Selective Private Function Evaluation with Applications to Private Statistics

(EXTENDED ABSTRACT)

Ran Canetti† Yuval Ishai† Ravi Kumar‡ Michael K. Reiter‡ Rebecca N. Wright‡

ABSTRACT
Motivated by the application of private statistical analysis of large databases, we consider the problem of selective private function evaluation (SPFE). In this problem, a client interacts with one or more servers holding copies of a database $x = x_1, \ldots, x_n$ in order to compute $f(x_{i_1}, \ldots, x_{i_m})$, for some function f and indices i_1, \ldots, i_m chosen by the client. Ideally, the client must learn nothing more about the database than $f(x_{i_1}, \ldots, x_{i_m})$, and the servers should learn nothing.

Generic solutions for this problem, based on standard techniques for secure function evaluation, incur communication complexity that is at least linear in n, making them prohibitive for large databases even when f is relatively simple and m is small. We present various approaches for constructing sublinear-communication SPFE protocols, both for the general problem and for special cases of interest. Our solutions not only offer sublinear communication complexity, but are also practical in many scenarios.

1. INTRODUCTION
Companies regularly use third-party databases in order to gain access to information used to guide their business decisions and product development. For example, it might be important to the research and marketing decisions of a company to know the fraction of people in a given zip code that are of a certain age, to find the number of related products that have been patented, or to find the number of similar characteristics between two given molecules. Clearly, the company does not want the owners of such databases to know what the actual query is, since the query may reveal crucial information about their future strategy.

An obvious solution often employed in practice is for the company to buy the whole database, even if it actually needs only a small amount of information from the database. While this solution protects the company’s proprietary interests, it is very expensive, both in terms of actual cost of buying the database and in terms of the required communication complexity to transfer the data and keep it up to date. Furthermore, this solution is such that it does not allow the database owners to keep their data private: instead of disclosing to their clients only the minimal amount of information implied by the answers to the queries, they are required to reveal their entire data.

A particularly appealing application in the private statistical analysis of large databases. Consider a scenario where the database contains information of two types: public information (say, zip code), which can be freely accessed, and private information (say, salary or age) which may be valuable and/or sensitive. A client, based on the public data, wishes to compute some statistics on a carefully selected subset of the private data, without revealing his selection criteria. The database owner, on the other hand, wants to reveal only the information that is requested and paid for by the client. One would expect that clients will be willing to pay more for a larger sample size, which allows them to obtain more reliable statistics.

Selective private function evaluation. Motivated by the above applications, we introduce and study the problem of selective private function evaluation (SPFE). An SPFE protocol enables a client to privately retrieve from a server (or multiple servers) holding a database $x = (x_1, \ldots, x_n)$ the value $f(x_{i_1}, \ldots, x_{i_m})$, for some m-argument function f and m indices i_1, \ldots, i_m of the client’s choice.

Ideally, the client should learn only the value of f on a selected sequence of m data items, while the server holding the database should learn nothing. Depending on the setting, however, it may be necessary or even desirable to allow the server to learn some partial information about f or the locations accessed by the client. Without loss of generality, we concentrate in this work on the case where the server learns f and m but not the m locations in the database to which
f is applied. (Solutions where the servers should not learn
even f can be obtained by letting f be a ‘universal function’
and allowing the client to specify the actual function to be
evaluated via some additional private input to f.) In the
context of the private statistics application discussed above,
SPFE protocols address the following privacy concerns:

1. Protect clients from revealing what type of sample
population, what type of specific data about this sample,
and possibly also what function of the selected items, they
are after;
2. Protect database owners from revealing a large amount
of information about their data or providing a higher quality
service than what a client has paid for.

1.1 Related work

Secure computation

Secure multi-party computation (MPC) [45, 28, 10, 14] is a powerful and general crypto-
graphic primitive. It allows two or more parties to jointly
compute some function of their inputs while hiding their in-
puts from each other. SPFE may be cast as a special case of
the general secure MPC problem. Thus, generic secure
2-party protocols [45, 28, 26], whose communication com-
plexity is linear in the size of a circuit being evaluated, are
sufficient to obtain some solution to our problem. How-
ever, since a circuit computing the SPFE functionality must be at
least of the size of the database, the communication com-
plexity of these generic solutions will be at least linear in
n, making them infeasible when the database is large. In
contrast, our main goal is to obtain solutions for the SPFE
problem whose communication complexity is sublinear in the database size when $m \ll n$.

Private information retrieval

The study of sublinear-
communication secure computation originated from the prob-
lem of private information retrieval (PIR), introduced in [17].
A PIR protocol allows a client to retrieve a selected item
from a database while hiding the identity of this item from
the server holding the database. The main goal of PIR-
related research has been to minimize the communication
complexity of PIR, which is measured by default as the cost
of retrieving one out of n bits. (Note that a PIR proto-
col with n communication bits can be trivially realized by
sending the entire database to the client.) Under specific
number-theoretic intractability assumptions, it is possible
to construct PIR protocols with a very low asymptotic
communication complexity [32, 34, 43, 12], as low as polynomial
in $\log n$ and the security parameter κ.

An alternative setting for PIR assumes that the database
is replicated among multiple servers, and only requires the
client’s privacy to be protected against collusions of servers
[17, 4, 16, 31, 7]. In this setting, it is possible to achieve
information-theoretic privacy with sublinear communication.
While the asymptotic communication complexity of the lat-
ter multi-server protocols is generally worse than that of
single-server protocols, they are significantly more efficient
in computation, and even their communication complexity is
typically lower for practical database sizes.

PIR is not concerned with the privacy of the database.
The problem of symmetrically private information retrieval
(SPIR), introduced in [25], is an extension of PIR where the
client is restricted to learn no more than a single data item.

Using constructions from [25, 43, 36, 37], SPIR protocols
\footnote{SPIR is almost synonymous to the well-known notion of
oblivious transfer (OT) [42, 44, 21]. We use the terminology
of SPIR to indicate that: (1) we are mostly interested in the
case that the number of items is large and the communi-
cation is sublinear in the number of items; (2) we consider
both a single-server and a multi-server model; (3) like in
the PIR literature, we allow some relaxations to the most
stringent security definitions of OT.}
can be obtained from PIR protocols with a small complexity
overhead. We use SPIR(n, m, t) to denote a more gen-
eral version of the problem, in which m items are retrieved
from the same database of n t-bit items. While this prim-
itive can be implemented by m independent invocations of
SPIR($n, 1, 1$), significantly more efficient implementations
are possible [36, 37, 8]. Most of our constructions will utilize
the SPIR primitive as a black box. Thus, we will generally
not be concerned with the specifics of its implementation.

Following the work on PIR, sublinear-communication se-
ure MPC protocols were studied both in other specific con-
texts (e.g., [33, 22]) and in more general contexts [35]. The
latter focus aims at transforming a general protocol in the
communication complexity model into a secure protocol with
a low communication overhead. While SPFE can be viewed
as a special case of the above problem, our solutions for this
special case are more efficient than the ones in [35].

1.2 Our results

As in the PIR-related literature, we consider both a single-
server model and a model where the database is replicated
among several servers. The primary performance measures
for an SPFE protocol are:

1. **The number of servers.** We find the single-server setting
generally more appealing, since servers are arguably the
most crucial resource, and, as noted above, the multi-server
model does not protect the client from large collisions of
servers. (We note though that our solutions for the single-
server setting can be adapted to the multi-server setting,
allowing more efficiency in other parameters.)
In addition to the performance certified public keys (as in, e.g., [1]), protocols may require an additional preprocessing phase or certified public keys (as in, e.g., [1]). To achieve provable security against malicious clients, our solutions may be either computational (i.e., based on cryptographic assumptions and computational limitations of the parties) or absolute (information-theoretic). Our solutions will guarantee that the client obtains the correct values only when all servers follow their protocol. Still, our multi-server solutions can be easily generalized to provide fault tolerance as well. The client's privacy is guaranteed even when up to some threshold of servers, referred to as the privacy threshold, are malicious, i.e., deviate from their protocol in an arbitrary way. In bounding the amount of information gathered by a malicious client, we distinguish three levels of security: (1) Strong security guarantees that the client learns only the value of the public function \(f \) on some sequence of \(m \) data items. (2) Weak security only guarantees that the client learns the value of some function \(f' \) on some sequence of \(m \) data items, where the function \(f' \) is determined by the client's actions; however, \(f' \) is guaranteed to have the same output size as \(f \). The latter ensures that only a small amount of information about the database is leaked. Thus, the weaker notion of security is sufficient to address most privacy concerns that SPFE resolves. (3) Finally, some of our protocols provide no provable security against malicious clients. Yet, these are provably secure against a semi-honest client, who follows the protocol but tries to learn additional information from its view, and may also be heuristically weakly secure against a malicious client.

Our solutions. We aim at obtaining SPFE protocols that are not only asymptotically efficient, but are also feasible in practice. We present several protocols, where each is best suited to particular settings.

In Section 3.1, we present a one-round multi-server information-theoretic SPFE protocol. Its construction is based on a reduction to multivariate polynomial evaluation. This protocol is most appealing when \(f \) is very simple (e.g., the sum function) and when a large number of servers are available, as might be the case if data replication is used for fault tolerance or as part of a content distribution mechanism. A significant advantage of this protocol is that it involves very short messages from the servers to the client. Thus, this protocol can be used to compute several statistics on the same data set, or the same statistic over different periods of time, with little additional cost.

In Section 3.2, we present a one-round SPFE protocol for general functions, whose construction relies on private simultaneous messages protocols (described therein). The advantages of this protocol over subsequent single-server protocols are its optimal round complexity and its strong security against a malicious client.

In Section 3.3, we present three reductions of SPFE to general secure MPC and SPIR. None of the three provides strong security against a malicious client. Moreover, even if used in conjunction with a round-optimal secure MPC protocol, they all require at least one additional round in comparison to the previous protocol. However, one advantage of these solutions is that they all efficiently scale to the case where \(f \) is represented by an arithmetic circuit over a large modulus (rather than a Boolean circuit). When \(f \) is viewed as an integer- or real-valued function, this often allows for smaller circuits and better efficiency. An important additional advantage of the second and third reductions is that they only require a single invocation of \(\text{SPIR}(m, \ell) \) (retrieving \(m \) out of \(n \) items) rather than \(m \) invocations of \(\text{SPIR}(n, 1, \ell) \) on \(m \) different databases. This may result in significant efficiency improvements. In particular, the latter provably requires \(O(m n) \) computation on the server's part, whereas the server's computation in the former can be made almost linear in \(n \) (cf. [36, 37, 8]). The third reduction typically involves more communication and less computation than the second, but does not provide provable security against a malicious client. We complement the above reductions by presenting a light-weight protocol for secure MPC of general arithmetic circuits; this protocol is compatible with our notion of weak security against a malicious client.

Finally, in Section 4, we specifically consider some useful instances of privacy-protecting statistical analysis, discuss the application of our general solutions to these instances, and present protocols that are tailored to these cases. In particular, we obtain an efficient one-round protocol for the special case where \(f \) is the sum function.

Table 1 summarizes the efficiency of our general single-server solutions in terms of the SPIR and MPC primitives they rely on. (The third row of the table describes two variants of the same approach; additional variants are discussed in Section 3.3.) The complexity column refers to the case of a Boolean function \(f : \{0, 1\}^m \rightarrow \{0, 1\} \), where \(C_f \) is the size of a Boolean circuit computing \(f \). This column describes both the communication and computation costs (omitting insignificant factors).\(^3\) \(\text{SPIR}(n, m, \ell) \) denotes the cost of retrieving \(m \) out of \(n \) \(k \)-bit items using a \(1 \)-round SPIR protocol. \(\text{MPC}(m, s) \) denotes the cost of a \(1 \)-round secure 2-party computation of an \(m \)-input, \(s \)-gate Boolean circuit, and \(\kappa \) denotes a security parameter. (In practice, \(\kappa \) can be instantiated by the length of an encryption key; see Section 2 for a more formal treatment.) Using Yao's technique [46], the cost of \(\text{MPC}(m, s) \) is \(m \times \text{SPIR}(2, 1, n) + O(\kappa \cdot s).\(^3\)

The main advantages of each protocol are summarized above. When comparing their complexity, it is helpful to keep the following qualitative facts in mind: (1) \(\text{SPIR}(n, m, \ell) \) can be implemented more efficiently than \(m \) invocations of \(\text{SPIR}(n, 1, \ell) \); (2) The best known PIR protocol [12] is not well adapted to retrieving multi-bit items; consequently, the

\(^3\)The computation in the two protocols from Section 3.3.2 involves \(O(m^2 \log n) \) additional modular multiplications. This overhead can be asymptotically reduced, see Section 3.3.2.

\(^3\)This applies to some relaxation of the definition of secure MPC, discussed in Section 2.
best known implementation of \(\text{SPIR}(n, 1, \kappa)\) is significantly more efficient than \(\text{SPIR}(n, 1, \kappa)\), even when \(\kappa\) is as small as the size of a key.\(^4\)

Finally, in the security column, "None" indicates provable security against a semi-honest client, that also appears (but is not proven to be) weakly secure against a malicious client. For our protocols to be provably secure against a malicious client with the specified round complexity, one should either assume an idealized "black-box" implementation of the SPIR primitive, or make some additional requirements which are satisfied by known implementations of this primitive. This applies to all protocols described in Table 1. Additional security-related issues are discussed in Section 2.

2. PRELIMINARIES

We define secure schemes for selective private function evaluation (SPFE). The problem is a special case of the general problem of secure function evaluation. Thus, in principle, the general definitions (as in, say, [26, 13]) apply here as well. Nonetheless, here we provide an explicit, simplified and relaxed definition for the special case of SPFE. The definition deals with the case of multiple servers. The single-server case is obtained as a special case.

Let \(k, n, t \in \mathbb{N}\), let \(D\) be some finite domain (called the data domain), and let \([n]\) denote the set \(\{1, \ldots, n\}\). There are \(k+1\) parties, the client \(C\) and \(k\) servers \(S_1, \ldots, S_k\). The servers have a common input \(x \in D^n\) representing the data, and the client has a (deterministic) function \(f : D^m \rightarrow D\) where \(m \leq n\), and a list \(I \in [n]^m\) of \(m\) indices. The function is given using some standard representation, e.g., via a circuit that evaluates it. In addition, all parties have a security parameter \(\kappa\). The servers also have a common random input, which can be regarded as an extension of the database. The client wishes to learn \(f(x_I)\), where \(x_I \triangleq (x_{I_1}, \ldots, x_{I_m})\), while making sure that any collusion of up to \(t\) servers learns nothing. Sometimes it will be allowed, or even required, that the servers learn \(f\) or \(I\) or some partial information about them. The servers wish to make sure that the value learned by the client is a "legitimate" one, where legitimacy may be interpreted in a number of ways.

All parties are assumed to be polynomial in \(\kappa\). For the sake of uniformity, we formulate our security requirements only against polynomial-time adversaries. Nonetheless, in the case where there are multiple servers, security will hold even against computationally unbounded adversaries.

A bit more specifically (but still informally), we make three requirements. The first is Correctness, which states that as long as the client and the servers follow the protocol then the client's output will be the correct value \(f(x_I)\). The second is Client Privacy, which states that no adversary (that controls up to \(t\) servers) will learn anything from the interaction, except possibly some pre-defined information, even if the corrupted servers deviate from the protocol in an arbitrary way. We model the information that the servers are allowed to learn about the client's input in a way described below. Database Secrecy, which states that the client learns only a predefined amount of information about the database, even if it arbitrarily deviates from its protocol.

While correctness is quite straightforward to formulate, formalizing the other two is a bit more problematic. Client Privacy is formalized by requiring that there exists an algorithm (a simulator) that generates a distribution that is indistinguishable from the view of the servers corrupted by the adversary. This view includes their inputs, random inputs, and messages they receive. By default we require computational indistinguishability between the two distributions, parameterized by the security parameter \(\kappa\). However, our multi-server protocols will provide information-theoretic client privacy, where the simulator's output is identical to the servers' view. The simulator is given the data \(x\) and the value of some pre-defined function \(h\) applied to the client's input. (Again, by default \(h(f, I) = f\) where \((f, I)\) is the client's input.)

Database Secrecy is captured as follows. Fix some subset \(A\) of all functions from \(D^n\) to \(D\). We think of \(A\) as the set of "allowable functions", or in other words the set of functions that the client is allowed to apply to the database. We require that for any adversary \(A\) controlling the client there exists a simulator \(M\) with the following characteristics. The goal of \(M\) is to generate an output that is distributed indistinguishably from the output of \(A\). However, \(M\) does not interact with the servers; instead it interacts with a "trusted party" \(T\) that has the following functionality. \(T\) receives from \(M\) a description of a function \(g \in A\). In return, \(T\) outputs \(g(x)\). It is stressed that \(M\) can invoke \(T\) only once. Intuitively, this requirement captures the property that a malicious client can learn the value of any function \(g \in A\) of its choice, applied to the data \(x\).

In the case of a malicious client, our protocols (except where noted previously) satisfy the database secrecy requirement with respect to one of the following two possible sets \(A\) of allowable functions. Weak security refers to the case where \(A\) is the set of all functions that depend on at most \(m\) locations in the database and output a value from \(D\). Strong security refers to the case where \(A = \{g(x) = f(x_I) | I \subseteq [n], |I| = m\}\), and \(f\) is the function that appears in

<table>
<thead>
<tr>
<th>section</th>
<th>rounds</th>
<th>complexity</th>
<th>security against malicious client</th>
<th>efficient scalability to arithmetic circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>§3.2</td>
<td>1</td>
<td>$m \times \text{SPIR}(n, 1, \kappa) + O(\kappa \cdot C_T)$</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>§3.3.1</td>
<td>2</td>
<td>$m \times \text{SPIR}(n, 1, 1) + \text{MPC}(m, C_f)$</td>
<td>Weak</td>
<td>No, Yes, more rounds</td>
</tr>
<tr>
<td>§3.3.2</td>
<td>2/3</td>
<td>$\text{SPIR}(n, m, \log n) + \text{MPC}(m, C_f) + \text{km}$</td>
<td>Weak</td>
<td>None*</td>
</tr>
<tr>
<td>§3.3.3</td>
<td>2</td>
<td>$\text{SPIR}(n, m, \kappa) + \text{MPC}(m, C_f)$</td>
<td>None*</td>
<td>Yes, more rounds</td>
</tr>
</tbody>
</table>

Table 1: Comparison of general single-server solutions.

\(^4\)In contrast, \(\text{SPIR}(2, 1, \kappa)\) can be implemented in practice with the same cost as \(\text{SPIR}(2, 1, 1)\) when \(\kappa\) is small.

\(^*\)This implies that \(n\), the length of the database, must be at most polynomial in \(\kappa\). When security is desired even against adversaries that are sub-exponential in the security parameter, one can allow \(n\) and \(\kappa\) to vary more (see, e.g., [12]).
the client’s input. Our basic protocols do not guarantee correctness against malicious servers (indeed, in the single-server case such a requirement is quite meaningless). Client Privacy and, in some cases, Database Secrecy will be guaranteed even against malicious adversaries. For lack of space, we omit more formal definitions from this extended abstract.

On the definition of SPIR. Most of our constructions use symmetrically private information retrieval (SPIR) as a subroutine. SPIR can be defined as a special case of SPFE, where the input of the client is restricted so that \(f \) is the identity function and \(t \) is a singleton (i.e., \(m = 1 \)). We use SPIR\((n, m, t)\) to denote a generalization of this primitive allowing the client to select \(m \) out of \(n \) items of length \(t \). Sometimes the parameter \(t \) will be replaced by the data domain \(D \), or by * when it is clear from context. By default, SPIR will refer to 1-round SPIR.

On the definition of secure MPC. Another subroutine that will be used by our constructions is general secure MPC. Similarly to the SPFE definition, our definition for secure MPC relaxes the standard ones from \([13, 26]\) in that it does not require correctness if a server is malicious.\(^6\) Also, similarly to SPFE it is possible to define a notion of general secure 2-party computation with a weak security against a malicious client. These relaxations allow for more efficient implementations of secure 2-party computation, which do not require the server to prove the validity of its actions.

Homomorphic encryption. Some of our protocols rely on the standard tool of homomorphic encryption. A homomorphic encryption scheme is an encryption scheme in which the plaintexts are taken from a group \(G \), and given encryptions of two group elements one can efficiently compute a (randomized) encryption of their sum. Since this computation usually involves a modular multiplication of the encryptions, we write \(E(a) \cdot E(b) = E(a + b) \). It follows that \(E(c)^c = E(c - a) \) for \(c \in \mathbb{N} \). The Goldwasser-Micali scheme \([29]\) satisfies this property with \(G = \mathbb{Z}_p \). For more a more detailed definition of this primitive, as well as examples of such schemes with larger homomorphism groups \(\mathbb{Z}_m \), the reader may refer to \([9, 39, 40, 41]\).

3. GENERAL SOLUTIONS

3.1 Multi-server protocols based on multivariate polynomial evaluation

In this section we present a construction of \(k \) servers using polynomial evaluation. In the analogous requirement from \([13, 26]\) these distributions are concatenated to the client’s output.

In the protocol of Lemma 1, the values returned by the servers lie on a degree-\(dt \) polynomial \(\hat{P} \) such that \(\hat{P}(0) \) is the client’s desired answer. Specifically, the answer of server \(h \) is equal to \(\hat{P}(a_h) \), where \(a_1, \ldots, a_k \) are some (fixed) distinct, non-zero elements of \(F \). Following \([25]\), we can thus extend this protocol to achieve symmetric privacy if server \(h \) instead returns \(\hat{P}(a_h) + R(a_h) \) for a random degree-\(dt \) polynomial \(R \) where \(R(0) = 0 \). \(R \) must be shared by the servers in advance, though inconvenient, some form of correlated random values is necessary to achieve symmetric privacy in the information-theoretic setting \([25]\).

The solution of this section is thus to express \(f \) as a multivariate polynomial \(P \) over \(F \) that depends on \(x \), and whose value at indices \(i_1, \ldots, i_m \) encoded in \(F \) is \(f(x_{i_1}, \ldots, x_{i_k}) \). Then, we can apply Lemma 1 to obtain the construction. Here we outline how to construct \(P \) from a Boolean formula \(\phi \) computing \(f \), where \(\phi \) consists of binary \((2\text{-input}, 1\text{-output})\) gates. The size of \(\phi \), denoted \(s \), is the total number of leaves in its tree representation. Let \(t = \lceil \log_2 n \rceil \), and let \(P \) be a finite field containing at least \(ts + 2 \) elements. Let \(j(k) \) denote the \(k \)-th least significant bit of \(j \)-bit binary representation of \(j \). Define the polynomial \(P_0 \in F[y_1, \ldots, y_m] \) as follows:

\[
P_0(y_1, \ldots, y_m) = \sum_{j=1}^{n} \left(\prod_{k=1}^{t} \left(\begin{array}{c} y_k \quad \text{if } j(k) = 1 \\ 1 - y_k \quad \text{if } j(k) = 0 \end{array} \right) \right)\]

Note that \(P_0(i(1), \ldots, i(t)) = x_i \), and that \(P_0 \) is a polynomial of total degree \(t \). For each gate \(g \) in \(\phi \), recursively define a polynomial \(P_g = Q_g(P_0, P_{g\text{right}}) \), where \(Q_g \) is the natural (degree-2) polynomial implementing \(g \). (For example, if \(g \) is an AND gate, then \(Q_g (\varphi, \psi) = \varphi \cdot \psi \).)

If \(g \)'s left input is some \(x_i \), then \(P_{g\text{left}} \) is the polynomial \(P_0(i(1), \ldots, i(t)) \), and if \(g \)'s left input is the output of some gate \(g' \), then \(P_{g\text{left}} = P_{g'\text{right}} \).

Theorem 2. If \(f \) can be computed by a formula of size \(s \), the above protocol is a 1-round SPFE protocol secure against a semi-honest client and \(t \) malicious servers, where the total number of servers is \(k - ts \log n + 1 \). Its communication complexity is \(k \log k (m \log n + 1) \).

This theorem is most interesting in the case when \(f \in NC^1 \), where we get an SPFE protocol with \(m^{O(1)} \log n \) servers. Note that the above construction actually applies to any function \(f \) which can be efficiently computed\(^7\) by a degree-\(s \) polynomial over \(F \).
polynomial over \(F \), where \(|F| > t s \log n + 1\). Hence, if \(f \) is the sum function (outputting the sum of its \(m \) inputs over \(F \)), Theorem 2 applies with \(s = 1 \).

Finally, we remark that standard techniques allow a trade-off between the number of servers for efficiency and fault tolerance. Specifically, a savings of a factor of \(c \) in the number of servers can be obtained by increasing the communication by roughly a factor of \(2' \), and \(\ell' \) malicious servers can be tolerated by adding \(2 \ell' \) additional servers.

3.2 Solutions based on private simultaneous polynomial evaluation

In this section, we construct protocols for SPFE by applying a SPIR protocol on top of a protocol for \(f \) in the so-called private simultaneous messages (PSM) model [23, 30]. We start by describing the PSM model, and then discuss its application to our problem.

In the PSM model, there are \(m \) players \(P_1, \ldots, P_m \) and an external referee. Each player \(P_i \) holds an input \(y_i \), and all of them share access to a common random input \(r \), which is unknown to the referee. The players' goal is to securely evaluate a given function \(f \) of their inputs by having each player \(P_i \) send a single message \(p_i \) to the referee, where \(p_i \) is determined by \(y_i \) and \(r \) alone. That is, the referee should be able to reconstruct the value \(f(y_1, \ldots, y_m) \) from the \(m \) messages it receives, but should learn no additional information about the inputs \(y_1, \ldots, y_m \).

Motivated by efficiency considerations, we slightly refine the above setting. In addition to the \(m \) players \(P_1, \ldots, P_m \), our variant of the model includes an additional player \(P_0 \) who holds no input. The message \(p_0 \) computed by \(P_0 \) is determined only by the random input \(r \). In the usual PSM scenario this extension of the model seems useless, since the extra player \(P_0 \) can be simulated by the other players at no additional cost. However, in our context it is beneficial to shift as much communication as possible to the extra message \(p_0 \). We say that a PSM protocol has communication complexity \((\alpha, \beta)\) if the length of each message \(p_i, j > 0 \), is bounded by \(\alpha \) and the length of the extra message \(p_0 \) is bounded by \(\beta \). Due to space considerations, we omit a detailed formalization of this definition.

The following example describes a simple and useful PSM protocol for the modular sum function.

Example 1. Let \(\mathbb{Z}_n \) denote the additive group of residues modulo \(n \), where \(n \) is an \(\ell \)-bit integer. Consider the function \(f : \mathbb{Z}_n^m \to \mathbb{Z}_n \) outputting the sum of its \(m \) inputs. A PSM protocol for \(f \) with communication complexity \((1, 0)\) proceeds as follows. The common random input contains independent random group elements \(r_1, \ldots, r_{m-1} \). The messages are defined by \(p_j = y_j + r_j, 1 \leq j \leq m \), where \(r_m = -(r_1 + \cdots + r_{m-1}) \). It is clear that the referee can reconstruct the output by adding all \(m \) messages, and it is not hard to verify that the messages are random subject to the restriction that they add up to the sum of the inputs.

To construct an SPFE protocol from a PSM protocol for \(f \), the servers will simulate the \(m + 1 \) players of the PSM protocol, and the client will simulate the referee. Our goal is to allow the client to efficiently obtain the \(m + 1 \) PSM messages corresponding to its selected inputs \(x_1, \ldots, x_m \).

We formulate the protocol for the general \(t \)-private \(k \)-server case. When \(k > 1 \), this allows us to obtain information-theoretic security for the client. The building blocks are: (1) a \((1, 4)\)-secure \(k \)-server SPIR protocol and (2) a PSM protocol \(\mathcal{P} \) computing \(f \).

The SPFE protocol proceeds as follows: (1) If \(k = 1 \), the server picks a random input \(r \) for the PSM protocol \(\mathcal{P} \); otherwise, such an \(r \) is taken from the servers' common randomness. (2) For each \(j, 1 \leq j \leq m \), each server computes an \(n \)-item virtual database in which the \(i \)-th item is the message which player \(P_j \) would send in \(\mathcal{P} \) on input \(x_i \) and random input \(r \); the client retrieves the \(i \)-th item from the virtual database using the SPIR protocol. (3) The first server computes the extra message \(p_0 \) from \(r \), and sends it to the client in the clear. (4) By simulating the referee in \(\mathcal{P} \), the client computes the value of \(f \) from the \(m + 1 \) PSM-messages it obtained.

Note that all \(m + 1 \) messages sent in steps 2, 3 can be simultaneously sent to the client. Letting SPIR\((n, 1, \alpha)\) denote the communication complexity of the SPIR protocol, we have:

Theorem 3. The above protocol is a \((1, 4)\)-secure PSM protocol with communication complexity \((m \cdot \text{SPIR}_k(n, 1, \alpha) + \beta, \alpha)\), where \((\alpha, \beta)\) is the communication complexity of \(\mathcal{P} \). It provides strong security against a malicious client. Perfect (information-theoretic) security is achievable for both sides using perfectly secure PSM and SPIR protocols.

We conclude this section by substituting known upper bounds on the complexity of PSM protocols in both the computational and information-theoretic setting. Let \(C_f \) (resp. \(B_f \)) be the size of a circuit (resp., branching program) computing \(f \). In [23, 46], a computationally secure PSM protocol with communication complexity \((n, O(n \cdot C_f))\) is given and in [30], a perfectly secure PSM protocol with communication complexity \((O(B_f^2), 0)\) is given. We denote the cost of a one-round SPIR protocol using \(k \) servers by \(\text{SPIR}_k^{\alpha} \) and the cost of a one-one perfectly secure SPIR protocol using \(k \) servers by \(\text{PSPIR}_k^{\alpha} \). Using these protocols, we obtain the following reductions from SPFE to SPIR:

Corollary 4. (1) If \(k \geq 1 \), then there exists a \(t \)-private \(k \)-server computationally-secure \((1, 4)\)-secure SPFE protocol with \(m \cdot \text{SPIR}_k(n, 1, \alpha) + O(n \cdot C_f) \) communication; and (2) If \(k > 1 \), then there exists a perfectly secure \(t \)-private \(k \)-server SPFE protocol with \(m \cdot \text{PSPIR}_k(n, 1, O(B_f^2)) \) communication.

3.3 Solutions based on general secure multiparty computation

In this section we present several reductions of the SPFE problem to SPIR and general secure MPC. We focus on the single-server case, and assume that the data domain \(D \) is some additive group \(\mathbb{Z}_n \) (where \(u = 2 \) in the default Boolean case).

We break down the problem into two phases. In the first phase, called input selection, the server and the client obtain a simple (additive) secret-sharing of the \(m \) selected items \(x_i \). (That is, for \(1 \leq j \leq m \), the client and the server each obtain a random element from \(D \), such that the pair of elements add to \(x_j \).) This should be done without revealing any information to either party. In the second phase, the parties may invoke any secure MPC protocol for computing the value of \(f(x) \) from their shares.

This two-phase approach does not support strong security against a malicious client. Indeed, a malicious client may arbitrarily change its shares of \(x_j \) before passing them as
inputs to the MPC phase. Nonetheless, most of the protocols obtained in this section can be proved to satisfy our notion of weak security against a malicious client. Note that if the only type of cheating by a malicious client is the one described above, then this is intuitively clear: in such a case, the function f' computed by the client will be of the form $f(x_1 + \Delta)$, where Δ is the difference between the received vector of shares and the one passed to the MPC protocol. In general, however, one must also guarantee that both the input selection protocol and the MPC protocol support this notion of security.

The remainder of this section is organized as follows. In subsections 3.3.1, 3.3.2, and 3.3.3 we describe three different approaches for implementing the input-selection phase. We refer the reader to Section 1.2 (and in particular to Table 1) for a comparison of these approaches. Finally, in Section 3.3.4 we present a lightweight protocol for computing a general arithmetic circuit. This protocol may be used for implementing the MPC phase of our protocols, namely securely computing f on the shared selected items, in the case where f is represented by an arithmetic circuit over a (possibly large) ring.

3.3.1 The first protocol for input selection

Let share-x_i denote a primitive which achieves a sharing of a single selected item. That is, share-x_i has the following functionality: suppose that initially the server knows x and the client knows i; share-x_i is a secure protocol which results in the server knowing a value $a \in D$ and the client knowing a value $b \in D$ such that a and b are random subject to the restriction that they add up to x_i. To implement share-x_i, the server picks a random $a \in D$ and prepares a "virtual database" $y = (x_1 - a, \ldots, x_n - a)$. The client then uses SPIR to find the value $b = x_i - a$ of the ith location.

Then to accomplish our input selection task, perform m invocations of share-x_i, one for each $i \in I$. The above protocol requires one round to complete. Together with a 2-round secure MPC protocol, it yields a 2-round SPFE protocol whose cost (both in communication and computation) is dominated by that of the m invocations of SPIR(n, 1, D) plus the cost of MPC.

3.3.2 The second protocol for input selection

The previous input selection protocol, as well as the protocol from Section 3.2, requires m retrievals of 1 out of n items, from m different databases. For reasons of communication and computational efficiency, it may be highly desirable to replace this by a single retrieval of m out of n items.

To achieve this, we rely on m-wise independence. Let $\{P_i : [m] \rightarrow D\}$ be an m-wise independent function family; that is, if s is chosen uniformly at random from S, then for any i_1, \ldots, i_m, the random variable $(P_{i_1}(s), \ldots, P_{i_m}(s))$ is uniformly distributed over D^m. Then, a generic version of the second input selection protocol may proceed as follows. (1) The server picks a random $s \in S$ and computes a virtual database $x_s'\; such that $x_1' = x_1 + P_i(s)$; (2) The client uses a SPIR(n, m, D) protocol to learn $x_2';$ (3) The parties engage in a secure MPC protocol outputting an additive sharing of $P_i(s, m, D) \equiv (P_{i_1}(s), \ldots, P_{i_m}(s))$. That is, the server's input is s, the client's input is I, and the server and the client output (respectively) random vectors $c, d \in D^m$ such that $c + d = P_i(s)$; (4) The server outputs $a = -c$ (i.e., uses $-c$ as its share of x_1 and the client outputs $b = x_2' - d$.

It is easy to verify that the sum of the outputs a, b is indeed equal to x_i. Note that since x_i' is uniformly distributed over D^m, step 2 reveals nothing to the client. Since step 3 does not rely on step 2, both can be executed in parallel, and so the entire input selection protocol can potentially be implemented in one round.

We turn to the question of efficiency. The above protocol leaves two parameters unspecified: the function family $\{P_i\}$ and the secure MPC protocol of step 3. Our efficient solutions will be obtained by letting $\{P_i\}$ be the family of degree-m polynomials over a prime field F, where $|F| > n$. That is, each $s = (s_0, \ldots, s_{m-1}) \in F^m$ naturally defines a degree-m polynomial $P_i(Y) = s_0 + s_1 Y + \ldots + s_{m-1} Y^{m-1}$. We assume here that $D = F$ and view the indices i_j as elements of F.

We present two variants for the secure MPC protocol required in step 3. The first requires a single round, but incurs an $m^2 \times n$ additive communication overhead. The second reduces this communication overhead to $m n$, but does this at the cost of increasing the round complexity and weakening the (provable) security of the resultant protocol. Both variants utilize homomorphic encryption (see Section 2), which allows us to efficiently compute linear functions on a vector of encrypted values.

First variant. (1) The client picks keys to a homomorphic encryption scheme over the plaintext group $\{P_i\}$. It sends the public key E to the server along with the m^2 encryptions $E(P_i(s))$, $1 \leq j \leq m$, $0 \leq k \leq m$; (2) The server picks random blinding elements $r_1, \ldots, r_m \in F$, and for $j = 1, \ldots, m$ it sends $E(s_0 r_j^s + s_1 r_j^s + \ldots + s_{m-1} r_j^s)$; (3) The server outputs (r_1, \ldots, r_m) and the client outputs the decryptions of the m encryptions sent by the server.

Second variant. (1) The server picks keys to a homomorphic encryption scheme as above, and sends the public key E to the client along with the m^2 encryptions $E(s_0), \ldots, E(s_{m-1})$. (2) The client picks a random mask $r = (r_1, \ldots, r_m)$, and computes $E(P_i(s)) - r_j E(P_i(s)) - r_m$. (3) The server outputs the m encryptions of the m encryptions sent by the client, and the client outputs r.

The above two variants can be viewed as dual approaches for computing a matrix-vector product, where the first considers the product as a linear function of the matrix defined by the vector, and the second as a linear function of the vector defined by the matrix.

Efficiency. While the two variants significantly differ in their communication complexity, their computational complexity is similar. Step 2 in both requires one of the parties to perform $O(m^2)$ modular exponentiations. When m is large, this is very expensive. However, since F can be chosen to be roughly of size n, the exponents can be made small (by using small-modulus homomorphic encryption [9]). The computational overhead will be thus dominated by $O(m^2 \log n)$ modular multiplications. Finally, while both variants seem to require one round, the communication pattern in the second is incompatible with that of the SPIR protocol. Consequently, the second input selection protocol requires
1.5 rounds to complete: a message from the server followed by a standard round.

Security. In contrast to the first protocol, the second cannot even be proved to be weakly secure against a malicious client. In fact, it is easy to construct a contrived (yet secure) encryption scheme which, when used in an SPFE protocol computing a simple function \(f\), allows a malicious client to obtain the decryption key \(D\). Consequently, in this protocol the client will be able to learn all \(m\) items \(x_i\). We note, however, that when using the above with natural homomorphic encryption candidates, it is plausible that the resultant SPFE protocol enjoys (heuristic) weak security against a malicious client. The protocol can be made provably secure by requiring the client to prove in zero-knowledge that it knows the function it applies to the encrypted values. However, this would result in a significant overhead to the efficiency of the protocol.

The Boolean case. As is, the SPFE protocol based on either of the above variants seems to require secure MPC over a field of size \(\approx n\) even in the default Boolean case. Since the best known 1-round secure MPC protocols do not generalize efficiently to arithmetic circuits, this may result in a considerable overhead. One approach for solving this problem is to compose the Boolean circuit for \(f\) with a Boolean circuit of size \(O(m \log n)\) computing the bit-vector \(x_i\) from the binary representations of the share vectors \(a, b\). However, this overhead can be completely eliminated in most implementations of Yao's 1-round MPC protocol. Details are omitted from this version.

Asymptotic improvements. By choosing \(\{P_i\}\) to be a family of cryptographic pseudorandom functions and relying on generic secure MPC in step 3 of the general input selection protocol, it is possible to improve both the communication and computation overhead of the first variant to \(O(n)\). An even further improvement is possible if one uses the polynomial family \(\{P_i\}\) as in the original protocols, but relies on a nearly-linear FFT-based algorithm for evaluating the polynomial \(P_i\) on the points \([t_1, \ldots, t_m]\). Unfortunately, both improvements do not seem to apply to practical choices of the parameters.

3.3.3 The third protocol for input selection

We present a third alternative to the implementation of the input selection phase. In comparison to the first variant of the previous protocol, its relative disadvantages are that it fails to give provable security against a malicious client and that it uses \(\text{SPIR}(n, m, \kappa)\), where \(\kappa\) is of the length of a homomorphic encryption, instead of \(\text{SPIR}(n, m, \log n)\). However, similarly to the second variant, its communication overhead is only linear in \(m\) and its computational complexity is superior to both variants of the previous protocol.

The protocol, which is similar in spirit to a protocol from [20], proceeds as follows. First, the server chooses keys for a homomorphic encryption scheme over \(D\), sends the public key \(E\) to the client, and prepares (but does not send) encryptions \(E(x_1), \ldots, E(x_m)\). Next, the client uses \(\text{SPIR}(n, m, D)\) to retrieve \(E(x_1), \ldots, E(x_m)\). It picks random blinding elements \(r_1, \ldots, r_m \in \mathbb{Z}_q\), computes \(E(x_i - r_i)\), and sends these values back to the server. Finally, the server decrypts and outputs \(a_i = x_i - r_i\) and the client outputs \(b_i = r_i\).

The SPFE protocol obtained from this input selection protocol can be implemented in 2 rounds, by letting the client send its MPC message together with its second message of the input selection protocol. The complexity of the input selection protocol is dominated by that of \(\text{SPIR}(n, m, D)\).

3.3.4 Secure protocol for arithmetic circuits

In the second phase, called function evaluation, any secure MPC protocol can be used for evaluating \(f\) on the input shares. Yao's protocol, which is the best known protocol for the Boolean case, does not scale well to compute arithmetic circuits.

We present a light-weight secure MPC protocol for arithmetic circuits over a ring \(D = \mathbb{Z}_q\). Its round complexity is proportional to the circuit (multiplicative) depth, and it requires a constant number of exponentiations per gate. While not providing full security (hence its efficiency), it can be proved to satisfy our notion of weak security against a malicious client, and can therefore be naturally combined with any of the input selection protocols in this section. The protocol is reminiscent of protocols described in [15, 1, 18, 24].

The arithmetic circuit is evaluated by gate. Before evaluating each gate, the server holds a homomorphic encryption of the input values for the gate (where the encryption is under the client's key). At the end of the evaluation of the gate the server holds an encryption of the output value of the gate. The encrypted values are computationally hidden from the server. Furthermore, the protocol guarantees that both the client and the server learn nothing during the evaluation process. At the end of the protocol the server reveals the encryption of the output of the circuit. The client decrypts the value and outputs the result. We provide efficient constant round implementations for addition and multiplication gates.

The protocol begins with the client picking keys to a homomorphic encryption scheme over \(D = \mathbb{Z}_q\) and sending the public key \(E\) to the server along with an encryption of its inputs. We describe procedures for evaluating modular addition and multiplication gates on encrypted values. That is, consider the following problem: The server holds an encryption of values \(v_1, v_2 \in \{0, \ldots, u-1\}\). The parties wish to provide the server with an encryption of the value \(c = v_1 + v_2\mod u\) or \(c = v_1 \times v_2\mod u\). The client should learn nothing from participating in the protocol. In the following, assume that all operations are performed mod \(u\).

Evaluating an addition gate. Given \(E(v_1), E(v_2)\), the server computes the encoding of \(v_1 + v_2\) on its own by computing \(E(v_1 + v_2) = E(v_1) \cdot E(v_2)\).

Evaluating a gate which multiplies by a value known to the server. Given \(E(v)\), \(a\), the server computes the encoding of \(v \cdot a\), by computing \(E(\cdot \cdot v) = E(v)^a\).

Evaluating a gate which multiplies by a value unknown to the server. Given \(E(v_1), E(v_2)\), we describe how the server uses the help of the client in order to obtain \(E(v_1 \cdot v_2)\).

1. The server chooses \(r_1, r_2\) uniformly from \([0, \ldots, r-1]\).
2. The server computes \(E(v_1 + r_1), E(v_2 + r_2)\) and sends them to the client.
3. The client decrypts to obtain \(v_1 + r_1\) and \(v_2 + r_2\), and sends \(e = E((v_1 + r_1) \cdot (v_2 + r_2))\) to the server.
4. The server computes \(E(r_1 \cdot r_2), E(v_1 \cdot r_2)\) and \((v_2 \cdot r_1)\) and divides them by \(e\) to obtain \(E(v_1 \cdot v_2)\).
4. STATISTICAL FUNCTIONS

In this section, we consider specific instances of the SPFE problem which are geared towards privately computing standard statistics on a selected data set. We discuss the applicability of our general solutions from previous sections to several statistical computation functions, and also present some direct constructions. Throughout most of this section we view the data items as integer-valued.

Average and variance. The sum function is particularly important for statistical applications since it can capture several interesting statistical quantities. Indeed, learning the sum of \(m \) values is equivalent to learning their average. The variance of \(m \) values is a linear combination of their sum and the sum of their squares. Thus, given a 1-round SPFE protocol for the sum function, one can efficiently implement a 1-round SPFE protocol for a "package" combination of average and variance. The server stores \(x^\prime = (x_1^\prime, \ldots, x_n^\prime) \) in addition to the original database. Upon receiving the client's queries, generated according to the sum protocol, it replies twice: once with the original database, and once with the database \(x^\prime \). Note that if the SPFE protocol is strongly secure against a malicious client, then so is the above protocol (since learning both the average and variance of the same set of items is equivalent to learning both their sum and the sum of their squares).

Efficiency of previous constructions. To efficiently solve the special case of SPFE where the function \(f \) is the sum function, we view the items as elements of a field \(F = \mathbb{Z}_u \) where \(u \) is an upper bound on the sum. Applying the generic approach of Section 3.1 (and utilizing the fact that \(f \) admits a degree-1 representation over \(F \)), we may get a \((t \log n + 1) \)-server 1-round protocol (where \(t \) is the client privacy threshold), in which the communication consists of roughly \(t m \log^2 n \) field elements. The main disadvantages of this approach is the number of servers and the computation time of \(\mathcal{O}(m^2) \).

We turn to the single-server setting. The PSM-based construction of Section 3.2, while not efficiently scalable to general arithmetic circuits, can provide a fairly efficient solution in our special case of the sum function, as described in Example 1. However, this solution still requires \(m \) invocations of SPIR on \(m \) different databases, which is prohibitive when \(m \) is large. To gain better efficiency, it is desirable to reduce the problem to a single invocation of a SPIR(n, m, \(\ast \)) primitive. This is achieved by the technique of Sections 3.3.2, 3.3.3. However, the round complexity of the resultant protocols will not be optimal, and they either incur a high computational overhead or require the application of SPIR on relatively long strings.

An efficient solution for the weighted sum function. We now show a 1-round solution which avoids the above weaknesses of our general solutions. First, we relax the problem and allow the client to compute any selected linear combination of \(m \) items. We refer to this as the weighted sum problem. Note that a useful feature of this relaxation is that it allows us to compute the weighted average and variance of the selected data set, where the weights can be freely chosen by the client.

Our protocol is similar to the first variant of the input selection protocol from Section 3.3.2. However, it relies on the linearity of the weighted sum function to achieve greater efficiency. As in the input selection protocol, the server picks a random degree-\((m - 1)\) polynomial \(P_j \) over \(F \) with coefficients \(s_0, \ldots, s_{m-1} \), prepares a virtual database \(x^\prime \) such that \(x^\prime_i = x_i + P_j(i) \), and lets the client use SPIR(\(n, m, F \)) to learn \(x^\prime_j \). These alone are uniform and independent field elements. The next observation is that learning \(x^\prime_j \) together with the sum \(P_j(1) + \cdots + P_j(m) \) is equivalent to learning \(x_1 + \cdots + x_m \). Finally, note that this sum is a linear combination of \(s_0, \ldots, s_{m-1} \), whose coefficients \(c_0, \ldots, c_{m-1} \) are known to the client. Specifically, \(c_i = x_1^\prime + \cdots + x_i^\prime \). We can thus complete the protocol by letting the client send \(E(c_0), \ldots, E(c_{m-1}) \) to the server and get \(E(s_0 c_0 + s_1 c_1 + \cdots + s_{m-1} c_{m-1}) = E(P_j(1) + P_j(2) + \cdots + P_j(m)) \) in return. The client outputs \(x_1 + \cdots + x_m = (P_j(1) + P_j(2) + \cdots + P_j(m)) \). Note that since the linear combination protocol can be done in parallel to the SPIR protocol, the entire protocol requires only one round.

The generalization to weighted sum is straightforward: by choosing different coefficients \(c_i \) the client can learn an arbitrary linear combination of \(x_1, \ldots, x_m \). Moreover, by a counting argument every choice of \(c_0, \ldots, c_{m-1} \) induces some valid linear combination of the selected items. This implies that even a malicious client cannot learn more than some linear combination of the selected items.

Efficiency. As noted above, the protocol can be implemented in one round. Its communication complexity is dominated by that of SPIR\((n, m, F)\), where \(|F| \) should be larger than the maximum of \(n \) and (an upper bound on) the sum of the \(m \) largest items. Its computational complexity includes an additional overhead of \(\mathcal{O}(m^2) \) modular exponentiations.

Counting frequencies. We end this section by briefly discussing an additional useful special case of private statistics: counting the number of occurrences, or frequency of a chosen value or keyword in the selected data set. Let \(w \) be a keyword, taken from the data domain \(D \). We embed \(D \) in a finite field \(F = \mathbb{Z}_u \) where \(u > |D| \). Our function may be formally defined as \(f(y_1, \ldots, y_m) = \sum_{j \in \{0, 1\}} \chi_u(y_j) \), where \(\chi_u(y) = 1 \) if \(w = y \) and is 0 otherwise.

Suppose that the client and the server already share the selected items \(x_j \) in an additive way. This can be achieved in one round using our input selection protocols. Let \(a \) and \(b \) be the two shares of \(x_j \), held by the server and the client respectively. The protocol requires one additional round, and proceeds as follows: (1) The client sends \(m \) encryptions \(E(b_i - w) \), where \(w \) is the keyword to be searched; (2) For each \(1 \leq j \leq m \), the server picks a random blinding element \(r_j \) from the field, computes an encryption \(E(r_j \cdot (a_j + b_i - w)) = E(r_j \cdot (x_j - w)) \), and sends a random permutation of the \(m \) encryptions to the client. (3) The client decrypts the \(m \) encryptions and counts the number of zeros.

Note that a malicious client can alter the \(m \) encrypted values it sends. However, this only has the effect of allowing it to compute a more general function, in which a different keyword is specified for each selected item.

Acknowledgements

We are grateful to Prabhakar Raghavan for suggesting this line of research, and to Rosario Gennaro and Eyal Kushilevitz for helpful discussions.
5. REFERENCES

