniques behind them have

been applied to onstruting probabilistially hekable proof systems and program hekers. Some

property testers have been onverted to give sublinear time approximation algorithms, for example

for the Max-Cut problem [17℄. It is interesting to note that there are examples of problems that are

NP-hard to approximate but for whih the property testing version of the problem an be deided

in onstant time.

Over the past deade, researhers in the ommunity have found property testers for a variety of

algebrai, graph-theoreti, and ombinatorial properties. As is the ase with approximation algo-

rithms, one of the ommonly used tehniques for onstruting property testers for graph properties

4



is to sample the graph and see if the property holds on the subgraph indued by the sample [17℄.

In fat, it has been shown that if a graph property has a onstant query tester when the graph is

presented in the adjaeny matrix representation, then the property has a tester of the above form

[20℄. Here we give two examples of property testers, one for monotoniity of lists and the other for

onnetivity of degree-bounded graphs.

2.1 Monotoniity

A list of numbers ~x = x

1

; : : : ; x

n

, is monotone (inreasing) if x

i

� x

j

for i < j. A property tester for

monotoniity needs to distinguish lists that are monotone from those that are �-far from monotone,

i.e., more than � � n elements of the list need to be deleted in order to make the list monotone.

It is easy to onstrut examples showing that a onstant number of tests of the form \is x

i

� x

j

?"

or \is x

i

� x

i+1

?" for randomly hosen i; j will not suÆe to test the property of monotoniity.

In fat, the problem is known to require 
(log n) queries [10, 12℄. The following logarithmi time

algorithm from the work of Erg�un, Kannan, Kumar, Rubinfeld, and Viswanathan [10℄ tests if ~x has a

long monotone inreasing subsequene, whih in turn gives a property tester for monotoniity. Very

eÆient monotoniity testers for funtions de�ned over posets, and more spei�ally for funtions

de�ned over hyperubes of high dimension, are given in [16, 8, 13℄.

For simpliity, let us assume that the elements in ~x are distint. The last assumption is without

loss of generality, sine one an append the index of an item to the least signi�ant bits of its value

in order to break ties.

Theorem 3 ([10℄). There is an algorithm that, given a sequene ~x = x

1

; : : : ; x

n

and an � > 0,

runs in O((1=�) log n) time and outputs (1) PASS, if ~x is monotone and (2) FAIL, with onstant

probability, if ~x does not have an inreasing subsequene of length at least (1 � �)n (in partiular,

if ~x is �-far from monotone).

Proof. The algorithm is the following. Let i

1

; : : : ; i

`

be indies in [n℄ hosen uniformly at random,

where ` = O(1=�). For eah suh hosen index i

j

, perform binary searh in ~x as if to determine

whether x

i

j

is present in ~x or not. Output FAIL if the binary searh fails to �nd x

i

j

. Output PASS

if all the ` binary searhes sueed.

The running time of the algorithm is O((1=�) log n). Moreover, if ~x is monotone, then the

algorithm would output PASS as eah of the binary searhes would sueed. Now, we assume that

the input is suh that the algorithm outputs PASS with probability at least 2=3 and show that

~x has a long inreasing subsequene. Let G � [n℄ denote the set of indies for whih the binary

searh would sueed, i.e., i 2 G if and only if x

i

an be found by a binary searh on ~x. Sine the

algorithm outputs PASS with probability at least 2=3, we know that jGj � (1� �)n. We now argue

that the restrition of ~x to the indies in G is an inreasing subsequene, whih would omplete the

proof. Let i; j 2 G and i < j. Let k be the least ommon anestor index where the binary searhes

for x

i

and x

j

diverge. Then x

i

< x

k

and x

k

< x

j

, whih implies x

i

< x

j

.

2.2 Graph onnetivity

In the work of Goldreih and Ron [19℄, testers for the properties of graph onnetivity, k-edge

onnetivity and k-vertex onnetivity are given for the adjaeny list model. This model desribes

undireted graphs on n nodes and degree bounded by d. For suh a graph G, f

G

(u; i) is de�ned

to be the i-th neighbor of vertex u, if it exists, and 0 otherwise. The distane between two suh

graphs G;H is de�ned to be the fration of plaes where f

G

and f

H

disagree, i.e., j(u; i) : u 2

5



[n℄; i 2 [d℄; f

G

(u; i) 6= f

G

(v; i)j=(dn). Note that every edge in the symmetri di�erene of the graphs

is ounted twie.

Here we desribe their result for graph onnetivity. A graph G is said to be (�; d)-far from

being onneted if its distane to every onneted graph (on the same number of nodes) of bounded

degree d is at least �.

Theorem 4 ([19℄). There is an algorithm that, given a graph G of bounded degree d, and an

� > 0, runs in O(1=(�

2

d)) time and outputs (1) PASS, if G is onneted and (2) FAIL, with

onstant probability, if G is (�; d)-far from being onneted.

Proof. The main idea is to pik a random vertex s and see how large is the omponent C

s

ontaining

s. If G is onneted, then C

s

= G, whereas if G is far from being onneted, then for most s, jC

s

j

would be quite small. This is formalized in the following lemma:

Lemma 2. Let d � 2. If G is (�; d)-far from being onneted, then it has at least �dn=8 onneted

omponents eah with at most 8=(�d) verties.

Proof. The idea is that if G is (�; d)-far from being onneted, then it would require a lot of edges

to hook up the onneted omponents of G. Let C

1

; : : : ; C

`

be the onneted omponents of G. We

bound the distane of G from being onneted in terms of `. The idea is to onnet C

i

and C

i+1

in

G by an edge to obtain G

0

whih is onneted. Care must be taken to respet the degree bound.

Consider C

i

. If there are two verties with degree stritly less than d in C

i

, then these verties

an be used to link C

i

to C

i�1

. If there are no two suh verties, we an delete a single edge in C

i

without disonneting it|take any spanning tree T

i

of C

i

and onsider an edge in C

i

not present

in T

i

|and thereby reate the two required verties. Thus the symmetri di�erene between G and

G

0

is at most 2`. Sine G is (�; d)-far from being onneted, we obtain ` � �dn=4. Noting that

the average number of verties per omponent is n=` � 4=(�d), the lemma follows by a ounting

argument.

Now onsider the following algorithm. Pik a vertex s uniformly at random and perform a BFS

starting from s. If less than 8=(�d) verties are enountered in the BFS, then output FAIL. Repeat

the above test 16=(�d) times. If G is onneted, the above will always PASS. If G is �-far from

onneted, then by the above lemma, the algorithm is likely to output FAIL. The running time of

this algorithm is 8=(�d) � 16=(�d) � d = O(1=(�

2

d)).

3 Properties of distributions

Sublinear time algorithms are also of use in testing properties of distributions. Suppose you are

studying the ourrene of a disease and need to unover any salient statistial properties that

might hold. For example, it would be important to know if the probability of ontrating the

disease dereases with distane of your house from a given nulear plant, whether the distribution

on zipodes of patients is lose to the distribution for another disease, or whether a person's

likelihood of ontrating it is orrelated with their profession. Of ourse, you wish to notie suh

trends given as few samples as possible. Suh questions have arisen in many disiplines, inluding

statistis, learning theory and data mining.

This yields a somewhat di�erent model than the property testing model in terms of the assump-

tion on how the data is presented|the tester is given aess only to samples from the distributions

(alled the generation orale). Properties suh as loseness between two distributions, loseness to

an expliitly given distribution, independene, et., have been studied in this model [18, 6, 5℄. For

6



many properties, well-known statistial tehniques, suh as the �

2

-test or the straightforward use

of Cherno� bounds, have sample omplexities that are at least linear in the size of the support of

the underlying probability distribution. In ontrast, there are algorithms whose sample omplex-

ity is sublinear in the size of the support for various properties of distributions; moreover, these

algorithms are the best possible to within polylogarithmi fators [18, 6, 5℄.

3.1 Testing loseness to the uniform distribution

Given samples of a distribution X on [n℄, for example all the previous winners of the New Jersey

Pik 4 lottery (http://www.state.nj.us/lottery/games/1-4-3_p4_history.shtml), how an

one tell whether X is lose to uniform? For the purposes of this setion, we will measure loseness

in terms of the L

2

norm, i.e., kXk

2

=

P

i2[n℄

(X(i)� 1=n)

2

. Goldreih and Ron [18℄ note that sine

P

i2[n℄

(X(i) � 1=n)

2

=

P

i2[n℄

X(i)

2

� 1=n, it is enough to estimate the ollision probability. They

then show that this an be done by onsidering only O(

p

n) samples and ounting the number of

pairs that are the same. By bounding the variane of their estimator, they obtain the following:

Theorem 5 ([18℄). There is an algorithm that, given a distribution X on [n℄ via a generation

orale, approximates kXk

2

to within a fator of (1 � �) using O(

p

n=�

2

) samples, with onstant

probability.

3.2 Testing identity

Let X;Y be distributions on [n℄. Let X be available via a generation orale and let Y be known to

the algorithm (hardwired as Y (1); : : : ; Y (n), and suh that preproessing operations on Y are not

onsidered in the running time of the testing algorithm). The problem of testing if X is lose to

Y was onsidered by Batu, Fisher, Fortnow, Kumar, Rubinfeld, and White [5℄. For the purposes

of this setion, we will measures loseness in terms of the L

1

norm, i.e.,

P

i2[n℄

jX(i) � Y (i)j. We

use the following notation. For S � [n℄, let X(S) =

P

i2S

X(i). Let X

jS

denote the onditional

distribution X w.r.t. R, i.e., X

jS

(i) = X(i)=X(S). Let U

S

denote the uniform distribution on S.

Theorem 6 ([5℄). For any distribution Y on [n℄, there is an algorithm that, given distribution X

on [n℄ via a generation orale and � > 0, uses

~

O(

p

n � poly(1=�) samples and outputs (1) PASS,

with onstant probability, if X = Y and (2) FAIL, with onstant probability, if kX � Y k

1

� 6�.

Proof. The main idea in the algorithm is to do buketing of Y . Buketing is a tool to deompose

an arbitrary distribution via an evaluation orale into a small olletion of distributions that are

nearly uniform. The deomposition is done by plaing indies into one of logarithmially many

bukets B

0

; B

1

; : : : ; B

k

, where buket B

i

; i > 0 is designated to ontain indies j suh that (1 +

�)

i�1

=(n log n) � Y (j) < (1+�)

i

=(n log n); note that k = 2= log(1+�) log n. The buket B

0

ontains

those indies j suh that Y (j) < 1=(n log n); this buket has suÆiently negligible mass so that it

an be safely ignored for the rest of the proof. Sine within a buket, the maximum and minimum

probability values are o� only by a fator of (1 + �), the distribution Y restrited to eah buket is

lose to the uniform distribution:





Y

jB

i

� U

B

i





1

� �.

Next for eah of the bukets, the goal is to test if X

jB

i

is also lose to uniform. Using Cauhy{

Shwarz,





X

jS

� U

S





1

�

p

jSj �





X

jS

� U

S





2

=

p

jSj � (





X

jS





2

2

� kU

S

k

2

2

)

1=2

=

q

jSj � (





X

jS





2

2

� 1=jSj):

Thus, if kX

B

i

k

2

2

� (1 + �

2

)=jB

i

j, then





X

jB

i

� U

B

i





1

� �. The problem boils down to estimating

the two norm of X

jB

i

, whih is possible by Theorem 5.

7



The algorithm estimates kX

B

i

k

2

for eah i, using only a total of

~

O(

p

n=�

2

) samples. The

algorithm outputs FAIL if for any i,





X

jB

i





2

2

> (1 + �

2

)=jB

i

j. If none of these steps fails, then

we know that for all i 2 [k℄,





X

jB

i

� Y

jB

i





1

� �. One �nal step is for the algorithm to test if

the distributions indued by X and Y on [k℄ by ollapsing all indies in a buket into a `super'

index, are lose in L

1

-norm as well; this an be aomplished by brute-fore as k is small. It is a

simple argument to put these together and onlude that if the algorithm outputs PASS, then the

distributions are in fat lose to eah other.

Conversely, suppose X = Y . Then the distributions X

jB

i

= Y

jB

i

and so





X

jB

i

� U

B

i





1

� �. It

is an easy alulation to see that in this ase,





X

jB

i





2

2

� (1 + �

2

)=jB

i

j and so the algorithm will

never output FAIL.

If both distributions are given via generation orales, then the omplexity of the problem

hanges|�(n

2=3

) samples are neessary and suÆient, up to polylogarithmi fators, [6℄.

Aknowledgments

We thank Ran Canetti, Petros Drineas, and Dana Ron for their useful omments on the manusript.

Referenes

[1℄ N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of lustering. SIAM Journal on Disrete

Mathematis, 16(3):393{417, 2003.

[2℄ N. Alon, W. Fernandez de la Vega, R. Kannan, and M. Karpinski. Random sampling and

approximation of MAX-CSP problems. In Pro. 34th Annual ACM Symposium on Theory of

Computing, pages 232{239, 2002.

[3℄ S. Arora, D. R. Karger, and M. Karpinski. Polynomial time approximation shemes for dense

instanes of NP-hard problems. Journal of Computer and System Sienes, 58(1):193{210,

1999.

[4℄ B. Babok, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data

stream systems. In Pro. 21st ACM SIGACT-SIGMOD-SIGART Symposium on Priniples of

Database Systems, pages 1{16, 2002.

[5℄ T. Batu, E. Fisher, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random

variables for independene and identity. In Pro. 42nd IEEE Conferene on Foundations of

Computer Siene, pages 442{451, 2001.

[6℄ T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are

lose. In Pro. 41st IEEE Conferene on Foundations of Computer Siene, pages 259{269,

2000.

[7℄ M. Charikar, L. O'Callaghan, and R. Panigrahy. Better streaming algorithms for lustering

problems. In Pro. 35th Annual ACM Symposium on Theory of Computing, pages 30{39, 2003.

[8℄ Y. Dodis, O. Goldreih, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Im-

proved testing algorithms for monotoniity. In Pro. 3rd International Workshop on Random-

ization and Approximation Tehniques in Computer Siene, pages 97{108, 1999.

8



[9℄ P. Drineas, R. Kannan, and M. Mahoney. Manusript, 2003.

[10℄ F. Erg�un, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot hekers. Journal

of Computer and System Sienes, 60:717{751, 2000.

[11℄ E. Fisher. The art of uninformed deisions: A primer to property testing. Bulletin of the

European Assoiation for Theoretial Computer Siene, 75:97{126, 2001.

[12℄ E. Fisher. On the strength of omparisons in property testing. Tehnial Report TR01-008,

Eletroni Colloquium on Computational Complexity, 2001.

[13℄ E. Fisher, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.

Monotoniity testing over general poset domains. In Pro. 34th Annual ACM Symposium on

Theory of Computing, pages 474{483, 2002.

[14℄ A. Frieze and R. Kannan. Quik approximation to matries and appliations. Combinatoria,

19(2):175{220, 1999.

[15℄ O. Goldreih. Combinatorial property testing { a survey. In Randomization Methods in Algo-

rithm Design, pages 45{60, 1998.

[16℄ O. Goldreih, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing monotoniity.

Combinatoria, 20(3):301{337, 2000.

[17℄ O. Goldreih, S. Goldwasser, and D. Ron. Property testing and its onnetion to learning and

approximation. Journal of the ACM, 45(4):653{750, 1998.

[18℄ O. Goldreih and D. Ron. On testing expansion in bounded-degree graphs. Tehnial Report

TR00-020), Eletroni Colloquium on Computational Complexity, 2000.

[19℄ O. Goldreih and D. Ron. Property testing in bounded degree graphs. Algorithmia, 32(2):302{

343, 2002.

[20℄ O. Goldreih and L. Trevisan. Three theorems regarding testing graph properties. In Pro.

42nd IEEE Conferene on Foundations of Computer Siene, pages 460{469, 2001.

[21℄ S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams. In Pro. 41st

IEEE Conferene on Foundations of Computer Siene, pages 359{366, 2000.

[22℄ D. Haussler. Deision-theoreti generalizations of the PAC model for neural net and other

learning appliations. Information and Computation, 100(1):78{150, 1992.

[23℄ N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate lustering. In Pro. 12th

Annual ACM{SIAM Symposium on Disrete Algorithms, pages 439{447, 2001.

[24℄ N. Mishra, D. Ron, and R. Swaminathan. On �nding large onjuntive lusters. In Pro. 16th

Annual Conferene on Learning Theory, 2003.

[25℄ S. Muthukrishnan. Data streams: algorithms and appliations. In Pro. 14th Annual ACM{

SIAM Symposium on Disrete Algorithms, page 413, 2003.

[26℄ D. Pollard. Convergene of Stohasti Proesses. Springer{Verlag, 1984.

9



[27℄ D. Ron. Property testing (a tutorial). In S. Rajasekaran, P. M. Pardalos, J. H. Reif, and J. D. P.

Rolim, editors, Handbook on Randomization, Volume II, pages 597{649. Kluwer Aademi

Press, 2001.

[28℄ R. Rubinfeld and M. Sudan. Robust haraterization of polynomials with appliations to

program testing. SIAM Journal on Computing, 25(2):252{271, 1996.

10


