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With the re
ent tremendous in
rease in 
omputational power and 
heap storage, we are blessed

with a multitude of available, and possibly useful, information. It is always ni
e to have something

for (almost) nothing. However, this blessing is also something of a 
urse, for we may also be asked

to do something meaningful with all of this data. The s
ale of these data sets, 
oupled with the

typi
al situation in whi
h there is very little time to perform our 
omputations, raises the question

of whi
h 
omputations 
ould one hope to a

omplish extremely qui
kly? In parti
ular, what 
an

one solve in sublinear time?

Sublinear time is a daunting goal sin
e it allows one to read only a minis
ule fra
tion of the

input. Still, there are problems for whi
h deterministi
 exa
t sublinear time algorithms are known.

However, sin
e any sublinear time algorithm 
an only view a small portion of the input, for most

natural problems the algorithm must use randomization and must give an answer whi
h is in some

sense approximate. There is a growing body of work aimed at �nding sublinear time algorithms for

various problems. Re
ent results have shown that there are optimization problems whose values


an be approximated in sublinear time. In addition, property testing, an alternative notion of

approximation for de
ision problems, has been applied to give sublinear algorithms for a wide

variety of problems. One 
an also test various properties of distributions, where a

ess to the

distribution is given through samples generated a

ording to the distribution, in time sublinear

in the size of the support of the distribution. Several useful te
hniques, in
luding the use of the

Szemer�edi Regularity lemma and low rank approximations of matri
es, have emerged for designing

sublinear algorithms. Still, the study of sublinear algorithms is very new, and mu
h remains to be

understood about their s
ope.

We attempt to give some 
avor of the types of results that one 
an a
hieve in sublinear time.

We will not survey the known results or give mu
h histori
 perspe
tive of their development. For

su
h treatments, we refer the reader to some very good surveys on property testing [15, 27, 11℄.

Instead, we give a few simple examples meant to illustrate the range and s
ope of te
hniques that

have been used in this area.

There is also mu
h interest in the related area of streaming algorithms, where the input is to be

read just on
e and the workspa
e (though not the time) is restri
ted to be sublinear in the size of

the input. We will not dis
uss streaming algorithms any further here, though we re
ommend the

surveys of [4, 25℄.

1 Traditional approximation algorithms

In re
ent years, sublinear time algorithms have been developed to estimate the quality of the optimal

solution for several optimization problems 
on
erning graphs, strings, et
. For many problems,

sublinear time approximations do not exist. However, there are often plausible assumptions that
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an be made on the input whi
h allow one to make a sublinear time approximation. For example,

one 
an approximate the size of the maximum 
ut in 
onstant time when the input is a dense

graph [17, 14℄, and in fa
t, one 
an approximate all dense problems in Max-SNP in 
onstant time

[3, 14, 2℄. It is interesting to note that often, but not always, sublinear time algorithms 
an output

an impli
it representation of a near optimal solution.

In the following we des
ribe two sublinear time approximation algorithms, for 
lustering and a

linear programming problem respe
tively, both of whi
h sample the data and use the solution on

the subproblem to estimate the optimum value of the whole problem. In the former example, a

representation of a near optimal solution is given.

1.1 Clustering

The question of sublinear time algorithms for k-median 
lustering on bounded metri
 spa
es is


onsidered by Mishra, Oblinger, and Pitt [23℄. They analyze an algorithm that samples points in

the spa
e and obtains an approximate k-median 
lustering of the sample points. They show that

using a number of samples that is sublinear in the size of the input, one 
an a
hieve an output that

is quite 
lose to the optimum. (For other results on various 
lustering problems see [1, 7, 24℄).

Consider a �nite metri
 spa
e X with distan
e fun
tion d : X �X ! [0;M ℄. In the k-median

problem, we are given a set R � X of points and are required to �nd k 
luster 
enters su
h that the

sum of distan
es of ea
h point in R to its 
losest 
luster 
enter is minimized. The dis
rete version of

this problem requires ea
h 
luster 
enter to be in R while the 
ontinuous version permits the 
luster


enters to be in XnR. Given k 
luster 
enters C = f


1

; : : : ; 


k

g, it is natural to think of a 
lustering

fun
tion f

C

(x) = min


2C

d(x; 
); the 
ost of this 
lustering is

P

x2X

f

C

(x) = jXj � E

X

(f

C

). In

other words, the k-median problem 
an be thought of as 
hoosing a 
lustering fun
tion f

C

(�) su
h

that E

X

(f

C

) is minimized. We use C

�

(resp. C

�

R

) to denote the optimum in the 
ontinuous (resp.

dis
rete) 
ase. It is an easy fa
t using triangle inequality (e.g., [21℄) that the 
ontinuous and dis
rete

optimum di�er only by a fa
tor of two: E

X

(f

C

�

) � E

X

(f

C

�

R

) � 2 � E

X

(f

C

�

). An algorithm is an

�-fa
tor approximation algorithm for k-median if it outputs

~

C su
h that E

X

(f

~

C

) � � � E

X

(f

C

�

).

Theorem 1 ([23℄). Let A be an �-fa
tor k-median algorithm that runs in T (n) time. Then,

there is an algorithm that runs in T

�

�

8�M

�

�

2

�

k lnn+ ln

4

Æ

�

�

time and outputs

~

C

S

su
h that with

probability at least 1� Æ, E

X

(f

~

C

S

) � 2� �E

X

(f

C

�

) + �.

Proof. The algorithm is the following. Choose a set S of i.i.d. samples from X su
h that jSj �

�

8�M

�

�

2

�

k lnn+ ln

4

Æ

�

. Run the algorithm A on S and de
lare the output of A as the �nal answer.

The running time of this algorithm is T (jSj).

The main idea in the proof of 
orre
tness is to relate the 
lustering 
ost in S to the 
lustering


ost in X. Su
h a relationship is made possible by the following uniform 
onvergen
e lemma, whi
h

says that the mean of a fun
tion f on a domain X, E

X

(f), 
an be approximated by its mean on a

random subset S of the domain, E

S

(f), if the subset S is suÆ
iently large.

Lemma 1 (Uniform 
onvergen
e [22, 26℄). Let F be a �nite family of fun
tions on X with

0 � f(x) � M for all f 2 F ; x 2 X. If S is a set of i.i.d. samples from X su
h that jSj �

M

2

2�

2

�

ln jFj+ ln

2

Æ

�

, then Pr[9f 2 F ; jE

X

(f)�E

S

(f)j � �℄ � Æ.

The fun
tion family we will be working with is F = ff

C

j C � [n℄; jCj = kg, so ln jFj � k lnn.

Applying the uniform 
onvergen
e lemma, the 
hoi
e of jSj yields E

X

(f

~

C

S

) � E

S

(f

~

C

S

) + �=(4�),

with probability at least 1� Æ=2. Using the fa
t that A is an �-fa
tor approximation algorithm and

the relationship between 
ontinuous and dis
rete optima, E

S

(f

~

C

S

) � � � E

S

(f

C

�

S

) � 2� � E

S

(f

C

�

).
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Applying the uniform 
onvergen
e lemma one more time, E

S

(f

C

�

) � E

X

(f

C

�

) + �=(4�), with

probability at least 1� Æ=2. Putting these together, the proof is 
omplete.

1.2 Linear programming

In this se
tion we des
ribe a result by Alon, Fernandez de la Vega, Kannan, and Karpinski [2℄

whi
h says the following: Given a Linear Program (LP) where the variables are 
onstrained to

the range [0; 1℄ and the 
oeÆ
ients in the 
onstraints are bounded, one 
an get a good indi
ation

of the optimal value of the LP by 
hoosing uniformly at random a small number of the variables

and solving the indu
ed subprogram. We use the notation (x)

�

= min(x; 0) and if for a ve
tor

x, 8i; 0 � x

i

� 1, then we say that 0 � x � 1. For a ve
tor x = x

1

; : : : ; x

n

, let kxk

1

denote

max

n

i=1

jx

i

j and let kxk

1

denote

P

n

i=1

jx

i

j.

Theorem 2 ([2℄). There is an algorithm that, given an LP

max

x




T

x subje
t to Ax � b; 0 � x � 1; A 2 R

m�n

; 
; x 2 R

n

; b 2 R

m

;

an upper bound � on the value of the LP, and an integer 0 < q � n, runs in time O(q) and outputs

Q � [n℄; jQj = q, su
h that for any � > 0, with probability at least 1� 4 exp(��

2

=4),

q

n

�+ �

p

qk
k

1

� max

x

X

i2Q




i

x

i

subje
t to

X

i2Q

A

i

x

i

�

q

n

b� �

p

qkAk

1

� 1

m�1

:

If there is a lower bound on the value of the LP, then it is easy to obtain a lower bound on the

value of the LP restri
ted to a random subset Q. To show the above theorem, we need the other

dire
tion|i.e., that if there is no good solution to the full LP, then there will also not be a good

solution to the restri
ted LP. A 
lever use of duality [2℄ 
onverts the problem ba
k into the easy


ase. (For more re
ent results on this topi
, see [9℄.)

Proof of Theorem. From the statement of the theorem, the following system is infeasible (s 2 R; t 2

R

m

are the sla
k variables):

�




T

�1 0

1�m

A 0 I

m�m

�

�

0

�

x

s

t

1

A

=

�

�

b

�

;

0

�

x

s

t

1

A

� 0:

We use Farkas' lemma, whi
h says that exa
tly one of the following holds: 9z;Mz = w; z � 0 or

9z

0

;M

T

z

0

� 0; z

0T

w < 0. Applying Farkas' lemma, 9y

0

2 R

m+1

, written as y

0

= (��; y) where �

is a s
alar and y 2 R

m

, satisfying: 8i;��


i

+ (y

T

A)

i

� 0; y

i

� 0, � � 0, and ��� + y

T

b < 0.

Clearly, for any ve
tor x 2 R

n

; 0 � x � 1,

P

n

i=1

(��


i

+(y

T

A)

i

)x

i

� 0 > ���+ y

T

b. In parti
ular,

let us 
hoose x su
h that x

i

= 1 whenever (y

T

A

i

� �


i

) = (y

T

A � �
)

i

< 0. This implies that

P

n

i=1

(y

T

A� �
)

�

i

> y

T

b� ��.

Also, we 
an bound the maximum of the entries of (y

T

A� �
). For every i,







(y

T

A� �
)

i







1

=



















0

�

X

j

y

j

A

ji

1

A

� �


i



















1

� kAk

1

kyk

1

+ k
k

1

�:

This will be used to bound







y

T

A� �








1

.
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Consider the following event E :

X

i2Q

(y

T

A� �
)

�

i

�

q

n

(y

T

b� ��) � �

p

q (kAk

1

kyk

1

+ k
k

1

�) :

The �rst 
laim is that E implies the 
on
lusion of the theorem. To see this, assume the 
on-

trary. Then, we have that there is a solution x to the sub-program that satis�es

P

i2Q




i

x

i

>

(q=n)� + �

p

qk
k

1

with the 
onstraint

P

i2Q

A

i

x

i

� (q=n)b � �kAk

1

p

q � 1

m�1

. Multiplying the

�rst inequality by �� and the se
ond inequality by y

T

(keeping in mind that both � and y

T

are

non-negative) and summing them yields

X

i2Q

(y

T

A� �
)

i

x

i

� (q=n)(y

T

b� ��)� �

p

q(kAk

1

kyk

1

+ k
k

1

�):

But,

P

i2Q

(y

T

A� �
)

�

i

�

P

i2Q

(y

T

A� �
)

i

x

i

. This 
ontradi
ts E .

The se
ond 
laim is that Pr[E ℄ � 1 � 4 exp(��

2

=4). This is by Cherno�{Hoe�ding bounds of

the following form: if Z

1

; : : : ; Z

q

are i.i.d. random variables kZ

i

k

1

� 1 and Z = Z

1

+ � � �+Z

q

, then

Pr[kZ �E[Z℄k

1

� Æ℄ � 4 exp(�Æ

2

=(4q)): Setting Z

i

= (y

T

A � �
)

�

i

=







y

T

A� �








1

, Æ = �

p

q; and

noting that

E[Z℄ =

q

n

P

n

i=1

(y

T

A� �
)

�

i

ky

T

A� �
k

1

�

q

n

y

T

b� ��

ky

T

A� �
k

1

�

q

n

y

T

b� ��

kAk

1

kyk

1

+ k
k

1

�

;

the 
laim follows.

2 Property testing

Given an input, a property tester tries to distinguish whether the input is \in the ballpark" or \out

of the ballpark" with respe
t to having a 
ertain property. More formally, given a set of strings P

with a �xed property and an input x, the goal is to de
ide whether x has the property (i.e., x 2 P )

or x is �-far from having the property (i.e., x has large distan
e from every member of P , a

ording

to a spe
i�ed distan
e metri
, su
h as Hamming distan
e). Property testing is de�ned in [28, 17℄.

Be
ause of the nature of the approximation, property tests with running times and query


omplexity whi
h are sublinear in the size of the input 
an often be a
hieved. In fa
t, there are

properties with testers that use a number of queries to the input whi
h is independent of the size

of the input, and depends only on the distan
e parameter.

Property testing 
an be viewed as an alternate type of an approximation problem. There

are situations where the information yielded by property tests is the natural question to ask.

Furthermore, su
h an approximation might be just as good as an exa
t answer when the data is


onstantly 
hanging, or might be used as a fast sanity 
he
k to rule out very \bad" inputs before

running a slow but more exa
t algorithm. Property testers and the te
hniques behind them have

been applied to 
onstru
ting probabilisti
ally 
he
kable proof systems and program 
he
kers. Some

property testers have been 
onverted to give sublinear time approximation algorithms, for example

for the Max-Cut problem [17℄. It is interesting to note that there are examples of problems that are

NP-hard to approximate but for whi
h the property testing version of the problem 
an be de
ided

in 
onstant time.

Over the past de
ade, resear
hers in the 
ommunity have found property testers for a variety of

algebrai
, graph-theoreti
, and 
ombinatorial properties. As is the 
ase with approximation algo-

rithms, one of the 
ommonly used te
hniques for 
onstru
ting property testers for graph properties

4



is to sample the graph and see if the property holds on the subgraph indu
ed by the sample [17℄.

In fa
t, it has been shown that if a graph property has a 
onstant query tester when the graph is

presented in the adja
en
y matrix representation, then the property has a tester of the above form

[20℄. Here we give two examples of property testers, one for monotoni
ity of lists and the other for


onne
tivity of degree-bounded graphs.

2.1 Monotoni
ity

A list of numbers ~x = x

1

; : : : ; x

n

, is monotone (in
reasing) if x

i

� x

j

for i < j. A property tester for

monotoni
ity needs to distinguish lists that are monotone from those that are �-far from monotone,

i.e., more than � � n elements of the list need to be deleted in order to make the list monotone.

It is easy to 
onstru
t examples showing that a 
onstant number of tests of the form \is x

i

� x

j

?"

or \is x

i

� x

i+1

?" for randomly 
hosen i; j will not suÆ
e to test the property of monotoni
ity.

In fa
t, the problem is known to require 
(log n) queries [10, 12℄. The following logarithmi
 time

algorithm from the work of Erg�un, Kannan, Kumar, Rubinfeld, and Viswanathan [10℄ tests if ~x has a

long monotone in
reasing subsequen
e, whi
h in turn gives a property tester for monotoni
ity. Very

eÆ
ient monotoni
ity testers for fun
tions de�ned over posets, and more spe
i�
ally for fun
tions

de�ned over hyper
ubes of high dimension, are given in [16, 8, 13℄.

For simpli
ity, let us assume that the elements in ~x are distin
t. The last assumption is without

loss of generality, sin
e one 
an append the index of an item to the least signi�
ant bits of its value

in order to break ties.

Theorem 3 ([10℄). There is an algorithm that, given a sequen
e ~x = x

1

; : : : ; x

n

and an � > 0,

runs in O((1=�) log n) time and outputs (1) PASS, if ~x is monotone and (2) FAIL, with 
onstant

probability, if ~x does not have an in
reasing subsequen
e of length at least (1 � �)n (in parti
ular,

if ~x is �-far from monotone).

Proof. The algorithm is the following. Let i

1

; : : : ; i

`

be indi
es in [n℄ 
hosen uniformly at random,

where ` = O(1=�). For ea
h su
h 
hosen index i

j

, perform binary sear
h in ~x as if to determine

whether x

i

j

is present in ~x or not. Output FAIL if the binary sear
h fails to �nd x

i

j

. Output PASS

if all the ` binary sear
hes su

eed.

The running time of the algorithm is O((1=�) log n). Moreover, if ~x is monotone, then the

algorithm would output PASS as ea
h of the binary sear
hes would su

eed. Now, we assume that

the input is su
h that the algorithm outputs PASS with probability at least 2=3 and show that

~x has a long in
reasing subsequen
e. Let G � [n℄ denote the set of indi
es for whi
h the binary

sear
h would su

eed, i.e., i 2 G if and only if x

i


an be found by a binary sear
h on ~x. Sin
e the

algorithm outputs PASS with probability at least 2=3, we know that jGj � (1� �)n. We now argue

that the restri
tion of ~x to the indi
es in G is an in
reasing subsequen
e, whi
h would 
omplete the

proof. Let i; j 2 G and i < j. Let k be the least 
ommon an
estor index where the binary sear
hes

for x

i

and x

j

diverge. Then x

i

< x

k

and x

k

< x

j

, whi
h implies x

i

< x

j

.

2.2 Graph 
onne
tivity

In the work of Goldrei
h and Ron [19℄, testers for the properties of graph 
onne
tivity, k-edge


onne
tivity and k-vertex 
onne
tivity are given for the adja
en
y list model. This model des
ribes

undire
ted graphs on n nodes and degree bounded by d. For su
h a graph G, f

G

(u; i) is de�ned

to be the i-th neighbor of vertex u, if it exists, and 0 otherwise. The distan
e between two su
h

graphs G;H is de�ned to be the fra
tion of pla
es where f

G

and f

H

disagree, i.e., j(u; i) : u 2

5



[n℄; i 2 [d℄; f

G

(u; i) 6= f

G

(v; i)j=(dn). Note that every edge in the symmetri
 di�eren
e of the graphs

is 
ounted twi
e.

Here we des
ribe their result for graph 
onne
tivity. A graph G is said to be (�; d)-far from

being 
onne
ted if its distan
e to every 
onne
ted graph (on the same number of nodes) of bounded

degree d is at least �.

Theorem 4 ([19℄). There is an algorithm that, given a graph G of bounded degree d, and an

� > 0, runs in O(1=(�

2

d)) time and outputs (1) PASS, if G is 
onne
ted and (2) FAIL, with


onstant probability, if G is (�; d)-far from being 
onne
ted.

Proof. The main idea is to pi
k a random vertex s and see how large is the 
omponent C

s


ontaining

s. If G is 
onne
ted, then C

s

= G, whereas if G is far from being 
onne
ted, then for most s, jC

s

j

would be quite small. This is formalized in the following lemma:

Lemma 2. Let d � 2. If G is (�; d)-far from being 
onne
ted, then it has at least �dn=8 
onne
ted


omponents ea
h with at most 8=(�d) verti
es.

Proof. The idea is that if G is (�; d)-far from being 
onne
ted, then it would require a lot of edges

to hook up the 
onne
ted 
omponents of G. Let C

1

; : : : ; C

`

be the 
onne
ted 
omponents of G. We

bound the distan
e of G from being 
onne
ted in terms of `. The idea is to 
onne
t C

i

and C

i+1

in

G by an edge to obtain G

0

whi
h is 
onne
ted. Care must be taken to respe
t the degree bound.

Consider C

i

. If there are two verti
es with degree stri
tly less than d in C

i

, then these verti
es


an be used to link C

i

to C

i�1

. If there are no two su
h verti
es, we 
an delete a single edge in C

i

without dis
onne
ting it|take any spanning tree T

i

of C

i

and 
onsider an edge in C

i

not present

in T

i

|and thereby 
reate the two required verti
es. Thus the symmetri
 di�eren
e between G and

G

0

is at most 2`. Sin
e G is (�; d)-far from being 
onne
ted, we obtain ` � �dn=4. Noting that

the average number of verti
es per 
omponent is n=` � 4=(�d), the lemma follows by a 
ounting

argument.

Now 
onsider the following algorithm. Pi
k a vertex s uniformly at random and perform a BFS

starting from s. If less than 8=(�d) verti
es are en
ountered in the BFS, then output FAIL. Repeat

the above test 16=(�d) times. If G is 
onne
ted, the above will always PASS. If G is �-far from


onne
ted, then by the above lemma, the algorithm is likely to output FAIL. The running time of

this algorithm is 8=(�d) � 16=(�d) � d = O(1=(�

2

d)).

3 Properties of distributions

Sublinear time algorithms are also of use in testing properties of distributions. Suppose you are

studying the o

urren
e of a disease and need to un
over any salient statisti
al properties that

might hold. For example, it would be important to know if the probability of 
ontra
ting the

disease de
reases with distan
e of your house from a given nu
lear plant, whether the distribution

on zip
odes of patients is 
lose to the distribution for another disease, or whether a person's

likelihood of 
ontra
ting it is 
orrelated with their profession. Of 
ourse, you wish to noti
e su
h

trends given as few samples as possible. Su
h questions have arisen in many dis
iplines, in
luding

statisti
s, learning theory and data mining.

This yields a somewhat di�erent model than the property testing model in terms of the assump-

tion on how the data is presented|the tester is given a

ess only to samples from the distributions

(
alled the generation ora
le). Properties su
h as 
loseness between two distributions, 
loseness to

an expli
itly given distribution, independen
e, et
., have been studied in this model [18, 6, 5℄. For
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many properties, well-known statisti
al te
hniques, su
h as the �

2

-test or the straightforward use

of Cherno� bounds, have sample 
omplexities that are at least linear in the size of the support of

the underlying probability distribution. In 
ontrast, there are algorithms whose sample 
omplex-

ity is sublinear in the size of the support for various properties of distributions; moreover, these

algorithms are the best possible to within polylogarithmi
 fa
tors [18, 6, 5℄.

3.1 Testing 
loseness to the uniform distribution

Given samples of a distribution X on [n℄, for example all the previous winners of the New Jersey

Pi
k 4 lottery (http://www.state.nj.us/lottery/games/1-4-3_p4_history.shtml), how 
an

one tell whether X is 
lose to uniform? For the purposes of this se
tion, we will measure 
loseness

in terms of the L

2

norm, i.e., kXk

2

=

P

i2[n℄

(X(i)� 1=n)

2

. Goldrei
h and Ron [18℄ note that sin
e

P

i2[n℄

(X(i) � 1=n)

2

=

P

i2[n℄

X(i)

2

� 1=n, it is enough to estimate the 
ollision probability. They

then show that this 
an be done by 
onsidering only O(

p

n) samples and 
ounting the number of

pairs that are the same. By bounding the varian
e of their estimator, they obtain the following:

Theorem 5 ([18℄). There is an algorithm that, given a distribution X on [n℄ via a generation

ora
le, approximates kXk

2

to within a fa
tor of (1 � �) using O(

p

n=�

2

) samples, with 
onstant

probability.

3.2 Testing identity

Let X;Y be distributions on [n℄. Let X be available via a generation ora
le and let Y be known to

the algorithm (hardwired as Y (1); : : : ; Y (n), and su
h that prepro
essing operations on Y are not


onsidered in the running time of the testing algorithm). The problem of testing if X is 
lose to

Y was 
onsidered by Batu, Fis
her, Fortnow, Kumar, Rubinfeld, and White [5℄. For the purposes

of this se
tion, we will measures 
loseness in terms of the L

1

norm, i.e.,

P

i2[n℄

jX(i) � Y (i)j. We

use the following notation. For S � [n℄, let X(S) =

P

i2S

X(i). Let X

jS

denote the 
onditional

distribution X w.r.t. R, i.e., X

jS

(i) = X(i)=X(S). Let U

S

denote the uniform distribution on S.

Theorem 6 ([5℄). For any distribution Y on [n℄, there is an algorithm that, given distribution X

on [n℄ via a generation ora
le and � > 0, uses

~

O(

p

n � poly(1=�) samples and outputs (1) PASS,

with 
onstant probability, if X = Y and (2) FAIL, with 
onstant probability, if kX � Y k

1

� 6�.

Proof. The main idea in the algorithm is to do bu
keting of Y . Bu
keting is a tool to de
ompose

an arbitrary distribution via an evaluation ora
le into a small 
olle
tion of distributions that are

nearly uniform. The de
omposition is done by pla
ing indi
es into one of logarithmi
ally many

bu
kets B

0

; B

1

; : : : ; B

k

, where bu
ket B

i

; i > 0 is designated to 
ontain indi
es j su
h that (1 +

�)

i�1

=(n log n) � Y (j) < (1+�)

i

=(n log n); note that k = 2= log(1+�) log n. The bu
ket B

0


ontains

those indi
es j su
h that Y (j) < 1=(n log n); this bu
ket has suÆ
iently negligible mass so that it


an be safely ignored for the rest of the proof. Sin
e within a bu
ket, the maximum and minimum

probability values are o� only by a fa
tor of (1 + �), the distribution Y restri
ted to ea
h bu
ket is


lose to the uniform distribution:







Y

jB

i

� U

B

i







1

� �.

Next for ea
h of the bu
kets, the goal is to test if X

jB

i

is also 
lose to uniform. Using Cau
hy{

S
hwarz,







X

jS

� U

S







1

�

p

jSj �







X

jS

� U

S







2

=

p

jSj � (







X

jS







2

2

� kU

S

k

2

2

)

1=2

=

q

jSj � (







X

jS







2

2

� 1=jSj):

Thus, if kX

B

i

k

2

2

� (1 + �

2

)=jB

i

j, then







X

jB

i

� U

B

i







1

� �. The problem boils down to estimating

the two norm of X

jB

i

, whi
h is possible by Theorem 5.
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The algorithm estimates kX

B

i

k

2

for ea
h i, using only a total of

~

O(

p

n=�

2

) samples. The

algorithm outputs FAIL if for any i,







X

jB

i







2

2

> (1 + �

2

)=jB

i

j. If none of these steps fails, then

we know that for all i 2 [k℄,







X

jB

i

� Y

jB

i







1

� �. One �nal step is for the algorithm to test if

the distributions indu
ed by X and Y on [k℄ by 
ollapsing all indi
es in a bu
ket into a `super'

index, are 
lose in L

1

-norm as well; this 
an be a

omplished by brute-for
e as k is small. It is a

simple argument to put these together and 
on
lude that if the algorithm outputs PASS, then the

distributions are in fa
t 
lose to ea
h other.

Conversely, suppose X = Y . Then the distributions X

jB

i

= Y

jB

i

and so







X

jB

i

� U

B

i







1

� �. It

is an easy 
al
ulation to see that in this 
ase,







X

jB

i







2

2

� (1 + �

2

)=jB

i

j and so the algorithm will

never output FAIL.

If both distributions are given via generation ora
les, then the 
omplexity of the problem


hanges|�(n

2=3

) samples are ne
essary and suÆ
ient, up to polylogarithmi
 fa
tors, [6℄.
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