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Abstract. We consider the problem of testing a basic property of collections of distributions: having similar
means. Namely, the algorithm should accept collections of distributions in which all distributions have means that
do not differ by more than some given parameter, and should reject collections that are relatively far from having
this property. By ‘far’ we mean that it is necessary to modify the distributions in a relatively significant manner
(according to some predetermined distance measure) so as to obtain the property. We study this problem in two
models. In the first model (the query model) the algorithm may ask for samples from any distribution of its choice,
and in the second model (the sampling model) the distributions from which it gets samples are selected randomly.
We provide upper and lower bounds in both models. In particular, in the query model, the complexity of the problem
is polynomial in 1/ϵ (where ϵ is the given distance parameter), while in the sampling model, the complexity grows
roughly as m1−poly(ϵ), where m is the number of distributions.

1. Introduction. We consider testing a basic property of collections of distributions:
having similar means. Namely, given a collection D = (D1, . . . , Dm) of distributions over
{0, . . . , n}, and parameters γ and ϵ, we would like to determine whether the means of all
distributions reside in an interval of size γn (in which case they have the property of γ-similar
means), or whether the collection is ϵ-far from having this property. By “ϵ-far” we mean that
for every collection D∗ = (D∗

1 , . . . , D
∗
m) that has the property, 1

m

∑m
i=1 d(Di, D

∗
i ) > ϵ,

where d(·, ·) is some predetermined distance measure between distributions.
The problem of determining whether a collection of distributions consists of distribu-

tions that have similar means arises contexts such as the following: Suppose one is given a
collection of coins and would like to determine whether they have the same (or very similar)
bias. Alternatively, suppose one would like to compare mean behavior of multiple groups in a
scientific experiment. As described above we consider a relaxed version of this problem. One
relaxation is in the desired property of the collection. Namely, while one desired property of
the collection might be that all the distributions have the same mean, i.e., γ = 0, it may
also be that it is only required that the difference between the maximum mean and minimum
mean in the collection is small, i.e., that γ is small. Since the statistical distance between the
distribution of samples of a collection that has the property and the distribution of samples
of a collection that does not have the property can be infinitesimally small, one can not hope
to distinguish between every pair of such instances. Therefore the second relaxation is in
weakening the guarantee of the test. More specifically, the test is guaranteed (with high con-
stant probability) to accept collections that have the property, the YES instances, and reject
collections that are far from having the property (that is, are far from any collection having
the property), the NO instances. If a collections neither has the property nor is far from hav-
ing the property, the algorithm may either reject or accept. In other words, if the algorithm
rejects, then we have high confidence that the collection does not have the property, and if it
accepts, then we have high confidence that it is close to having the property. According to
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our definition, distance between collections of distributions (and hence to having the prop-
erty) is defined as the average pairwise distance between corresponding distributions in the
collection. This can be viewed as allowing an additional relaxation (as compared to taking
the maximum over all pairwise distances), as it implies that a collection is close to having the
property if almost every distribution in the collection is close to a distribution whose mean is
in the allowed range (rather than requiring this from every distribution).

As we discuss in some more detail in Subsection 1.2, related questions have been studied
in the Statistics literature, resulting in particular in the commonly used family of procedures
ANOVA (Analysis of Variance), used for deciding whether a collection of normal distribu-
tions all have the same mean. As stated above, we consider distributions over a discrete
domain but other than that we do not make any assumptions regarding the distributions. Our
formulation of the problem falls within the framework of property testing [17, 8, 4], so that
in particular it allows for a small fraction of “outlier” distributions.

1.1. Our Contributions. We consider two models, proposed in previous work [13],
that describe possible access patterns to multiple distributions D1, . . . , Dm over the same
domain {0, . . . , n}. In the query model the algorithm is allowed to specify i ∈ {1, . . . ,m}
and receives j that is distributed according to Di. We refer to each such request for a sample
from Di as a query. In the (uniform) sampling model, the algorithm receives pairs of the form
(i, j) where i is selected uniformly in {1, . . . ,m} and j is distributed according to Di.

The ℓ1 distance between two probability distributions, d(D1, D2) =
∑n

j=0 |D1(j) −
D2(j)|, is perhaps the most standard measure of distance between distributions, as it measures
the maximum difference between the probability of any event (i.e., set S ⊆ {0, . . . , n})
occurring according to one distribution as compared to the other distribution. In other words,
if the distance is small, then the distributions are essentially indistinguishable in terms of
their behavior. Hence, we take it as our default distance measure when testing properties of
distributions. However, for specific properties one may consider other distance measures that
are appropriate. In this study, since the property is related to the means of the distributions and
thus the numerical values of the domain elements are meaningful (as opposed to symmetric
properties of distributions), we also consider the Earth Mover’s Distance (EMD).1 We prove
our upper and lower bounds for the case where the underlying distance measure is the ℓ1
distance and show by a simple observation that all our results hold for the case which the
underlying distance measure is EMD. Hence, unless stated explicitly otherwise, in all that
follows the underlying distance measure is the ℓ1 distance.

Another distance measure between two distributions, that one might consider in the con-
text of testing similar means, is the absolute difference of their means. However, in many
natural settings the domain size is bounded, for example, the distributions of grades of stu-
dents in school, the distribution of the number of rainy days in a year, and so on. Thus, we
focus our attention on discrete distributions over a bounded domain for which the above-
mentioned distance measure is less applicable, as a pair of distributions can have very close
means and nonetheless the mean of one distribution can not get closer to the mean of the other
without changing the probability distribution function significantly (for more discussion see
Subsection 3.1).

RESULTS IN THE QUERY MODEL. We give an algorithm whose query complexity is Õ(1/ϵ2).
which is almost tight as there is a simple lower bound of Ω(1/ϵ2) (even for the {0, 1} case).

1Informally, if the distributions are interpreted as two different ways of piling up a certain amount of earth over
the region D, the EMD is the minimum cost of turning one pile into the other, where the cost is assumed to be
amount of earth moved times the distance by which it is moved. A formal definition appears in Section 5.
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Consider first a basic algorithm that works by obtaining very good estimates of the means
of a sufficient number of randomly selected distributions. If the collection is ϵ-far from having
γ-similar means, then (with high probability) after performing Θ̃(1/ϵ3) queries, the algorithm
will obtain two distributions whose estimated means are sufficiently far from each other.
Thus, this algorithm essentially uses estimates of means as estimates of the distance to having
a certain mean.

We design and analyze an improved (almost optimal) algorithm that, roughly speaking,
tries to directly estimate the distance to having a certain mean. The more direct estimate
is done by estimating means as well, albeit these are means of “mutations” of the original
distribution in which the weight of the distribution is either shifted higher or lower. By
obtaining such estimates we can apply a “bucketing” technique that allows us to save a factor
of Θ̃(1/ϵ) in the query complexity.

RESULTS IN THE SAMPLING MODEL. While in the query model the complexity of the prob-
lem of testing similar means has no dependence on the number of distributions, m, this is
no longer the case in the sampling model. We prove that the number of samples required
is lower bounded by (1 − γ)m1−Õ((ϵ/γ)1/2). Thus, for any fixed γ (bounded away from 0
and 1), the sample complexity approaches a linear dependence on m as ϵ is decreased. On
the positive side, we can show the following. First, by simulating the algorithm designed for
the query model, we get an algorithm in the sampling model whose sample complexity is
Õ(1/ϵ2)m1−Ω̃(ϵ2). If we restrict our attention to the case where the domain is {0, 1}, then
we can get a better dependence on ϵ in the exponent (at a cost of a higher dependence in
the factor that depends only on ϵ). We also observe that (for the {0, 1} case), if γ < ϵ/c
for some sufficiently large constant c, then we can use an algorithm from [13] whose sample
complexity is poly(1/ϵ)

√
m (we note that it is not possible to go below

√
m even for γ = 0).

In order to prove the abovementioned lower bound we construct a pair of collections
of distributions, one that has the property of γ-similar means, and one that is ϵ-far from
having this property. We prove that when taking (1 − γ)m1−Õ((ϵ/γ)1/2) samples, these two
collections are indistinguishable. The heart of the proof is the construction of two random
variables that on one hand have the same first t moments (for t = Õ((γ/ϵ)1/2)) and on the
other hand differ in the maximal distance between pairs of elements in the support. These
random variables can then be transformed into collections of distributions that cannot be
distinguished (with the abovementioned number of samples) but differ in the distance between
the maximal and minimal means in the collection. We use tools from [20] and [19] in order
to prove that the collections of distributions cannot be distinguished. The construction of the
random variables is based on Chebyshev polynomials [6], whose roots, and their derivatives
at the roots, have useful properties that we exploit.

EXTENSION TO k INTERVALS. We extend our results for testing whether the means of the
distributions in the collection reside in at most k intervals of size at most γn, a property which
we refer to as (k, γ)-similar means. In particular we provide an algorithm that works in the
query model which performs Õ(k2/ϵ2) queries and an algorithm that works in the sampling
model and takes Õ(k2/ϵ2)m1−Ω̃(ϵ2/k2) samples.

1.2. Related Work. The work that is most closely related to the work presented in this
paper appears in [13]. The testing models used here were introduced in [13], where the main
focus was on the property of equivalence of a collection of distributions. Namely, the goal
is to distinguish between the case that all distributions in the collection are the same (or
possibly very similar), and the case in which the collection is far from having this property.
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The sample complexity (in terms of the dependence on n and m) of testing equivalence grows
as Õ(n2/3m1/3), as long as n ≥ m, and when m ≥ n it grows as Õ(n1/2m1/2). When the
domain of the distributions is {0, 1}, then the problem of testing similar means for γ = 0
is the same as testing whether the distributions are equivalent. Therefore, an algorithm with
sample complexity poly(1/ϵ)

√
m that is given in [13] for testing equivalence in the sampling

model, carries over directly to our problem, when γ = 0 and the domain is {0, 1}). In fact,
a tolerant version of this algorithm [13] implies the same complexity for γ ≤ ϵ/c for a
sufficiently large constant c. However, these results do not have any implications for larger γ,
and the problems are very different when the domain is larger.

Testing and approximating properties of single and pairs of distributions has been studied
quite extensively in the past (see [9, 15, 4, 3, 1, 2, 11, 5, 16, 20, 19]).

Statistical techniques for determining whether sets of populations have the same mean
are in wide use. Paired difference tests, and in particular the Student’s and Welch’s t-tests,
are commonly used to study whether the means of two normally distributed populations are
equal [14, 18, 21]. The family of procedures ANOVA (Analysis of Variance), applies when
there are more than two normally distributed populations (see [12, Chapter 12]), where the
difficulty is that the pairwise comparison of all the populations increases the chance of incor-
rectly failing collections of populations that do in fact all have the same mean, i.e., rejecting
the null hypothesis. In all of these procedures, the assumptions made are quite strong, e.g.,
assuming the normality of the distributions and assuming that all distributions have the same
variance. In the settings of ANOVA, the user determines the significance level of the test, α,
i.e., the probability to reject the null hypothesis when it is true. The guarantee is the follow-
ing: When the null hypothesis is false, the probability that the test rejects is at least α. While
the probability to accept when the null hypothesis is false decreases as the number of samples
and the significance level of the test increases, there is no explicit guarantee on the probability
(except that it is smaller than 1− α). Furthermore, regardless of the significance level of the
test, the user is required to provide samples from every distribution in the collection.

1.3. Extensions and Further Research. A natural question that arises is what is the
exact complexity of testing γ-similar means in the sampling model. One sub-question is the
dependence on ϵ in the exponent of m. Perhaps a more intriguing question is the dependence
on γ. Namely, our lower bound (which also holds for the domain {0, 1}) are meaningful
only when γ is (sufficiently) larger than ϵ. As noted previously, when γ ≤ ϵ/c (for some
constant c), the testing problem can be solved for the domain {0, 1} using a number of sam-
ples that grows as

√
m. The question is whether for the domain {0, 1}, and possibly more

generally, we can give an algorithm whose complexity is a function of ϵ/γ rather than ϵ, so
that, in particular, the complexity decreases as γ decreases. To gain some intuition on why
for the domain {0, 1} the complexity decreases as γ decreases consider for every collection
of distributions the corresponding vector of frequencies of means in the collection. When γ
is sufficiently smaller than ϵ, we show that the ℓ2 norm (or the second moment) of the vector
of frequencies of means to be sufficiently different between the NO instances and the YES
instances, implying that it is easy to distinguish between a YES instance and a NO instance.
However, when γ is sufficiently greater than ϵ, we construct a pair of collections, a YES in-
stance and a NO instance, where both collections have corresponding vectors of frequencies
with identical first, second, and higher moments, implying that the complexity of the testing
problem becomes higher.

We also note that our results (in particular in the query model) easily extend to a general-
ization of the similar-means problem, where we ask whether the distributions can be clustered
into at most k clusters, such that within each clusters all distributions have means that differ
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by at most γn.

2. Preliminaries. Let D = (D1, . . . , Dm) be a collection of m distributions, where
Di : {0, . . . , n} → [0, 1] and

∑n
j=1 Di(j) = 1 for every 1 ≤ i ≤ m. For a vector v =

(v1, . . . , vn) ∈ Rn, let ∥v∥1 =
∑n

i=1 |vi| denote the ℓ1 norm of the vector v.
Following [13], for a property P of collections of distributions and 0 ≤ ϵ ≤ 1, we say

that D is ϵ-far from (having) P if 1
m

∑m
i=1 ∥Di − D∗

i ∥1 > ϵ for every collection D∗ =
(D∗

1 , . . . , D
∗
m) that has the property P (note that ∥Di − D∗

i ∥1 is twice the the statistical
distance between the two distributions).

Given a distance parameter ϵ, a testing algorithm for a property P should distinguish
between the case that D has the property P and the case that it is ϵ-far from P . We consider
two models within which this task is performed.

1. The Query Model. In this model the testing algorithm may indicate an index
1 ≤ i ≤ m of its choice and it gets a sample j distributed according to Di. We refer
to each such request as a query.

2. The Sampling Model. In this model the algorithm cannot select (query) distribu-
tions of its choice. Rather, it may obtain a pair (i, j) where i is selected uniformly
(we refer to this as the uniform sampling model) and j is distributed according to
Di.

For a distribution D over the domain {0, . . . , n}, let µ(D)
def
= 1

n

∑n
j=1 i · D(j). For

a collection D = (D1, . . . , Dm) of distributions over {0, . . . , n} let µj = µ(Dj). For a
parameter 0 ≤ γ ≤ 1, we say that D has γ-similar means if |µj −µj′ | ≤ γn for every j ̸= j′.

3. Results for the Query Model. In this section we provide an algorithm for testing
γ-similar means in the query model, and give an almost matching simple lower bound.

For a distribution D over {0, . . . , n}, we shall use the notation µ(D)
def
=
∑n

i=1 i ·D(i)

for the mean of D. for a value 0 ≤ z ≤ n let d1(D, z)
def
= minD′:µ(D′)=z {∥D −D′∥1}

denote the minimum ℓ1 distance between D and a distribution that has mean z.

3.1. A Basic Algorithm. Consider first a basic algorithm that works by randomly se-
lecting Θ(1/ϵ) distributions, and estimating each of their means to within O(ϵn) additive
error. This can be done by querying each selected distribution so as to obtain Õ(1/ϵ2) sam-
ples from each. The resulting query complexity is Õ(1/ϵ3). The correctness of this algorithm
is based on Lemma 1 (stated below), which gives an upper bound on the “cost”, in terms of
the ℓ1-distance, for modifying the mean of a distribution by ϵn. Note that in general this cost
is not necessarily linear in ϵ. For example, consider the case in which ϵn is an integer and
D has all its weight on n(1 − ϵ), so that µ(D) = n(1 − ϵ). Suppose we want to increase
D’s mean by ϵn. The only distribution whose mean is n is the distribution whose weight is
all on n, and the ℓ1 distance between D and this distribution is 1. On the other hand, if we
wanted to decrease the mean of D by ϵn, then this can easily be done with a cost linear in ϵ,
by moving ϵ/(1− ϵ) weight from n(1− ϵ) to 0.

LEMMA 1. Let D be a distribution over {0, . . . , n}, let µ = µ(D), and let α ≤ 1/16.
If µ ≥ n/2, then for every µ′ ∈ [µ − αn, µ] there exists D′ such that µ(D′) = µ′ and
∥D − D′∥1 ≤ 4α. If µ ≤ n/2, then for every µ′ ∈ [µ, µ + αn] there exists D′ such that
µ(D′) = µ′ and ∥D −D′∥1 ≤ 4α.

Proof. Let X ∼ D. In the case that µ ≥ n/2 we have that Pr[X ≥ n/4] ≥ 1/4 ≥ 4α.
Therefore, we can decrease the mean of D by at most αn by moving at most 4α weight from
its support on points in the interval [n/4, n], to 0. In the case that µ ≤ n/2, we have that
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Pr[X ≤ 3n/4] > 1/3 ≥ 4α. Therefore, we can increase the mean of D by at most αn by
moving at most 4α weight from its support on the interval [0, 3n/4], to n.

Lemma 2 can be shown to follow from Lemma 1.
LEMMA 2. Let D be a collection of distributions. If D is ϵ-far from having γ-

similar means, then there exists an interval [x, y] ⊆ [n] where y − x = γn such that∑
i:µ(Di)>y d1(Di, y) > (ϵ/4)m and

∑
i:µ(Di)<x d1(Di, x) > (ϵ/4)m.

Proof. Let D be a collection which is ϵ-far from having γ-similar means. By defini-
tion, for every interval [x, y] such that y − x ≤ γn we have that

∑
i:µ(Di)<x d1(Di, x) +∑

i:µ(Di)>y d1(Di, y) > ϵm. We claim that for every interval [x, y] such that y − x <

γn+ (ϵ/8)n, we have that∑
i:µ(Di)<x

d1(Di, x) +
∑

i:µ(Di)>y

d1(Di, y) > (ϵ/2)m . (3.1)

This is true because otherwise, we could modify the distributions so that their means belong
to an interval [x′, y′] ⊆ [x, y] of size γn at a total cost upper bounded by ϵm. In particular,
we would first increase the means of all those distributions Di such that µ(Di) < x to x, and
decrease the means of all Di such that µ(Di) > y to y, at a total cost of (ϵ/2)m. We then
increase/decrease the means further by at most (ϵ/8)n each using Lemma 1.

Let x be the minimum value of the form ℓ · (ϵ/8)n, where ℓ is an integer, such that∑
i:µ(Di)<x d1(Di, x) > (ϵ/4)m, and let y = x + γn. By the definition of x, if we con-

sider x′ = x − (ϵ/16)n, then
∑

i:µ(Di)<x′ d1(Di, x
′) ≤ (ϵ/4)m, thus by Equation 3.1,∑

i:µ(Di)>y d1(Di, y) > (ϵ/4)m as desired. The correctness of the basic algorithm follows

from Lemma 2: If D is ϵ-far from having γ-similar means, then there exist an interval [a, b]
of size γn such that at least Ω(ϵm) distributions in the collection have mean that is at most
a − ϵ/c and at least Ω(ϵm) distributions in the collection have mean that is at least b + ϵ/c,
for some absolute constant c. Therefore, by selecting Θ(1/ϵ) distributions and estimating the
means of each to within O(ϵn), with high constant probability the algorithm finds evidence
for a pair of distributions with means outside both sides of the interval defined in Lemma 2.
On the other hand, if D has γ-similar means, then the probability of such an event is small.

3.2. An Improved Algorithm. We can modify the basic algorithm so as to obtain a
lower complexity (which we later show is almost optimal). One ingredient of the modification
(similar to that applied for example in [10]) is roughly the following. Consider the following
two (extreme) cases where the collection is ϵ-far from having γ-similar means. In the first
case, there is an interval [x, y] of size γn+2ϵn, such that half of the distributions have mean x
and half of the distributions have mean y. If we select just a constant number of distributions,
and for each we estimate its mean to within ϵn/2, then we shall have sufficient evidence for
rejection. In the second case, all but 2ϵm of the distributions have a mean that resides in an
interval of size γn, say, [0, γn] and the remaining 2ϵm distributions have a mean of n. In this
case we need to sample Θ(1/ϵ) distributions so as to “hit” one of the high-mean distributions,
but then it suffices to take a constant size sample so as to detect that it has a high mean.

If the distributions were over {0, 1}, then by generalizing the above discussion we can
get a certain trade-off between the number of selected distributions and the required quality
of the estimate of their means. When dealing with general domains, estimating the means
might not suffice. As noted previously, a distribution might have a mean that is very close
to a certain value, while the distribution is very far, in terms of the ℓ1 distance, from any
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distribution that has this mean. Therefore, rather than estimating means as a “proxy” for
estimating the ℓ1 distance to having a certain mean, we estimate the latter directly.

SOME NOTATION. To make the above notion of estimation more precise, we introduce some
notation. Consider any value 0 ≤ β ≤ 1 and distribution D. If d1(D,n) ≥ β, (where d1(·, ·)
is as defined at the beginning of this section), then define µ>

β (D) to be the value µ > µ(D)

for which d1(D,µ) = β. If d1(D,n) < β, then µ>
β (D)

def
= n. That is, µ>

β (D) is the largest
mean that can be obtained if we are allowed to modify D so that the resulting distribution is at
distance (at most) β from D. Similarly, if d1(D, 0) ≥ β, then we define µ<

β (D) to be the value

µ < µ(D) for which d1(D,µ) = β, and if d1(D, 0) < β, then µ<
β (D)

def
= 0. Observe that if

the domain is {0, 1}, then µ>
β (D) = min{µ(D) + β, 1} and µ<

β (D) = max{µ(D) − β, 0}
(while if the domain is larger, then µ>

β (D)−µ(D) and µ(D)−µ<
β (D) might be much smaller

than βn even when d1(D,n) and d1(D, 0) are large).
We first describe an algorithm that given sampling access to a distribution D and a pa-

rameter β, outputs a pair of estimates such that with high probability one is between µ(D) and
µ>
β (D) and the other is between µ<

β (D) and µ(D). In particular, if the domain is {0, 1}, then
one estimate is between µ(D) and µ(D) + β and the other is between µ(D) − β and µ(D).
For n > 1 the estimates may be required to be much closer to µ(D). The number of samples
that the algorithm takes is quadratic in 1/β. Note that if the domain is {0, 1} (or any constant
size domain), then the algorithm can simply estimate the mean of D to within β. However,
for a general domain, the algorithm is different. We later show how to apply this algorithm
so as to obtain a testing algorithm with query complexity Õ(1/ϵ2). The testing algorithm is
based on showing that if D is ϵ-far from having γ-similar means then we can efficiently obtain
two distributions D1 and D2 for which the following holds. There exist an interval [x, y] of
size greater than γn such that µ(D1) < x, µ(D2) > y and for certain (relatively large) values
β1, β2 we have that d1(D1, x) > β1 and d1(D2, y) > β2. This implies that x > µ>

β1
(D1)

and y < µ<
β2
(D2). Therefore, if we apply the algorithm to D1 with β1, and to D2 with β2,

we shall obtain (with high probability) points x1 and y2, where µ(D1) ≤ x1 ≤ µ>
β1
(D) ≤ x

and y ≤ y2 ≤ µ<
β2
(D2) ≤ µ(D2). These points can serve as evidence that D does not have

γ-similar means.

THE ALGORITHM. The high-level idea behind the algorithm is that we consider certain
“mutations” of the distribution D. One mutation has a higher mean than D but not higher
than µ>

β (D), and the other has a lower mean than D but not lower than µ<
β (D). Moreover, the

mean of the first is bounded away from both µ(D) and µ>
β (D), and the mean of the second

is bounded away from µ(D) and µ<
β (D). By estimating the means of these distributions

sufficiently well, we get the desired outcome of the algorithm. Since µ>
β (D) − µ(D) might

be much smaller than βn (and similarly µ(D)− µ<
β (D)) it is not immediately clear what we

gain as compared to simply estimating µ(D). The gain is due to the fact that the support of
each of the two distributions is contained in an interval that is strictly smaller than [0, n], and
it suffices to estimate each of their means to within β/c times the size of the corresponding
interval (for some constant c) so as to ensure that the estimate is in the range [µ(D), µ>

β (D)]
(similarly, the range [µ<

β (D), µ(D)]. More details follow, where we focus here on the first
mutation.

Consider a distribution D. For any 0 ≤ a ≤ a′ ≤ n,∑
i>a

i ·D(i) +
∑
i≤a

a′ ·D(i) ≥ µ(D) . (3.2)
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On the other hand, by the definition of µ>
β (D), if a is such that PrD[i ≤ a] ≤ β, then (setting

a′ = n), ∑
i>a

i ·D(i) +
∑
i≤a

n ·D(i) ≤ µ>
β (D) . (3.3)

Let a indeed be a value that satisfies PrD[i ≤ a] ≤ β. If we could obtain the exact evaluation
of the expression in Equation (3.3), which corresponds to the mean of a distribution that is a
certain modification (mutation) of D, then we would have a value between µ(D) and µ>

β (D).
However, if we can obtain only an (additive) estimate of this value, then it might not satisfy
the requirements of the algorithm. Hence we further modify Equation (3.3) as follows. Let
a′ = a+ (n− a)/2 = (a+ n)/2 and let

µa(D)
def
=
∑
i>a

i ·D(i) + a′ · PrD[i ≤ a] . (3.4)

Then on one hand

µa(D) ≥ µ(D) + ((n− a)/2) · PrD[i ≤ a] (3.5)

and on the other hand

µa(D) ≤ µ>
β (D)− ((n− a)/2) · PrD[i ≤ a] . (3.6)

If PrD[i ≤ a] ≥ β/c for some constant c, then by estimating µa(D) to within an additive
error of (n− a)β/4c, we get a value between µ(D) and µ>

β (D). Since µa(D) is the mean of
a distribution (we describe this distribution formally in the proof of Lemma 3) whose support
is in the interval [a, n], this can be done by taking a sample of size Θ(1/β2). A technical issue
that arises is that it is possible that no such value a exists because PrD[i = a] is relatively
large. But then we can slightly modify the definition of µa(D) and still obtain the desired
estimate. A similar argument can give us µ<

β (D) ≤ y ≤ µ(D) (with high probability).

Algorithm 1 GetBounds(D,β, δ)
1. Take a sample of size s1 = Θ(log(1/δ)/β) from D and let i1 ≤ · · · ≤ is1 be the

selected points (ordered from small to large).
2. Set a = i(β/4)s1 , b = i(1−β/4)s1 , a′ = (a+ n)/2 and b′ = b/2.
3. Take a sample of size s2 = Θ(log(1/δ)/β2) from D. Let α̂(a) be the fraction of

sampled points i = a and let α̂(b) be the fraction of sampled points i = b.
4. If α̂(a) ≤ β/4, then let a′′ = a′, else let a′′ = β

4α̂(a) ·a
′+(1− β

4α̂(a) ) ·a. Similarly,

if α̂(b) ≤ β/4 then let b′′ = b′, else let b′′ = β
4α̂(b) · b

′ + (1− β
4α̂(b) ) · b.

5. Take a sample of size s3 = Θ(log(1/δ)/β2) from D, and denote the sam-
pled points by i1, . . . , is3 . Let u = 1

s3

(∑
ij>a ij +

∑
ij<a a

′ +
∑

ij=a a
′′
)

and

ℓ = 1
s3

(∑
ij<b ij +

∑
ij>b b

′ +
∑

ij=b b
′′
)

.
6. Return (u, ℓ).

LEMMA 3. The algorithm GetBounds(D,β, δ) returns u and ℓ such that with probability
at least 1− δ (over its internal coin flips), µ(D) ≤ u ≤ µ>

β (D) and µ<
β (D) ≤ ℓ ≤ µ(D).

Proof. We prove the claim for u, and an analogous (symmetric) analysis holds for ℓ. Let
8



a, a′, a′′ be as determined in the algorithm GetBounds, and let

D̃(i)
def
=


D(i) if i > a, i ̸= a′, i ̸= a′′

D(i) + PrD[i < a] if i = a′

D(i) +D(a) if i = a′′

0 o.w.

(3.7)

By the definition of the distribution D̃ we have that

µ(D̃) =
∑
i>a

i ·D(i) + a′ · PrD[i < a] + a′′ · PrD[i = a] . (3.8)

Observe that in Step 5, the algorithm takes s3 independent samples from D̃ and that E[u] =
µ(D̃). We note that the support of D̃ may not be only on points in {0, 1, . . . , n} (as is the
case with D), but this is immaterial to the argument.

By a multiplicative Chernoff bound, with probability at least 1 − δ/4 (for a sufficiently
large constant in the Θ notation for s1) we have that PrD[i < a] ≤ β/3 and PrD[i ≤ a] ≥
β/8. To verify this, for any 0 < α < 1, let eα(D) ∈ {0, . . . , n} be such that PrD[i <
eα(D)] < α and PrD[i ≤ eα(D)] ≥ α. Given that s1 = c log(1/δ)/β, the probability
that a sample of size s1 contains less than (β/4)s1 points i ≤ eβ/3(D) or at least (β/4)s1
points i < eβ/8(D) is at most δ/4 (for a sufficiently large constant c). But if neither of these
events occur, then, given the choice of a in Step 2, we have that PrD[i < a] ≤ β/3 and
PrD[i ≤ a] ≥ β/8, as claimed.

Next, by an additive Chernoff bound, with probability at least 1− δ/4 (for a sufficiently
large constant in the Θ notation for s2) we have that PrD[i = a] − β/4 ≤ α̂(a) ≤ PrD[i =
a] + β/4. From this point on assume that the above inequalities indeed hold. If α̂(a) ≤ β/4
(so that PrD[i ≤ a] ≤ β/3+β/4+β/4 < β), then (as explained in the discussion preceding
the algorithm), on one hand,

µ(D̃) ≥ µ(D) +
n− a

2
· PrD[i ≤ a] ≥ µ(D) + (n− a) · (β/16) , (3.9)

and on the other hand

µ(D̃) < µ>(D)− n− a

2
· PrD[i ≤ a] ≤ µ>(D)− (n− a) · (β/16) . (3.10)

If α̂(a) > β/4 (so that PrD[i < a] + min{1, β/4α̂(a)} · PrD[i = a] ≤ β/3 + β/2 < β),
then

µ(D̃) ≥ µ(D)+
n− a

2
·
(
PrD[i < a] +

β

4α̂(a)
· PrD[i = a]

)
≥ µ(D)+

n− a

2
· β
32

(3.11)

and similarly µ(D̃) < µ>
β (D)− (n− a) · (β/32). By the definition of u and an additive

Chernoff bound, with probability at least 1 − δ/4 (for a sufficiently large constant in the Θ

notation for s3), we have that |u − µ(D̃)| ≤ (n − a) · (β/32) implying that µ(D) ≤ u ≤
µ>
β (D).

THEOREM 1. Algorithm 2 tests γ-similar means in the query model. The algorithm’s
query complexity is O(log2(1/ϵ)/ϵ2).

Proof. Let Eg denote the event that all pairs (uq
j , ℓ

q
j) returned by the algorithm Get-

Bounds are as specified in Lemma 3. Since each call to GetBounds in iteration q is done with
9



Algorithm 2 testing γ-similar means
1. For q = 1 to r, where r = ⌈log(8/ϵ)⌉ do:

• Select t(q) = Θ (2q log(1/ϵ)) distributions from the collection, and denote
them by Dq

1, . . . , D
q
t(q).

• For each Dq
j selected let (uq

j , ℓ
q
j) = GetBounds

(
Dq

j , (ϵ/8)2
q−1, 1

(6rt(q))

)
2. Let x̂ = maxq,j{uq

j} and ŷ = minq,j{ℓqj}. If ŷ − x̂ > γn, then REJECT, otherwise,
ACCEPT.

δ = 1/(6rt(q)), by Lemma 3 the probability that Eg holds is at least 5/6. If D has γ-similar
means, then, conditioned on Eg , the algorithm accepts.

We now turn to the case that D is ϵ-far from having γ-similar means. Let [x, y] be an
interval as described in Lemma 2. We partition the distributions Di such that µ(Di) < x into
buckets BL

q , for 1 ≤ q ≤ r, where

BL
q = {i : (ϵ/8)2q−1 < d1(Di, x) ≤ (ϵ/8)2q} , (3.12)

and similarly we partition the distributions Di such that µ(Di) > y into buckets BR
q , where

BR
q = {i : (ϵ/16)2q−1 < d1(Di, y) ≤ (ϵ/8)2q} . (3.13)

Since ∑
i:µ(Di)<x

d1(Di, x) > (ϵ/4)m (3.14)

and ∑
i:d1(Di,x)≤ϵ/8

d1(Di, x) ≤ (ϵ/8)m (3.15)

we have that ∑
i:µ(Di)<x,d1(Di,x)>ϵ/8

d1(Di, x) ≥ (ϵ/8)m , (3.16)

and so there exists an index qL such that∑
i∈BL

qL

d1(Di, x) ≥ (ϵ/8)m/r (3.17)

(where r is the number of buckets). By the definition of the buckets, r = O(log(1/ϵ)), and
for the bucket BL

qL we have

|BL
qL | >

(ϵ/8)m/r

(ϵ/8)2qL
= Ω

(
m

log(1/ϵ)2qL

)
. (3.18)

Similarly there exists an index qR such that |BR
qR | = Ω

(
m

log(1/ϵ)2qR

)
. But in such a case,

since the algorithm selects t(q) = Θ (2q log(1/ϵ)) distributions in each iteration q, with high
constant probability, the algorithm will select a distribution Di such that i ∈ BL

qL in iteration
10



qL, and a distribution Dj such that j ∈ BR
qR in iteration qR, and conditioned on the event Eg ,

will reject, as required.
Let s(q) denote the number of queries performed in iteration q by the algorithm GetBounds
for each distribution it is called on. The query complexity of the algorithm is

r∑
q=1

t(q) · s(q) = O

(
r∑

q=1

2q log(1/ϵ) · log(1/ϵ)
22qϵ2

)
= O(log2(1/ϵ)/ϵ2) (3.19)

and the theorem follows.

3.3. A Lower Bound. We next establish a lower bound (almost matching our upper
bound) for testing γ-similar means in the query model by reducing the testing problem to the
problem of distinguishing two coins.

FACT 4. Distinguishing an unbiased coin from a coin with bias ϵ with constant success
probability requires Ω(1/ϵ2) samples.

COROLLARY 2. Testing γ-similar means in the query model requires Ω(1/ϵ2) samples.

Proof. Let D1(0) = D1(n) =
1
2 , D2(0) =

1
2 − ϵ, D2(n) =

1
2 + ϵ and D3(0) =

1
2 + γ,

D3(n) =
1
2−γ. By their definition, the collection (pair) (D1, D3) has γ-similar means, while

the pair (D2, D3) is at least ϵ/2-far from having γ-similar means. Distinguishing between
the case that we are given an unbiased coin and the case that we are given a coin with bias ϵ
reduces to testing whether the collection of two distributions, (D,D3) has γ-similar means
(when D = D1, which is simulated when the coin is unbiased) or is ϵ/2-far from γ-similar
means (when D = D2, which is simulated when the coin is biased).
For the sake of completeness we include the proof of Fact 4 next.

Proof of Fact 4. We shall use the KL-divergence between distributions. Namely, for two
distributions p1 and p2 over a domain X , DKL(p1∥p2)

def
=
∑

x∈X p1(x) · ln p1(x)
p2(x)

.

DKL

(
Bin

(
n,

1

2
+ ϵ

)
∥Bin

(
n,

1

2

))
=

∑
0≤k≤n

(
n

k

)(
1

2
+ ϵ

)k (
1

2
− ϵ

)n−k

· ln (1 + 2ϵ)
k
(1− 2ϵ)

n−k

=
n

2
((1 + 2ϵ) ln(1 + 2ϵ) + (1− 2ϵ) ln(1− 2ϵ))

≤ n

2
· 4ϵ ln(1 + 2ϵ)

≤ n

2
· 4ϵ · 2ϵ

= 4nϵ2 .

The ℓ1 distance is related to the KL-divergence by ∥p1 − p2∥1 ≤ 2
√

2DKL (p1∥p2) and thus
the fact is established.

4. Results for the Sampling Model. As opposed to the query model, where the algo-
rithms had no dependence on the number of distributions, m, we show that in the sampling
model there is a strong dependence on m. We start by giving a lower bound for the sample
complexity of this problem, and continue with several upper bounds.
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4.1. A Lower Bound. In this section we prove the following theorem.
THEOREM 3. For every n ≥ 1, testing γ-similar means in the uniform sampling model

requires (1 − γ) · m1−Õ((ϵ/γ)1/2) samples. In particular, when γ is a constant we get a
lower bound of m1−Õ(ϵ1/2). We also note that we may assume without loss of generality that
1− γ = Ω(ϵ), or else the algorithm can accept automatically.

In order to prove Theorem 3 we construct a pair of collections of distributions, one that
has the property of γ-similar means, the YES instance, and one that is ϵ-far from having this
property, the NO instance. We prove that when taking m1−Õ((ϵ/γ)1/2) samples, these pair
of collections are indistinguishable and thus prove a lower bound on the sample complexity
of the problem. The main part of this proof is the construction of two random variables that
on one hand have the same first t moments (where t will be defined later) and on the other
hand differ in the maximal distance between pairs of elements in the support, which we call
the diameter of the random variable. These random variables can then be transformed into
collections of distributions that cannot be distinguished (with the abovementioned number of
samples) but differ in the distance between the maximal and minimal means in the collection.
The random variable that is at the core of the construction of the YES instance, i.e. a collec-
tion of distributions where γ is the maximal distance between means of pairs of distributions
in the collection, has diameter of γ . While the random variable which corresponds to the NO
instance has a diameter which is greater than γ. The next lemma is central to the proof of
Theorem 3. In the lemma and what follows we shall use the notation [k]

def
= {1, . . . , k}.

LEMMA 5. Given sequences {di}ti=1 and {αi}ti=1 that satisfy 0 ≤ |di|, αi ≤ 1 for
every i ∈ [t] and

∑t
i=1 αi = 1, we define a random variable X = X ({di}, {αi}) over

[0, 1] as follows: Pr [X = di] = αi. For every even integer t, there exist sequences {d+i }ti=1,
{α+

i }ti=1, {d−i }
t+1
i=1 and {α−

i }
t+1
i=1 that obey the aforementioned constraints and for which the

following holds:
1. For the random variables X+ = X

(
{d+i }, {α

+
i }
)

and X− = X
(
{d−i }, {α

−
i }
)

we
have

E
[(
X+
)i]

= E
[(
X−)i] ∀i ∈ [t] . (4.1)

2. The sequences are symmetric around zero. Namely, d−t/2+1 = 0, and for every 1 ≤
i ≤ t/2, we have that d+i = −d+t+1−i and α+

i = α+
t+1−i as well as d−i = −d−t+2−i

and α−
i = α−

t+2−i.
3. If we denote by d+max (d+min) the maximal (minimal) non-negative element in the

support of X+ (so that d+max = d+1 and d+min = d+t/2) and by α+
max (α+

min) the
corresponding probability, and let d−max, d−min, α−

max, α−
min be defined analogously,

then

α−
max(d

−
max − d+max) = Θ̃

(
1

t2

)
, (4.2)

and

d+max − d+min = Θ(1) . (4.3)

We prove Lemma 5 in Subsection 4.1.1 and first show how Theorem 3 follows from it.
Let {α+

i }ti=1, {d+i }ti=1, {α−
i }

t+1
i=1 and {d−i }

t+1
i=1 be as defined in Lemma 5. Let {α̃+}ti=1 and

{α̃−}t+1
i=1 satisfy:
1. α̃+

i m and α̃−
i m are integers.

12



2.
∑t

i=1 α̃
+
i =

∑t+1
i=1 α̃

−
i = 1.

3. α̃+
i = α̃+

t−i+1 and α̃−
i = α̃−

t−i+1 (for 1 ≤ i ≤ t/2).
4. |α̃+

i − α+
i | ≤ 1/m and |α̃−

i − α−
i | ≤ 1/m.

For a parameter δ, we define the collection of distributions D+
t (the YES instance) as follows.

For every 1 ≤ i ≤ t/2 there are α̃+
i m distributions D ∈ D+

t of the following form:

D(j)
def
=


1
2 ·
(
1 + d+i δ

)
if j = 0

1
2 ·
(
1− d+i δ

)
if j = n

0 o.w.
(4.4)

and another α̃+
i m of the distributions D ∈ D+

t are of the following form:

D(j)
def
=


1
2 ·
(
1− d+i δ

)
if j = 0

1
2 ·
(
1 + d+i δ

)
if j = n

0 o.w.
(4.5)

The collection D−
t is defined analogously based on {α̃−

i }
t+1
i=1 and {d−i }

t+1
i=1, where for i =

t/2 + 1 there are α̃−
t/2+1m distributions D ∈ D−

t such that D(0) = D(n) = 1/2 (recall that
d−t/2+1 = 0).

LEMMA 6. For every even integer t ≤ m1/2, in order to distinguish between D+
t and

D−
t in the uniform sampling model (with success probability at least 2/3), it is necessary to

take Ω
(
m1−1/t(1− d+maxδ)

)
samples.

The proof of Lemma 6 is given in Subsection 4.1.2.

Proof of Theorem 3. Define γ such that D+
t has the property of γ-similar means, i.e.

γ =
1

2
· (1 + d+maxδ)−

1

2
· (1− d+maxδ) = d+maxδ . (4.6)

To change D−
t into a γ-similar means instance, we have to either change the means of α−

max

fraction of the distributions from 1
2 · (1+d−max) ·n to 1

2 · (1+d+max) ·n or change the means of
α−
max distributions from 1

2 ·(1−d−max)·n to 1
2 ·(1−d+max)·n. Letting ϵ = α+

max·(d+max−d−max)δ,
we get that D− is at least ϵ-far from γ-similar means. By Lemma 5 we have that

ϵ

γ
=

α+
max · (d+max − d−max)

d+max
= Θ̃

(
1

t2

)
. (4.7)

We note that for every ϵ/γ ≤ 1/ log2 m we get that m1−Õ((ϵ/γ)1/2) = Ω(m). Hence we
can assume without loss of generality that ϵ/γ = Ω̃(m−1/2) and thus by setting 1/t =
Θ̃(ϵ1/2/γ1/2), the theorem follows from Lemma 6.

4.1.1. Proof of Lemma 5. The random variables described in Lemma 5 are constructed
via a polynomial f : the support of X+ (respectively, X−) is the set of roots of f with a
negative (respectively, positive) derivative. If f has an odd number of roots then the sign of
the derivative at the largest root is the same as the sign at the smallest root. If it is positive,
then the support of X− resides in an interval which contains the support of X+. To prove
a lower bound, X− needs to be far from similar means (more precisely, the collection of
coins that corresponds to X−) and indistinguishable from X+. To make X− far from having
similar means, f should maximize the size of X−’s interval (compared to X+’s interval) and
the weight on the extreme roots.
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As suggested by Lemma 7 (stated below) X− and X+ have matching moments if the
probability to take the value xi, where xi is a root of f , is 1/|f ′(xi)|, up to normalization.
In this case, a small derivative on the extreme roots would result with X− which is far from
having similar means. When the roots of f is taken to be the value of the Sine function at
equal distances, the derivative at the extreme roots, that is at −1 and 1, is small. As we see
next, these roots are the roots of the Chebyshev polynomials.

The proof of Lemma 5 requires some preliminaries concerning Chebyshev polynomials,
which we provide next. Let Tℓ be the ℓ-th Chebyshev polynomial of the first kind, which is
defined by the recurrence relation:

T0(x) = 1 (4.8)
T1(x) = x (4.9)

Tℓ+1(x) = 2xTℓ(x)− Tℓ−1(x) . (4.10)

Let Uℓ be the ℓ-th Chebyshev polynomial of the second kind, which is defined by the recur-
rence relation:

U0(x) = 1 (4.11)
U1(x) = 2x (4.12)

Uℓ+1(x) = 2xUℓ(x)− Uℓ−1(x) . (4.13)

Then we have that

dTℓ(x)

dx
= ℓ · Uℓ−1 , (4.14)

and that

Uℓ−1(cos(x)) =
sin(ℓx)

sinx
. (4.15)

Tℓ has ℓ different simple roots:

xi = cos

(
π

2
· 2i− 1

ℓ

)
i = 1, . . . , ℓ (4.16)

and the following equalities hold:

Tℓ(1) = 1, and Tℓ(−1) = (−1)ℓ . (4.17)

We shall also use the next lemma concerning properties of (derivatives of) polynomials.
LEMMA 7 ([19]). Let f(x) be a polynomial of degree ℓ whose roots {xi} are real and

distinct. Letting f ′ denote the derivative of f , for every j ≤ ℓ−2 we have that
∑ℓ

i=1
xj
i

f ′(xi)
=

0.

We are now ready to prove Lemma 5.

Proof of Lemma 5. Consider the following polynomial:

f(x)
def
= (x− 1)(x+ 1) · Tℓ(x) , (4.18)
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where Tℓ(·) is the ℓ-th Chebyshev polynomial of the first kind and ℓ = 2t−1. The polynomial
f(·) has ℓ+2 roots, which, by decreasing order, are: 1, cos

(
π
2 · 1

ℓ

)
, cos

(
π
2 · 3

ℓ

)
, . . . ,−1. The

derivative of f(·) is f ′(x) = 2x · Tℓ(x) + (x2 − 1) · T ′
ℓ(x) and thus

1

|f ′(1)|
=

1

2Tℓ(1)
=

1

2
, (4.19)

and

1

|f ′(−1)|
=

1

|2Tℓ(−1)|
=

1

2
. (4.20)

While for xi which is a root of Tℓ we have:

1

|f ′(xi)|
=

1

|(x2
i − 1) · T ′

ℓ(xi)|
. (4.21)

By Equations (4.14) and (4.15):

1

|T ′
ℓ(xi)|

=

∣∣∣∣∣ sin
(
π
2 · 2i−1

ℓ

)
ℓ · sin

(
π
2 · (2i− 1)

) ∣∣∣∣∣ = 1

ℓ
·
∣∣∣∣sin(π

2
· 2i− 1

ℓ

)∣∣∣∣ (4.22)

where we used the fact that
∣∣sin (π2 · (2i− 1)

)∣∣ = 1. Therefore by Equation (4.16) and the
identity 1− cos2 x = sin2 x we obtain:

1

|f ′(xi)|
=

1

ℓ
· 1∣∣sin (π2 · 2i−1

ℓ

)∣∣ . (4.23)

Since g(x) = sinx/x is monotone decreasing for 0 < x ≤ π/2, from the fact that g(π/2) =
2/π we get that sinx > (2/π)x for 0 < x ≤ π/2. Thus for i ≤ ℓ/2,

1

|f ′(xi)|
≤ 1

ℓ
· π
2
· 1(

π
2 · 2i−1

ℓ

) =
1

2i− 1
. (4.24)

Therefore, for {xi}, the roots of Tℓ(·),

ℓ∑
i=1

1

|f ′(xi)|
≤ 2

∑
xi≥0

1

|f ′(xi)|
= O(log ℓ) . (4.25)

We take {d−i }
t+1
i=1 to be those roots xj of f(·) for which f ′(xj) > 0 and set

α−
i =

1∣∣f ′(d−i )
∣∣ · β− , (4.26)

where β− = 1/

(∑t+1
i=1

1

|f ′(d−
i )|

)
is a normalization factor. Similarly we take {d+i }ti=1 to

be the roots with the negative derivative. Then d−max = 1 and by Equation (4.25), α−
max =

Ω(1/ log ℓ). On the other hand, d+max = cos
(
π
2 · 1

ℓ

)
. Due to the identity 1 − cosx = sinx ·

tan(x/2), we get that:

lim
x→0

1− cosx

x2
= lim

x→0

sinx

x
· sin(x/2)

x
· 1

cos(x/2)
=

1

2
, (4.27)
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and so d−max − d+max = Θ(1/ℓ2). Since ℓ is odd and the sign of the derivative alternates
between roots we get that d−min = cos

(
π
2

)
= 0 while d+min = cos

(
π
2 · ℓ−2

ℓ

)
= sin

(
π
2 · 2

ℓ

)
.

Thus d−min − d+min = Θ(1/ℓ). By Equations (4.23) and (4.25) we get α+
min = Θ̃(1/ℓ).

Therefore, Equations (4.2) and (4.3) hold. Equation (4.1) follows from Lemma 7. Since the
roots of the Chebyshev polynomials are symmetric around zero, we get that the roots of f(·)
are also symmetric. For an odd ℓ we get that zero is one of the roots and thus each one of the
sequences {d+i }ti=1, {d−i }

t+1
i=1 is symmetric around zero, as desired.

4.1.2. Proof of Lemma 6. We first recall the definition of the Poisson distribution,
and introduce one more lemma (from [20]). For a positive real number λ, the Poisson
distribution poi(λ) takes the value x ∈ N (where N = {0, 1, 2, . . .}) with probability
poi(x;λ) = e−λλx/x!. For the collection D = (D1, D2) define

λ⃗D,k(a, b)
def
=
∑
i

poi(a; k ·D1(i))poi(b; k ·D2(i)) , (4.28)

which is the expected number of elements i for which we get a samples of the form (1, i) and
b samples of the form (2, i) if we take poi(k) samples from D in the uniform sampling model
(see [13]).

LEMMA 8 ([20]). Given a positive integer k and two distribution pairs p+1 , p
+
2 , p

−
1 , p

−
2

all of whose frequencies are at most 1
1000k , let λ⃗+(a, b) =

∑
i poi(a; k·p

+
1 (i))poi(b; k·p

+
2 (i))

and λ⃗−(a, b) =
∑

i poi(a; k · p−1 (i))poi(b; k · p−2 (i)) for a+ b > 0. If it is the case that

∑
a+b>0

∣∣∣λ⃗+(a, b)− λ⃗−(a, b)
∣∣∣√

1 + max{λ⃗+(a, b), λ⃗−(a, b)}
<

1

36
, (4.29)

then it is impossible to test any symmetric property that is true for (p+1 , p
+
2 ) and false for

(p−1 , p
−
2 ) in k samples.

Proof of Lemma 6. Since for every D ∈ D+
t , the size of the support is 2, and due to the

symmetry between n and 0 in the construction, we can perceive samples (i, j) taken from D+
t

as samples taken from the collection (p+0 , p
+
n ) of distributions over the domain [m], where p+0

and p+n are defined as follows

p+0 (i)
def
= 2D+

i (0)/m (4.30)

p+n (i)
def
= 2D+

i (n)/m . (4.31)

That is, instead of perceiving i as an index of a distribution in the collection and j as an
element of the domain {0, . . . , n} we perceive i as an element in the domain [m] and j as
an index of a distribution in the collection (p+0 , p

+
n ) denoted P+. The collection (p−0 , p

−
n ),

denoted P−, is defined similarly. In this settings we can apply Lemma 8 to give a lower bound
on the number of samples required to test γ-similar means. We note that even though the γ-
similar means property is not a symmetric property we can still use Lemma 8 because there
is a symmetry between n and 0 in the construction. We next turn to calculating λ⃗P+,k(a, b)
defined in Equation (4.28). We shall first assume that {α+

i m} (and {α−
i m}) are integers (in
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other words, α̃+
i = α+

i and α̃−
i = α−

i for all i), and later deal with the issue of rounding.

λ⃗P+,k(a, b) =
m∑
i=1

poi(a; k · p+0 (i)) · poi(b; k · p+n (i)) (4.32)

=
t∑

i=1

α+
i m ·

(
poi(a; k · (1 + d+i δ)/m) · poi(b; k · (1− d+i δ)/m)

)
(4.33)

+
t∑

i=1

α+
i m ·

(
poi(a; k · (1− d+i δ)/m) · poi(b; k · (1 + d+i δ)/m)

)
(4.34)

=
e−k/m

a!b!

(
k

m

)a+b t∑
i=1

α+
i m ·

( (
1 + d+i δ

)a(
1− d+i δ

)−b
+

(
1− d+i δ

)a(
1 + d+i δ

)−b

)
.(4.35)

Similarly,

λ⃗P−,k(a, b) =
e−k/m

a!b!

(
k

m

)a+b t∑
i=1

α−
i m ·

( (
1 + d−i δ

)a(
1− d−i δ

)−b
+

(
1− d−i δ

)a(
1 + d−i δ

)−b

)
.(4.36)

Therefore, there exist coefficients βj such that,

λ⃗P+,k(a, b) =
e−k/m

a!b!

(
k

m

)a+b

·
t∑

i=1

α+
i m ·

a+b∑
j=0

βj · (d+i δ)
j (4.37)

=
e−k/m

a!b!

(
k

m

)a+b

·
a+b∑
j=0

mβjδ
j ·

t∑
i=1

α+
i (d

+
i )

j , (4.38)

and

λ⃗P−,k(a, b) =
e−k/m

a!b!

(
k

m

)a+b

·
a+b∑
j=0

mβjδ
j ·

t+1∑
i=1

α−
i (d

−
i )

j (4.39)

By Equation (4.1) we have that
∑t

i=1 α
+
i (d

+
i )

j =
∑t+1

i=1 α
−
i (d

−
i )

j for every 0 ≤ j ≤ t. By
Equations (4.38) and (4.39) we get that for every a+ b ≤ t,

λ⃗P+,k(a, b) = λ⃗P−,k(a, b), (4.40)

Set k = 1−δ
4 ·m1−1/t and let λ(a, b) = max

{
λ⃗P−,k(a, b), λ⃗P+,k(a, b)

}
. Then

∑
a+b>t

λ(a, b) ≤
∑

a+b>t

(
k

m

)a+b

·m =
∑

a+b>t

(
1− δ

4m1/t

)a+b

·m (4.41)

≤
∑
x>t

2x
(

1

4m1/t

)x

·m ≪ 1 . (4.42)

In the above construction we assumed that {α+
i m} (and {α−

i m}) are integers. If this
is not the case, then by Equations (4.35) and (4.36), calculating the sum in Equation (4.29)
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where we replace {α+
i }ti=1 and {α−

i }ti=1 by {α̃+
i }ti=1 and {α̃−

i }ti=1 respectively, can be off
by at most

∑
a+b>0

e−k/m

a!b!

(
k
m

)a+b∑t
i=1 m(|α+

i − α̃+
i |+ |α−

i − α̃−
i |) · 2a+b

(λ⃗P−,k(a, b))1/2

≤
∑

a+b>0

(
e−k/m

a!b!

(
k

m

)a+b
)1/2

·
∑t

i=1 m(|α+
i − α̃+

i |+ |α−
i − α̃−

i |) · 2a+b(∑t
i=1 mα̃+

i · (1− d+maxδ)a+b
)1/2 (4.43)

≤ t

m1/2

∑
a+b>0

(
e−k/m

a!b!

(
k

m
· 4

1− δ

)a+b
)1/2

(4.44)

≤ t

m1/2

∑
a+b>0

(
1

m1/t

)(a+b)/2

≪ 1 , (4.45)

where the last inequality holds for every t ≤ m1/2. By Lemma 8, D+
t and D−

t are indistin-
guishable when k ≤ cm1−1/t(1− d+maxδ) (for some constant c ≤ 1).

4.2. An Upper Bound. The lower bound stated in Theorem 3 does not leave much
room for an algorithm in the sampling model with sample complexity that is sublinear in
m. In particular note that for a constant γ, if ϵ = o(1/ log2 m log logm), then we get a
linear dependence on m. However, for ϵ that is not too small, we may still ask whether we
can get an upper bound that is sublinear in m. We start by observing that given samples as
provided in the sampling model it is possible to simulate any algorithm that works in the query
model. This observation immediately provides a test for γ-similar means in the sampling
model that has m1−Ω̃(ϵ2) sample complexity (conditioned on ϵ > c log logm/ logm for some
sufficiently large constant c.) The following is a well known fact, and we provide a proof for
completeness.

LEMMA 9. We say that we have a t-way collision on element i if we sampled i exactly t
times. Let um be the uniform distribution over [m] and let t be a non-negative integer such
that t ≤ logm

log logm , if we take s = Θ(tm1−1/t) samples from um we will have t-way collisions
on Ω(1) elements with high constant probability.

The proof of Lemma 9 applies the Efron-Stein inequality, which we state next:

THEOREM 4 (Efron-Stein inequality [7]). Let χ be some set, and let g : χs → R be a
measurable function of s variables. Define the random variable Z = g(X1, . . . , Xs) where
X1, . . . , Xs are arbitrary independent random variables taking values in χ. Let X ′

1, . . . , X
′
s

form an independent copy of X1, . . . , Xs and write Z ′
i = g(X1, . . . , X

′
i, . . . , Xs). Then

V [Z] ≤ 1

2

s∑
i=1

E
[
(Z − Z ′

i)
2
]
. (4.46)

Proof of Lemma 9. Define the indicator variable Ii ∈ {0, 1} to take the value 1 if and only
if we have a t-way collision on i and the random variable Z =

∑m
i=1 Ii, namely, Z is the
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number of t-collisions. Then,

E [Z] =
m∑
i=1

E [Ii] (4.47)

=
m∑
i=1

Pr [Bin(s, 1/m) = t] (4.48)

= m · Pr [Bin(s, 1/m) = t] (4.49)

= m ·
(
s

t

)(
1

m

)t(
1− 1

m

)s−t

(4.50)

By the inequality
(
s
t

)
≥
(
s
t

)t and the fact that
(
1− 1

m

)s−t ≥ 1
4 we obtain

Pr [Bin(s, 1/m) = t] ≥ 1

4
·
( s

t ·m

)t
. (4.51)

Therefore for s = 64tm1−1/t,

E [Z] ≥ m · 1
4
·
(

64

m1/t

)t

= Ω(1) (4.52)

Applying the Efron-Stein inequality (Theorem 4) we get that:

V [Z] ≤
s∑

i=1

E
[
(Z − Z ′

i)
2
]

(4.53)

=
s∑

i=1

∑
a,b∈[m]

E
[
(Z − Z ′

i)
2 |Xi = a,X ′

i = b
]

m2
(4.54)

Conditioned on Xi = a and X ′
i = b we have that (Z − Z ′

i)
2
= 1 if the number of occurrences

of a in X1, . . . , Xs is t and the number of occurrences of b in X1, . . . , X
′
i, . . . , Xs is not t,

or alternatively, if the number of occurrences of a in X1, . . . , Xs is not t and the number of
occurrences of b in X1, . . . , X

′
i, . . . , Xs is t. Otherwise, (Z − Z ′

i)
2
= 0. So we have that for

a ̸= b,

E
[
(Z − Z ′

i)
2 |Xi = a,X ′

i = b
]
≤ 2Pr [Bin(s− 1, 1/m) = t− 1]

and for a = b clearly

E
[
(Z − Z ′

i)
2 |Xi = a,X ′

i = b
]
= 0 .

Therefore, from Equation (4.54) we get that V [Z] ≤ 2s · Pr [Bin(s− 1, 1/m) = t− 1]. By
Chebyshev’s inequality,

Pr [|Z − E[Z]| ≥ E[Z]/2] ≤ 8s · Pr [Bin(s− 1, 1/m) = t− 1]

(m · Pr [Bin(s, 1/m) = t])2
(4.55)

=
8t

m · Pr [Bin(s, 1/m) = t]
(4.56)

≤ 32t

64t
≪ 1 (4.57)
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Recall that, by Equation (4.52), E[Z] is bounded from below by a positive constant, and hence
the lemma follows.

COROLLARY 5. The sample complexity of testing γ-similar means in the uniform sam-
pling model is upper bounded by m1−Ω̃(ϵ2) · Õ(1/ϵ2).

Proof. Recall that Algorithm 2 which works in the query model performs r = log(4/ϵ)
iterations and in the q-th iteration, selects ℓ(q) = Θ (2q log(1/ϵ)) distributions. From each
selected distribution it then takes s(q) = Θ

(
log(1/ϵ)
22qϵ2

)
samples. By applying Lemma 9 for

t = s(q) we get that by taking s(q)m1−1/s(q) samples we get s(q)-way collisions on Ω(1)
distributions. If for each iteration q, we repeat this process ℓ(q) log(ℓ(q)2) times then by
union bound over r iterations, with high constant probability we would have enough samples
to simulate Algorithm 2. Thus the sample complexity we get is bounded by

r∑
q=1

ℓ(q) log(ℓ(q)2) · s(q)m1−1/s(q) = m1−Ω̃(ϵ2) · Õ(1/ϵ2) , (4.58)

as desired.

4.3. An Improved Upper Bound for the Domain {0, 1} and Large m. When the
domain of the distributions is {0, 1} and m is sufficiently larger than 1/ϵ, we can get an
improved upper bound by applying an algorithm that does not work by reducing to the query
model. This algorithm does not require that the sample contain Õ(1/ϵ2)-way collisions but
rather can make do with Õ(1/ϵ)-way collisions (though it asks for many more of them). It
uses such collisions in which either all samples are 1 or all samples are 0. These relatively
extreme events give sufficient indications as to whether the collection has γ-similar means or
is ϵ-far from having the property.

Algorithm 3 testing γ-similar means

1. Take s = r ln r ·m1−1/ℓ samples where ℓ = Θ(ln(1/ϵ)/ϵ) and r = Θ((16/ϵ)ℓ+1).
2. For each distribution Di, divide the samples obtained from Di into blocks of ℓ sam-

ples and ignore blocks with less than ℓ samples.
3. Let t be the number of blocks, let t0 be the number of blocks where all the samples

are 0 and let t1 be the number of blocks where all the samples are 1.
4. If there exist x, y ∈ {0, ϵ/16, 2ϵ/16, . . . , 1} such that y − x ≤ γ + ϵ/8 and(

2t1
3t

)1/ℓ
< y and

(
2t0
3t

)1/ℓ
< 1− x, then ACCEPT, otherwise REJECT.

THEOREM 6. Algorithm 3 tests γ-similar means in the sampling model. The algorithm’s
sample complexity is r ln r ·m1−1/ℓ where ℓ = c1 ln(1/ϵ)/ϵ and r = c2(16/ϵ)

ℓ+1 where c1
and c2 are absolute constants.

Proof. Denote by p1 ≤ . . . ≤ pm the means in the collection D in increasing order and
let qi = 1− pm−i+1. Thus q1 ≤ . . . ≤ qm. By the definitions of t1 and t0,

E

[
t1
t

]
=

1

m
·

m∑
i=1

(Di(1))
ℓ ≤ (pm)ℓ , (4.59)

and similarly

E

[
t0
t

]
=

1

m
·

m∑
i=1

(Di(0))
ℓ ≤ (qm)ℓ . (4.60)
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By Chernoff’s bound, for every b ∈ {0, 1} if t ≥ c
(
E
[
tb
t

])−1, for some sufficiently large
constant c, then with high constant probability it holds that∣∣∣∣ tbt − E

[
tb
t

]∣∣∣∣ ≤ E
[
tb
t

]
2

. (4.61)

By Lemma 9, with high constant probability t = Ω((16/ϵ)ℓ+1), so henceforth we assume
that this is the case.

Suppose that D has γ-similar means, so that pm − p1 = pm − (1 − qm) ≤ γ. Let
x, y ∈ {0, ϵ/16, 2ϵ/16, . . . , 1} be such that 0 < y − pm ≤ ϵ/16 and 0 < p1 − x ≤ ϵ/16. By
Equation (4.59) and Equation (4.60) we get

E

[
t1
t

]
≤ (pm)ℓ ≤ (y)ℓ and E

[
t0
t

]
≤ (1− p1)

ℓ ≤ (1− x)ℓ . (4.62)

Since y, 1− x > ϵ/16 and t = Ω
(
(16/ϵ)ℓ

)
, from Equation (4.61) we get that

t1
t
≤ (3/2)(y)ℓ and

t0
t
≤ (3/2)(1− x)ℓ (4.63)

Since y − x ≤ γ + ϵ/8 the algorithm accepts.
Suppose that D is ϵ-far from γ-similar means, and let x, y ∈ [0, 1] be such that y − x ≤

γ+ ϵ/8. Let y′ = min{y+ ϵ/16, 1} and let x′ = max{0, x− ϵ/16}, thus y′ −x′ ≤ γ+ ϵ/4.
Since D is ϵ-far from γ-similar means, at least (ϵ/2)m of the elements in {pi} are outside
the interval [x′, y′]. Thus either at least (ϵ/4)m of the elements in {pi} are bigger than y′ or
at least (ϵ/4)m of the elements in {pi} are smaller than x′. Since the blocks are distributed
uniformly over the distributions we get that in the former case,

E

[
t1
t

]
≥ (ϵ/4) · (y′)ℓ = (ϵ/4) · (y + ϵ/16)ℓ > 3yℓ . (4.64)

The latter case implies that at least (ϵ/4)m of the elements in {qi} are bigger than 1 − x′,
thus

E

[
t0
t

]
≥ (ϵ/4) · (1− x′)ℓ = (ϵ/4) · (1− x+ ϵ/16)ℓ > 3(1− x)ℓ . (4.65)

Since y′ ≥ ϵ/16 and t = Ω
(
(16/ϵ)ℓ+1

)
, from Equation (4.61) and Equation (4.64) we get

that

t1
t
> (3/2)yℓ . (4.66)

Similarly, since 1− x′ ≥ ϵ/16, we get from Equation (4.61) and Equation (4.65) we get that

t0
t
> (3/2)(1− x)ℓ , (4.67)

thus the algorithm rejects.

4.4. An Improved (Tight) Upper bound for the {0, 1} case when γ ≤ ϵ/c . If γ ≤ ϵ/c
for a sufficiently large constant c (a special case of interest is γ = 0), then we can significatly
improve the bound we obtained in the previous subsection (for the domain {0, 1}). The
problem of testing γ-similar means under these conditions reduces to a certain tolerant version
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of testing uniformity of a distribution over domain [m], which was studied in [13] For this
problem there is an algorithm that uses Õ(

√
m · poly(1/ϵ)) samples (see [13, Theorem 12],

based on [22]).
We note that in general, for every γ and ϵ such that γ+2ϵ < 1 (and in particular, even for

γ = 0 and ϵ < 1/2), any algorithm must take a sample of size Ω(
√
m). This is true because

there exists a constant c < 1 such that less than c
√
m samples are insufficient to distinguish

(with constant success probability) between the following two collections of distributions. In
the first, D+ = {D+

1 , . . . , D
+
m}, all distributions are the same: D+

j (0) = D+
j (n) = 1/2,

while in the second, D− = {D−
1 , . . . , D

−
m}, we have D−

j (0) = 1, D−
j (n) = 0 for half of the

distributions and D−
j (0) = 0, D−

j (n) = 1 for the other half (the choice of which distribution
belongs to which half is done uniformly at random).

5. Earth Mover’s Distance. Let D and D′ be probability distributions over {0, . . . , n}.
The Earth Mover’s Distance between D and D′ with respect to the ℓ1-distance is

EMD(D,D′)
def
= min

F


n∑

i=0

n∑
j=0

fi,j |i− j|

 , (5.1)

where the flow, F = (fi,j), is subject to the following constraints:

fi,j ≥ 0,1 ≤ i ≤ m, 1 ≤ j ≤ n (5.2)
n∑

j=0

fi,j = D(i), 1 ≤ i ≤ m (5.3)

n∑
i=0

fi,j = D′(j), 1 ≤ j ≤ m (5.4)

n∑
i=0

n∑
j=0

fi,j = 1 . (5.5)

We define the normalized Earth Mover’s Distance to be E(D,D′)
def
= 1

nEMD(D,D′),
where we normalize by the the maximum distance, n. Given a distribution D and a value
0 ≤ z ≤ n the function dE returns the ”work”, normalized by n, required to move
earth from D in order to obtain a distribution with mean equals z. Formally dE(D, z)

def
=

minD′:µ(D′)=z {E(D,D′)}. We claim that dE(D, z) = |µ(D) − z|/n. To see why this true,
assume without loss of generality that z > µ(D). Let Dz denote a distribution such that
µ(Dz) = z and E(D,Dz) = dE(D, z). Let F ∗ = (f∗

i,j) denote an optimal flow between D
and Dz . Clearly, for every i > j, f∗

i,j = 0, therefore by Equations (5.3) and (5.4) we get
that

∑n
i=0

∑n
j=0 f

∗
i,j |i− j| = z − µ(D). This implies that EMD(D,Dz) = z − µ(D) and

the claim follows. The fact that the minimum EMD distance between a distribution D, and
a distribution with mean µ(D) + δ, where the minimum is taken over all distributions over
{0, . . . , n} with mean µ(D) + δ, is exactly δ without regard to any property of D other than
its mean, makes EMD a very natural distance measure for the property of γ-similar means.

In particular, it is so natural that all the results in this paper continue to hold when we
change the underlying distance measure form ℓ1 distance to the normalized EMD. The com-
pleteness of all the algorithms is immediate for any distance measure. The soundness of
the algorithms follows from the fact that E(D,D′) ≤ ∥D − D′∥1. Moreover, Algorithm 2
can be simplified as follows. As stated in Lemma 3, the algorithm GetBounds returns x
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and y such that µ(D) ≤ x ≤ µ>
β (D) and µ<

β (D) ≤ y ≤ µ(D). Due to the fact that
dE(D, z) = |µ(D)− z|/n, when we define µ>

β and µ<
β with respect to dE(·, ·) instead of the

d1(·, ·), µ>
β (D) is simply µ(D) + βn and µ<

β (D) is µ(D) − βn. Therefore the algorithm
GetBounds for EMD goes as follows:

• Take Θ(log(1/δ)/β2) samples from D
• Return (µ̂ − βn/2, µ̂ + βn/2), where µ̂ is the average value of the samples taken

from D

By Chernoff’s bounds, with high probability it holds that |µ̂ − µ(D)| < βn/2 and thus the
return values of GetBounds for EMD satisfy the requirements stated in Lemma 3. The rest of
the proof of correctness of Algorithm 2 holds for normalized EMD.

Both lower bounds, stated in Theorem 3 and in Corollary 2, are proved via a construction
of NO instance collections of distributions with support {0, n}. Since for every D with
support {0, n} and every 0 ≤ z ≤ n we have that d1(D, z) = dE(D, z) the above NO
instance collections are also NO instances for the normalized EMD. Therefore, the lower
bounds are valid for the normalized EMD.

6. Clusters of Similar Means. A collection D = {D1, . . . , Dm} of distributions over
{0, . . . , n} has the property of (k, γ)-similar means if the means of all distributions reside in
k intervals, each of size γn. In this section we provide an algorithm for testing (k, γ)-similar
means in the query model (Algorithm 4) and using Lemma 9 we extend the algorithm to the
sampling model. The algorithm and the proofs are a straightforward generalization of testing
γ-similar means.

The idea behind the algorithm in the query model is that if the collection is far from
having (k, γ)-similar means, then by taking enough samples we are guaranteed to find, with
high constant probability, a subset of distributions of D, Di1 , . . . , Dik+1

, such that µ(Dis+1)−
µ(Dis) > γn for every integer 1 ≤ s ≤ k and thus have evidence that D does not have
(k, γ)-similar means. To prove that Õ(k2/ϵ2) queries suffice in order to find evidence when
the collection is ϵ-far from (k, γ)-similar we extend Lemma 2 and prove that there exist k
disjoint intervals each of size γn such that between any adjacent intervals there are enough
distributions that are far in the ℓ1-norm from having mean within one of the intervals (see
Lemma 10). Similarly to γ-similar means testing algorithm, here too we use the algorithm
GetBounds and a bucketing technique to save a factor of Ω̃(k/ϵ) samples.

Algorithm 4 testing (k, γ)-similar means
1. For q = 1 to r, where r = ⌈log(8k/ϵ)⌉ do:

• Select t(q) = Θ (2q log(k/ϵ) · log k) distributions from the collection, and
denote them by Dq

1, . . . , D
q
t(q).

• For each Dq
j selected let (uq

j , ℓ
q
j) = GetBounds

(
Dq

j , (ϵ/(8k))2
q−1, 1

(6rt(q))

)
2. If there exist (q1, j1), . . . , (qk+1, jk+1) such that ℓqs+1

js+1
−uqs

js
> γn for every integer

1 ≤ s ≤ k then REJECT, otherwise ACCEPT.

LEMMA 10. Let D be a collection of distributions. If D is ϵ-far from having (k, γ)-
similar means, then there exist k intervals of [n], denoted [x1, y1], . . . , [xk, yk] where
0 = y0 < x1 < y1 < . . . xk < yk < xk+1 = ∞ such that yℓ − xℓ = γn and∑

i:yj−1<µ(Di)<xj
min(d1(Di, xj), d1(Di, yj−1)) > (ϵ/(4k))m for every ℓ ∈ [k] and

j ∈ [k + 1].
Proof. Let D be a collection that is ϵ-far from having (k, γ)-similar means. Let

x1 be the minimum value of the form ℓ · (ϵ/(8k))n, where ℓ is an integer, such that
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∑
i:µ(Di)<x1

d1(Di, x1) > (ϵ/(4k))m, and let y1 = x1 + γn. By the definition of x1, if
we consider x′

1 = x1 − (ϵ/(16k))n, then
∑

i:µ(Di)<x′
1
d1(Di, x

′
1) ≤ (ϵ/(4k))m. Thus, by

Lemma 1,∑
i:µ(Di)>y1

d1(Di, y1) > 1− (ϵ/(4k))m− 4 · (ϵ/(16k)) = (1− ϵ/(2k))m (6.1)

(see elaboration in the proof of Lemma 2). Now, given yj , for each integer j ≥ 1,
iteratively define xj+1 to be the minimum value of the form ℓ · (ϵ/(8k))n, where ℓ
is an integer, such that

∑
i:yj<µ(Di)<xj+1

min(d1(Di, xj+1), d1(Di, yj)) > (ϵ/(4k))m,
and define yj+1 = xj+1 + γn. By the definition of xj+1, if we consider any yj <
x′
j+1 < xj+1, in particular x′

j+1 = max(xj+1 − (ϵ/(16k))n, (yj + xj+1)/2), then∑
i:yj<µ(Di)<x′

j+1
min(d1(Di, x

′
j+1), d1(Di, yj)) ≤ (ϵ/(4k))m. Since xj+1 − x′

j+1 ≤
(ϵ/(16k))n, it is implied by Lemma 1 that

∑
i:µ(Di)>yj+1

d1(Di, yj+1) > (1 − ϵ · (j +

1)/(2k))m. Therefore, the k intervals are well-defined.
THEOREM 7. Algorithm 4 tests (k, γ)-similar means in the query model. The algorithm’s

query complexity is Õ(k2/ϵ2).
Proof. Let Eg denote the event that all pairs (uq

j , ℓ
q
j) returned by the algorithm Get-

Bounds are as specified in Lemma 3. Since each call to GetBounds in iteration q is done with
δ = 1/(6rt(q)), by Lemma 3 the probability that Eg holds is at least 5/6. Observe that if
there exists a subset of distribution, Di1 , . . . , Dik+1

, of D such that µ(Dis+1)−µ(Dis) > γn
for every integer 1 ≤ s ≤ k then D does not have (k, γ)-similar means. Therefore, if D has
(k, γ)-similar means, then, conditioned on Eg, the algorithm accepts.

We now turn to the case that D is ϵ-far from having (k, γ)-similar means. Let
[x1, y1], . . . , [xk, yk] be intervals as described in Lemma 10. For every integer 1 ≤ j ≤ k+1,
we partition the distributions Di such that yj−1 < µ(Di) < xj into buckets Bj

q , for
1 ≤ q ≤ r,

Bj
q = {i : (ϵ/(8k))2q−1 < min(d1(Di, xj), d1(Di, yj−1)) ≤ (ϵ/(8k))2q} . (6.2)

Define A1 = {i : yj−1 < µ(Di) < xj}. By Lemma 10∑
i∈A1

min(d1(Di, xj), d1(Di, yj−1)) > (ϵ/(4k))m . (6.3)

Define A2 = {i : min(d1(Di, xj), d1(Di, yj−1)) ≤ ϵ/(8k)}. Clearly,∑
i∈A2

min(d1(Di, xj), d1(Di, yj−1)) ≤ (ϵ/(8k))m . (6.4)

Define A3 = {i : yj−1 < µ(Di) < xj ,min(d1(Di, xj), d1(Di, yj−1)) > ϵ/(8k)}. It
follows that ∑

i∈A3

min(d1(Di, xj), d1(Di, yj−1)) ≥ (ϵ/(8k))m , (6.5)

and so there exists an index qj such that∑
i∈Bj

qj

min(d1(Di, xj), d1(Di, yj−1)) ≥ (ϵ/(8k))m/r (6.6)
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(where r is the number of buckets). By the definition of the buckets, r = O(log(k/ϵ)), and
for the bucket Bj

qj we have

|Bj
qj | >

(ϵ/(8k))m/r

(ϵ/(8k))2qj
= Ω

(
m

log(k/ϵ)2qj

)
. (6.7)

But in such a case, since the algorithm selects t(q) = Θ (2q log(k/ϵ) · log k) distributions in
each iteration q, by union bound, with high constant probability, for every j, the algorithm
will select a distribution Di such that i ∈ Bj

qj in iteration qj , and conditioned on the event
Eg , will reject, as required.
Let s(q) denote the number of queries performed in iteration q by the algorithm GetBounds
for each distribution it is called on. The query complexity of the algorithm is

r∑
q=1

t(q) · s(q) = O

(
r∑

q=1

2q log(k/ϵ) · log k · k
2 log(k/ϵ)

22qϵ2

)
= Õ(k2/ϵ2) (6.8)

and the theorem follows.
THEOREM 8. The sample complexity of testing (k, γ)-similar means in the uniform

sampling model is upper bounded by m1−Ω̃(ϵ2/k2) · Õ(k2/ϵ2).
Proof. Algorithm 4 which works in the query model performs r = ⌈log(8/ϵ)⌉ iterations

and in the q-th iteration, selects t(q) = Θ (2q log(k/ϵ) · log k) distributions. From each
selected distribution it then takes s(q) = O

(
k2 log(k/ϵ)

22qϵ2

)
samples. By Lemma 9 we get

that by taking s(q)m1−1/s(q) samples we get s(q)-way collisions on Ω(1) distributions. If
for each iteration q, we repeat this process t(q) log(t(q)2) times then by applying the union
bound over r iterations, with high constant probability we would have enough samples to
simulate Algorithm 2. Thus the sample complexity we get is bounded by

r∑
q=1

t(q) log(t(q)2) · s(q)m1−1/s(q) = m1−Ω̃(ϵ2/k2) · Õ(k2/ϵ2) , (6.9)

as desired.
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