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ABSTRACT

Motivated by the application of private statistical analysis of

large databases, we consider the problem of selective private

function evaluation (SPFE). In this problem, a client inter-

acts with one or more servers holding copies of a database
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chosen by the

client. Ideally, the client must learn nothing more about the

database than f(x

i

1

; : : : ; x

i

m

), and the servers should learn

nothing.

Generic solutions for this problem, based on standard

techniques for secure function evaluation, incur communi-

cation complexity that is at least linear in n, making them

prohibitive for large databases even when f is relatively sim-

ple and m is small. We present various approaches for con-

structing sublinear-communication SPFE protocols, both for

the general problem and for special cases of interest. Our so-

lutions not only o�er sublinear communication complexity,

but are also practical in many scenarios.

1. INTRODUCTION
Companies regularly use third-party databases in order to

gain access to information used to guide their business de-

cisions and product development. For example, it might be
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important to the research and marketing decisions of a com-

pany to know the fraction of people in a given zip code that

are of a certain age, to �nd the number of related products

that have been patented, or to �nd the number of similar

characteristics between two given molecules. Clearly, the

company does not want the owners of such databases to

know what the actual query is, since the query may reveal

crucial information about their future strategy.

An obvious solution often employed in practice is for the

company to buy the whole database, even if it actually

needs only a small amount of information from the database.

While this solution protects the company's proprietary in-

terests, it is very expensive, both in terms of actual cost of

buying the database and in terms of the required commu-

nication complexity to transfer the data and keep it up to

date. Furthermore, this solution is such that it does not al-

low the database owners to keep their data private: instead

of disclosing to their clients only the minimal amount of in-

formation implied by the answers to the queries, they are

required to reveal their entire data.

A particularly appealing application is the private statis-

tical analysis of large databases. Consider a scenario where

the database contains information of two types: public in-

formation (say, zip code), which can be freely accessed, and

private information (say, salary or age) which may be valu-

able and/or sensitive. A client, based on the public data,

wishes to compute some statistics on a carefully selected

subset of the private data, without revealing his selection

criteria. The database owner, on the other hand, wants to

reveal only the information that is requested and paid for

by the client. One would expect that clients will be willing

to pay more for a larger sample size, which allows them to

obtain more reliable statistics.

Selective private function evaluation. Motivated by

the above applications, we introduce and study the problem

of selective private function evaluation (SPFE). An SPFE

protocol enables a client to privately retrieve from a server

(or multiple servers) holding a database x = (x
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of the client's choice.

Ideally, the client should learn only the value of f on a se-

lected sequence ofm data items, while the server holding the

database should learn nothing. Depending on the setting,

however, it may be necessary or even desirable to allow the

server to learn some partial information about f or the loca-

tions accessed by the client. Without loss of generality, we

concentrate in this work on the case where the server learns

f and m but not the m locations in the database to which



f is applied. (Solutions where the servers should not learn

even f can be obtained by letting f be a `universal function'

and allowing the client to specify the actual function to be

evaluated via some additional private input to f .) In the

context of the private statistics application discussed above,

SPFE protocols address the following privacy concerns:

(1) Protect clients from revealing what type of sample

population, what type of speci�c data about this sample,

and possibly also what function of the selected items, they

are after;

(2) Protect database owners from revealing a large amount

of information about their data or providing a higher quality

service than what a client has paid for.

1.1 Related work

Secure computation. Secure multi-party computation

(MPC) [45, 28, 10, 14] is a powerful and general crypto-

graphic primitive. It allows two or more parties to jointly

compute some function of their inputs while hiding their in-

puts from each other. SPFE may be cast as a special case

of the general secure MPC problem. Thus, generic secure

2-party protocols [45, 28, 26], whose communication com-

plexity is linear in the size of a circuit being evaluated, are

su�cient to obtain some solution to our problem. However,

since a circuit computing the SPFE functionality must be at

least of the size of the database, the communication com-

plexity of these generic solutions will be (at least) linear in

n, making them infeasible when the database is large. In

contrast, our main goal is to obtain solutions for the SPFE

problem whose communication complexity is sublinear in

the database size when m� n.

Private information retrieval. The study of sublinear-

communication secure computation originated from the prob-

lem of private information retrieval (PIR), introduced in [17].

A PIR protocol allows a client to retrieve a selected item

from a database while hiding the identity of this item from

the server holding the database. The main goal of PIR-

related research has been to minimize the communication

complexity of PIR, which is measured by default as the cost

of retrieving one out of n bits. (Note that a PIR proto-

col with n communication bits can be trivially realized by

sending the entire database to the client.) Under speci�c

number-theoretic intractability assumptions, it is possible

to construct PIR protocols with a very low asymptotic com-

munication complexity [32, 34, 43, 12], as low as polynomial

in log n and the security parameter [12].

An alternative setting for PIR assumes that the database

is replicated among multiple servers, and only requires the

client's privacy to hold against restricted collusions of servers

[17, 4, 16, 31, 7]. In this setting, it is possible to achieve

information-theoreticprivacy with sublinear communication.

While the asymptotic communication complexity of the lat-

ter multi-server protocols is generally worse than that of

single-server protocols, they are signi�cantly more e�cient

in computation, and even their communication complexity

is typically lower for practical database sizes.

PIR is not concerned with the privacy of the database.

The problem of symmetrically private information retrieval

(SPIR), introduced in [25], is an extension of PIR where the

client is restricted to learn no more than a single data item.

1

Using constructions from [25, 43, 36, 37], SPIR protocols
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SPIR is almost synonymous to the well-known notion of

can be obtained from PIR protocols with a small complex-

ity overhead. We use SPIR(n;m; `) to denote a more gen-

eral version of the problem, in which m items are retrieved

from the same database of n `-bit items. While this prim-

itive can be implemented by m` independent invocations

of SPIR(n; 1; 1), signi�cantly more e�cient implementations

are possible [36, 37, 8]. Most of our constructions will utilize

the SPIR primitive as a black box. Thus, we will generally

not be concerned with the speci�cs of its implementation.

Following the work on PIR, sublinear-communication se-

cure MPC protocols were studied both in other speci�c con-

texts (e.g., [33, 22]) and in more general contexts [35]. The

latter work aims at transforming a general protocol in the

communication complexity model into a secure protocol with

a low communication overhead. While SPFE can be viewed

as a special case of the above problem, our solutions for this

special case are more e�cient than the ones in [35].

Inference control in statistical databases. For com-

pleteness, we brie
y contrast SPFE with the extensive body

of literature on inference control (IC) in statistical databases

(see, e.g., [2] for a survey). The goal of IC is to provide clients

with access to a database for computing aggregate statistics

about a collection of individuals while protecting the con�-

dentiality of each individual in the database. The attacker is

a client who attempts to infer some previously unknown data

about an individual in the database by performing one or

more allowed queries. SPFE di�ers from IC in several ways,

most fundamentally in its di�erent privacy goals: SPFE is

concerned with hiding client queries and limiting database

disclosure, rather than limiting inferences about individuals

in the database. These contrasting sets of goals can lead to

con
icting solutions. For example, inference controls in sta-

tistical databases include query set restriction (see [2, Sec-

tion 3] and [19, Chapter 6]), whereby the database monitors

the query set of each query | i.e., the subset of records

included in the computation of the response to the query

| and limits the query set size, the overlap of query sets

in successive queries by the same client, etc. In contrast,

the query set is required to be hidden from the database in

SPFE. On the other hand, inference controls in which the

database itself is perturbed to protect the privacy of indi-

viduals (see [2, Section 4]) could be applied to a database

using SPFE.

1.2 Our results
As in the PIR-related literature, we consider both a single-

server model and a model where the database is replicated

among several servers. The primary performance measures

for an SPFE protocol are:

(1) The number of servers. We �nd the single-server set-

ting generally more appealing, since servers are arguably the

most crucial resource, and, as noted above, the multi-server

model does not protect the client from large collusions of

servers. (We note though that our solutions for the single-

server setting can be adapted to the multi-server setting,

allowing more e�ciency in other parameters.)

oblivious transfer (OT) [42, 44, 21]. We use the terminology

of SPIR to indicate that: (1) we are mostly interested in the

case that the number of items is large and the communi-

cation is sublinear in the number of items; (2) we consider

both a single-server and a multi-server model; (3) like in

the PIR literature, we allow some relaxations to the most

stringent security de�nitions of OT.



(2) Communication and computation costs. We treat the

communication complexity as the most signi�cant complex-

ity measure (excluding the number of servers). However,

some of our protocols will also be �ne-tuned for optimizing

the computation. We will usually specify the complexity of

our solutions in terms of other primitives (SPIR, generic se-

cure MPC, encryption) rather than in absolute terms. By

substituting speci�c implementations of these primitives,

one may get a concrete sense of the actual costs. Finally,

while we still use big-O notation in our complexity analysis,

the underlying constants will typically be very small.

(3) The number of communication rounds. We de�ne

a round to consist of a message from the client to each

server followed by a reply from each server to the client.

To achieve provable security against malicious clients, our

protocols may require an additional preprocessing phase or

certi�ed public keys (as in, e.g., [11]).

Notions of security. In addition to the performance pa-

rameters, we consider the following security characteristics

of a solution. First, security can be either computational

(i.e., based on cryptographic assumptions and computational

limitations of the parties) or absolute (information-theoretic).

Our solutions will guarantee that the client obtains the cor-

rect values only when all servers follow their protocol. Still,

our multi-server solutions can be easily generalized to pro-

vide fault tolerance as well. The client's privacy is guar-

anteed even when up to some threshold of servers, referred

to as the privacy threshold, are malicious, i.e., deviate from

their protocol in an arbitrary way. In bounding the amount

of information gathered by a malicious client, we distinguish

three levels of security. (1) Strong security guarantees that

the client learns only the value of the public function f on

some sequence of m data items. (2) Weak security only

guarantees that the client learns the value of some function

f

0

on some sequence of m data items, where the function f

0

is determined by the client's actions; however, f

0

is guaran-

teed to have the same output size as f . The latter ensures

that only a small amount of information about the database

is leaked. Thus, the weaker notion of security is su�cient

to address most privacy concerns that SPFE resolves. (3)

Finally, some of our protocols provide no provable security

against malicious clients. Yet, these are provably secure

against a semi-honest client, who follows the protocol but

tries to learn additional information from its view, and may

also be heuristically weakly secure against a malicious client.

Our solutions. We aim at obtaining SPFE protocols that

are not only asymptotically e�cient, but are also feasible in

practice. We present several protocols, where each is best

suited to particular settings.

In Section 3.1, we present a one-round multi-server infor-

mation-theoretic SPFE protocol. Its construction is based

on a reduction to multivariate polynomial evaluation. This

protocol is most appealing when f is very simple (e.g., the

sum function) and when a large number of servers are avail-

able, as might be the case if data replication is used for fault

tolerance or as part of a content distribution mechanism. A

signi�cant advantage of this protocol is that it involves very

short messages from the servers to the client. Thus, this

protocol can be used to compute several statistics on the

same data set, or the same statistic over di�erent periods of

time, with little additional cost.

In Section 3.2, we present a one-round SPFE protocol for

general functions, whose construction relies on private si-

multaneous messages protocols (described therein). The ad-

vantages of this protocol over subsequent single-server proto-

cols are its optimal round complexity and its strong security

against a malicious client.

In Section 3.3, we present three reductions of SPFE to gen-

eral secureMPC and SPIR. None of the three provides strong

security against a malicious client. Moreover, even if used

in conjunction with a round-optimal secure MPC protocol,

they all require at least one additional round in comparison

to the previous protocol. However, one advantage of these

solutions is that they all e�ciently scale to the case where f

is represented by an arithmetic circuit over a large modulus

(rather than a Boolean circuit). When f is viewed as an

integer- or real-valued function, this often allows for smaller

circuits and better e�ciency. An important additional ad-

vantage of the second and third reductions is that they only

require a single invocation of SPIR(n;m; `) (retrieving m

out of n items) rather than m invocations of SPIR(n; 1; `)

on m di�erent databases. This may result in signi�cant ef-

�ciency improvements. In particular, the latter provably

requires 
(mn) computation on the server's part, whereas

the server's computation in the former can be made almost

linear in n (cf. [36, 37, 8]). The third reduction typically in-

volves more communication and less computation than the

second, but does not provide provable security against a

malicious client. We complement the above reductions by

presenting a light-weight protocol for secure MPC of gen-

eral arithmetic circuits; this protocol is compatible with our

notion of weak security against a malicious client.

Finally, in Section 4, we speci�cally consider some useful

instances of privacy-protecting statistical analysis, discuss

the application of our general solutions to these instances,

and present protocols that are tailored to these cases. In

particular, we obtain an e�cient one-round protocol for the

special case where f is the sum function.

Table 1 summarizes the e�ciency of our general single-

server solutions in terms of the SPIR and MPC primitives

they rely on. (The third row of the table describes two

variants of the same approach; additional variants are dis-

cussed in Section 3.3.) The complexity column refers to the

case of a Boolean function f : f0; 1g

m

! f0; 1g, where C

f

is the size of a Boolean circuit computing f . This column

describes both the communication and computation costs

(omitting insigni�cant factors).

2

SPIR(n;m; `) denotes the

cost of retrieving m out of n `-bit items using a 1-round SPIR

protocol, MPC(m;s) denotes the cost of a 1-round secure 2-

party computation of an m-input, s-gate Boolean circuit,

and � denotes a security parameter. (In practice, � can be

instantiated by the length of an encryption key; see Section 2

for a more formal treatment.) Using Yao's technique [46],

the cost of MPC(m;s) is m� SPIR(2; 1; �) +O(� � s).

3

The main advantages of each protocol are summarized

above. When comparing their complexity, it is helpful to

keep the following qualitative facts in mind: (1) SPIR(n;m; `)

can be implemented more e�ciently than m invocations of

SPIR(n; 1; `); (2) The best known PIR protocol [12] is not

well adapted to retrieving multi-bit items; consequently, the

2

The computation in the two protocols from Section 3.3.2 in-

volves O(m

2

log n) additional modular multiplications. This

overhead can be asymptotically reduced, see Section 3.3.2.

3

This applies to some relaxation of the de�nition of secure

MPC, discussed in Section 2.



section rounds complexity security against e�cient scalability to

malicious client arithmetic circuits?

x3.2 1 m� SPIR(n; 1; �) +O(� � C

f

) Strong No

x3.3.1 2 m� SPIR(n; 1;1) +MPC(m;C

f

) Weak Yes, more rounds

x3.3.2 2/2:5 SPIR(n;m; log

2

n) +MPC(m;C

f

) + �m

2

/ +�m Weak/None

�

Yes, more rounds

x3.3.3 2 SPIR(n;m; �) +MPC(m;C

f

) None

�

Yes, more rounds

Table 1: Comparison of general single-server solutions.

best known implementation of SPIR(n; 1; 1) is signi�cantly

more e�cient than SPIR(n; 1; �), even when � is as small as

the size of a key.

4

Finally, in the security column, \None

�

" indicates prov-

able security against a semi-honest client, that also appears

(but is not proven to be) weakly secure against a malicious

client. For our protocols to be provably secure against a

malicious client with the speci�ed round complexity, one

should either assume an idealized \black-box" implementa-

tion of the SPIR primitive, or make some additional require-

ments which are satis�ed by known implementations of this

primitive. This applies to all protocols described in Table 1.

Additional security-related issues are discussed in Section 2.

2. PRELIMINARIES
We de�ne secure schemes for selective private function

evaluation (SPFE). The problem is a special case of the gen-

eral problem of secure function evaluation. Thus, in princi-

ple, the general de�nitions (as in, say, [26, 13]) apply here

as well. Nonetheless, here we provide an explicit, simpli-

�ed and relaxed de�nition for the special case of SPFE. The

de�nition deals with the case of multiple servers. The single-

server case is obtained as a special case.

Let k; n; �; t 2 N, let D be some �nite domain (called the

data domain), and let [n] denote the set f1; : : : ; ng. There

are k +1 parties, the client C and k servers S

1

; : : : ; S

k

. The

servers have a common input x 2 D

n

representing the data,

and the client has a (deterministic) function f : D

m

!

D where m � n, and a list I 2 [n]

m

of m indices. The

function is given using some standard representation, e.g.

via a circuit that evaluates it. In addition, all parties have

a security parameter �. The servers also have a common

random input, which can be regarded as an extension of the

database. The client wishes to learn f(x

I

), where x

I

def

=

(x

i

1

; : : : ; x

i

m

), while making sure that any collusion of up

to t servers learns nothing. Sometimes it will be allowed, or

even required, that the servers learn f or I or some partial

information about them. The servers wish to make sure that

the value learned by the client is a \legitimate" one, where

legitimacy may be interpreted in a number of ways.

All parties are assumed to be polynomial in �.

5

For the

sake of uniformity, we formulate our security requirements

only against polynomial-time adversaries. Nonetheless, in

the case where there are multiple servers, security will hold

even against computationally unbounded adversaries.

4

In contrast, SPIR(2; 1; �) can be implemented in practice

with the same cost as SPIR(2; 1; 1) when � is small.

5

This implies that n, the length of the database, must be

at most polynomial in �. When security is desired even

against adversaries that are sub-exponential in the security

parameter, one can allow n and � to vary more (see, e.g.,

[12]).

A bit more speci�cally (but still informally), we make

three requirements. The �rst is Correctness, which states

that as long as the client and the servers follow the protocol

then the client's output will be the correct value f(x

I

). The

second is Client Privacy, which states that no adversary (that

controls up to t servers) will learn anything from the inter-

action, except possibly some pre-de�ned information, even

if the corrupted servers deviate from the protocol in an ar-

bitrary way. We model the information that the servers are

allowed to learn about the client's input in a way described

below. By default, this information will include the function

f and the list size m but not the actual list I. The third is

Database Secrecy, which states that the client learns only a

prede�ned amount of information about the data, even if it

arbitrarily deviates from its protocol.

While correctness is quite straightforward to formulate,

formalizing the other two is a bit more problematic. Client

Privacy is formalized by requiring that there exists an al-

gorithm (a simulator) that generates a distribution that is

indistinguishable from the view of the servers corrupted by

the adversary. This view includes their inputs, random in-

puts, and messages they receive. By default we require

computational indistinguishability between the two distribu-

tions, parameterized by the security parameter �. However,

our multi-server protocols will provide information-theoretic

client privacy, where the simulator's output is identical to

the servers' view. The simulator is given the data x and the

value of some pre-de�ned function h applied to the client's

input. (Again, by default h(f; I) = f where (f; I) is the

client's input.)

Database Secrecy is captured as follows. Fix some subset

A of all functions from D

n

to D. We think of A as the

set of \allowable functions", or in other words the set of

functions that the client is allowed to apply to the database.

We require that for any adversary A controlling the client

there exists a simulatorM with the following characteristics.

The goal of M is to generate an output that is distributed

indistinguishably from the output of A. However, M does

not interact with the servers; instead it interacts with a

\trusted party" T that has the following functionality. T

receives fromM a description of a function g 2 A. In return,

T outputs g(x). It is stressed that M can invoke T only

once. Intuitively, this requirement captures the property

that a malicious client can learn the value of any function

g 2 A of its choice, applied to the data x.

In the case of a malicious client, our protocols (except

where noted previously) satisfy the database secrecy require-

ment with respect to one of the following two possible sets

A of allowable functions. Weak security refers to the case

where A is the set of all functions that depend on at most

m locations in the database and output a value from D.

Strong security refers to the case where A = fg(x) = f(x

I

) j

I � [n]; jIj = mg, and f is the function that appears in



the client's input. Our basic protocols do not guarantee

correctness against malicious servers (indeed, in the single-

server case such a requirement is quite meaningless). Client

Privacy and, in some cases, Database Secrecy will be guar-

anteed even against malicious adversaries. For lack of space,

we omit more formal de�nitions from this extended abstract.

On the de�nition of SPIR. Most of our constructions use

symmetrically private information retrieval (SPIR) as a sub-

routine. SPIR can be de�ned as a special case of SPFE,

where the input of the client is restricted so that f is the

identity function and I is a singleton (i.e., m = 1). We

use SPIR(n;m; `) to denote a generalization of this primi-

tive allowing the client to select m out of n items of length

`. Sometimes the parameter ` will be replaced by the data

domain D, or by * when it is clear from context. By default,

SPIR will refer to 1-round SPIR.

On the de�nition of secure MPC. Another subroutine

that will be used by our constructions is general secureMPC.

Similarly to the SPFE de�nition, our de�nition for secure

MPC relaxes the standard ones from [13, 26] in that it does

not require correctness if a server is malicious.

6

Also, sim-

ilarly to SPFE it is possible to de�ne a notion of general

secure 2-party computation with a weak security against a

malicious client. These relaxations allow for more e�cient

implementations of secure 2-party computation, which do

not require the server to prove the validity of its actions.

Homomorphic encryption. Some of our protocols rely

on the standard tool of homomorphic encryption. A ho-

momorphic encryption scheme is an encryption scheme in

which the plaintexts are taken from a group G, and given

encryptions of two group elements one can e�ciently com-

pute a (randomized) encryption of their sum. Since this

computation usually involves a modular multiplication of

the encryptions, we write E(a) �E(b) = E(a+ b). It follows

that E(a)

c

= E(c � a) for c 2 N. The Goldwasser-Micali

scheme [29] satis�es this property with G =Z

2

. For more a

more detailed de�nition of this primitive, as well as exam-

ples of such schemes with larger homomorphism groups Z

u

,

the reader may refer to [9, 39, 40, 41].

3. GENERAL SOLUTIONS

3.1 Multi­server protocols based on multivari­
ate polynomial evaluation

In this section we present an information-theoretically se-

cure solution to SPFE when the database x is replicated

at multiple servers. For simplicity of presentation, here we

assume a semi-honest client (but allow up to t malicious

servers); this solution can be extended to address a mali-

cious client at a moderate additional cost using techniques

from [25].

Our solution builds from the following lemma, which fol-

lows immediately from work in instance hiding [5]:

Lemma 1. [5] Consider a system of k servers, and let P

be an �-variate polynomial over a �eld F of total degree d.

Suppose that P is known to all servers but is unknown to

6

Technically, in the Client Privacy requirement we only com-

pare the view of the simulator to the view of the servers,

whereas in the analogous requirement from [13, 26] these

distributions are concatenated to the client's output.

the client. If k > dt and jF j > k, then there is a 1-round

protocol by which a client can obtain the value of P on inputs

of its choice, and such that any t servers gain no information

about those inputs. In this protocol the client sends � �eld

elements to each server, each server replies with a single �eld

element obtained by evaluatingP on the elements sent by the

client, and the client computes its output using polynomial

interpolation.

In the protocol of Lemma 1, the values returned by the

servers lie on a degree-dt polynomial

^

P such that

^

P(0) is the

client's desired answer. Speci�cally, the answer of server h is

equal to

^

P (�

h

), where �

1

; : : : ; �

k

are some (�xed) distinct,

non-zero elements of F . Following [25], we can thus extend

this protocol to achieve symmetric privacy if server h instead

returns

^

P (�

h

)+R(�

h

) for a random degree-dt polynomial R

where R(0) = 0. Rmust be shared by the servers in advance;

though inconvenient, some form of correlated random values

is necessary to achieve symmetric privacy in the information-

theoretic setting [25].

The solution of this section is thus to express f as a multi-

variate polynomial P over F that depends on x, and whose

value at indices i

1

; : : : ; i

m

encoded in F is f(x

i

1

; : : : ; x

i

n

).

Then, we can apply Lemma 1 to obtain the construction.

Here we outline how to construct P from a Boolean for-

mula � computing f , where � consists of binary (2-input,1-

output) gates. The size of �, denoted s, is the total number

of leaves in its tree representation. Let ` = dlog

2

ne, and let

F be a �nite �eld containing at least `s + 2 elements. Let

j(k) denote the k-th leftmost bit in the `-bit binary repre-

sentation of j. De�ne the polynomial P

0

2 F [y

1

; : : : ; y

`

] as

follows:

P

0

(y

1

; : : : ; y

`

) =

n

X

j=1

 

x

j

`

Y

k=1

�

y

k

if j(k) = 1

1� y

k

if j(k) = 0

!

Note that P

0

(i(1); : : : ; i(`)) = x

i

, and that P

0

is a poly-

nomial of total degree `. For each gate g in �, recursively

de�ne a polynomial P

g

= Q

g

(P

g:left

; P

g:right

), where Q

g

is

the natural (degree-2) polynomial implementing g. (For

example, if g is an AND gate, then Q

g

('; ) = ' �  .)

If g's left input is some x

i

, then P

g:left

is the polynomial

P

0

(i(1); : : : ; i(`)), and if g's left input is the output of some

gate g

0

, then P

g:left

= P

g

0
. P

g:right

is de�ned similarly. Thus,

if ĝ is the gate that produces the output of the formula, then

P = P

ĝ

2 F [y

1

; : : : ; y

m`

] satis�es

P (i

1

(1); : : : ; i

1

(`); i

2

(1); : : : ; i

2

(`); : : : ; i

m

(1); : : : ; i

m

(`))

= f(x

i

1

; : : : ; x

i

m

)

Note that since deg(P

g

) � deg(P

g:left

) + deg(P

g:right

), the

total degree of P satis�es deg(P ) � `s, and so applying

Lemma 1 yields a construction with k = t`s+ 1 servers.

Theorem 2. If f can be computed by a formula of size s,

the above protocol is a 1-round SPFE protocol secure against

a semi-honest client and t malicious servers, where the total

number of servers is k = ts log n + 1. Its communication

complexity is k log k(m log n + 1).

This theorem is most interesting in the case when f 2 NC

1

where we get an SPFE protocol with m

O(1)

t log n servers.

Note that the above construction actually applies to any

function f which can be e�ciently computed

7

by a degree-s

7

If computational e�ciency is not a requirement, then s =

m is su�cient for any Boolean function f .



polynomial over F , where jF j > ts log n + 1. Hence, if f is

the sum function (outputting the sum of its m inputs over

F ), Theorem 2 applies with s = 1.

Finally, we remark that standard techniques allow a trade-

o� between the number of servers for e�ciency and fault tol-

erance. Speci�cally, a savings of a factor of c in the number

of servers can be obtained by increasing the communication

by roughly a factor of 2

c

, and t

0

malicious servers can be

tolerated by adding 2t

0

additional servers.

3.2 Solutions based on private simultaneous
messages protocols

In this section, we construct protocols for SPFE by ap-

plying a SPIR protocol on top of a protocol for f in the so-

called private simultaneous messages (PSM) model [23, 30].

We start by describing the PSM model, and then discuss its

application to our problem.

In the PSM model, there are m players P

1

; : : : ; P

m

and an

external referee. Each player P

j

holds an input y

j

, and all

of them share access to a common random input r, which

is unknown to the referee. The players' goal is to securely

evaluate a given function f of their inputs by having each

player P

j

send a single message p

j

to the referee, where

p

j

is determined by y

j

and r alone. That is, the referee

should be able to reconstruct the value f(y

1

; : : : ; y

m

) from

the m messages it receives, but should learn no additional

information about the inputs y

1

; : : : ; y

m

.

Motivated by e�ciency considerations, we slightly re�ne

the above setting. In addition to the m players P

1

; : : : ; P

m

,

our variant of the model includes an additional player P

0

who holds no input. The message p

0

computed by P

0

is

determined only by the random input r. In the usual PSM

scenario this extension of the model seems useless, since the

extra player P

0

can be simulated by the other players at

no additional cost. However, in our context it is bene�cial

to shift as much communication as possible to the extra

message p

0

. We say that a PSM protocol has communication

complexity (�; �) if the length of each message p

j

, j > 0,

is bounded by �, and the length of the extra message p

0

is bounded by �. Due to space considerations, we omit a

detailed formalization of this de�nition.

The following example describes a simple and useful PSM

protocol for the modular sum function.

Example 1. LetZ

u

denote the additive group of residues

modulo u, where u is an `-bit integer. Consider the func-

tion f : Z

m

u

! Z

u

outputting the sum of its m inputs. A

PSM protocol for f with communication complexity (`; 0)

proceeds as follows. The common random input contains

independent random group elements r

1

; : : : ; r

m�1

. The mes-

sages are de�ned by p

j

= y

j

+ r

j

, 1 � j � m, where

r

m

= �(r

1

+ � � � + r

m�1

). It is clear that the referee can

reconstruct the output by adding all m messages, and it is

not hard to verify that the messages are random subject to

the restriction that they add up to the sum of the inputs.

To construct an SPFE protocol from a PSM protocol for

f , the servers will simulate the m + 1 players of the PSM

protocol, and the client will simulate the referee. Our goal

is to allow the client to e�ciently obtain the m + 1 PSM

messages corresponding to its selected inputs x

i

1

; : : : ; x

i

m

.

We formulate the protocol for the general t-private k-

server case. When k > 1, this allows us to obtain information-

theoretic security for the client. The building blocks are: (1)

a (1-round) t-secure k-server SPIR protocol and (2) a PSM

protocol P computing f .

The SPFE protocol proceeds as follows: (1) If k = 1, the

server picks a random input r for the PSM protocol P; oth-

erwise, such an r is taken from the servers' common random-

ness. (2) For each j, 1 � j � m, each server computes an

n-item virtual database in which the i-th item is the message

which player P

j

would send in P on input x

i

and random

input r; the client retrieves the i

j

-th item from the virtual

database using the SPIR protocol. (3) The �rst server com-

putes the extra message p

0

from r, and sends it to the client

in the clear. (4) By simulating the referee in P, the client

computes the value of f from the m + 1 PSM-messages it

obtained.

Note that all m + 1 messages sent in steps 2,3 can be

simultaneously sent to the client. Letting SPIR(n; 1; �) de-

note the communication complexity of the SPIR protocol,

we have:

Theorem 3. The above protocol is a 1-round SPFE pro-

tocol with communication complexity m � SPIR(n; 1; �) + �,

where (�; �) is the communication complexity of P. It pro-

vides strong security against a malicious client. Perfect (info-

rmation-theoretic) security is achievable for both sides using

perfectly secure PSM and SPIR protocols.

We conclude this section by substituting known upper

bounds on the complexity of PSM protocols in both the com-

putational and information-theoretic setting. Let C

f

(resp.,

B

f

) be the size of a circuit (resp., branching program) com-

puting f . In [23, 46], a computationally secure PSM protocol

with communication complexity (�;O(� � C

f

)) is given and

in [30], a perfectly secure PSM protocol with communication

complexity (O(B

2

f

); 0) is given. We denote the cost of a one-

round SPIR protocol using k servers by SPIR

k

and the cost

of a one-one perfectly secure SPIR protocol using k servers

by PSPIR

k

. Using these protocols, we obtain the following

reductions from SPFE to SPIR:

Corollary 4. (1) If k � 1, then there exists a t-private

k-server computationally-secure 1-round SPFE protocol with

m � SPIR

k

(n; 1; �) + O(� � C

f

) communication; and (2) If

k > 1, then there exists a perfectly secure t-private k-server

SPFE protocol with m �PSPIR

k

(n; 1; O(B

2

f

)) communication.

3.3 Solutions based on general secure multi­
party computation

In this section we present several reductions of the SPFE

problem to SPIR and general secure MPC. We focus on the

single-server case, and assume that the data domain D is

some additive groupZ

u

(where u = 2 in the default Boolean

case).

We break down the problem into two phases. In the �rst

phase, called input selection, the server and the client obtain

a simple (additive) secret-sharing of the m selected items

x

I

. (That is, for 1 � j � m, the client and the server

each obtain a random element from D, such that the pair of

elements add to x

i

j

.) This should be done without revealing

any information to either party. In the second phase, the

parties may invoke any secure MPC protocol for computing

the value of f(x

I

) from their shares.

This two-phase approach does not support strong security

against a malicious client. Indeed, a malicious client may

arbitrarily change its shares of x

I

before passing them as



inputs to theMPC phase. Nonetheless, most of the protocols

obtained in this section can be proved to satisfy our notion

of weak security against a malicious client. Note that if

the only type of cheating by a malicious client is the one

described above, then this is intuitively clear: in such a case,

the function f

0

computed by the client will be of the form

f(x

I

+ �), where � is the di�erence between the received

vector of shares and the one passed to the MPC protocol.

In general, however, one must also guarantee that both the

input selection protocol and the MPC protocol support this

notion of security.

The remainder of this section is organized as follows. In

subsections 3.3.1, 3.3.2, and 3.3.3 we describe three di�erent

approaches for implementing the input-selection phase. We

refer the reader to Section 1.2 (and in particular to Table

1) for a comparison of these approaches. Finally, in Sec-

tion 3.3.4 we present a light-weight protocol for computing

a general arithmetic circuit. This protocol may be used for

implementing the MPC phase of our protocols, namely se-

curely computing f on the shared selected items, in the case

where f is represented by an arithmetic circuit over a (pos-

sibly large) ring.

3.3.1 The first protocol for input selection

Let share-x

i

denote a primitive which achieves a sharing

of a single selected item. That is, share-x

i

has the following

functionality: suppose that initially the server knows x and

the client knows i; share-x

i

is a secure protocol which results

in the server knowing a value a 2 D and the client knowing

a value b 2 D such that a and b are random subject to the

restriction that they add up to x

i

. To implement share-x

i

,

the server picks a random a 2 D and prepares a \virtual

database" y = (x

1

� a; : : : ; x

n

� a). The client then uses

SPIR to �nd the value b = x

i

� a of the ith location.

Then to accomplish our input selection task, perform m

invocations of share-x

i

, one for each i 2 I. The above pro-

tocol requires one round to complete. Together with a 1-

round secure MPC protocol, it yields a 2-round SPFE pro-

tocol whose cost (both in communication and computation)

is dominated by that of the m invocations of SPIR(n; 1; D)

plus the cost of MPC.

3.3.2 The second protocol for input selection

The previous input selection protocol, as well as the proto-

col from Section 3.2, requires m retrievals of 1 out of n items,

from m di�erent databases. For reasons of communication

and computational e�ciency, it may be highly desirable to

replace this by a single retrieval of m out of n items.

To achieve this, we rely on m-wise independence. Let

fP

s

: [n]! Dg

s2S

be an m-wise independent function fam-

ily; that is, if s is chosen uniformly at random from S, then

for any i

1

; : : : ; i

m

the random variable (P

s

(i

1

); : : : ; P

s

(i

m

))

is uniformly distributed over D

m

.

8

Then, a generic version

of the second input selection protocol may proceed as fol-

lows. (1) The server picks a random s 2 S and computes

a virtual database x

0

such that x

0

i

= x

i

+ P

s

(i); (2) The

client uses a SPIR(n;m;D) protocol to learn x

0

I

; (3) The

parties engage in a secure MPC protocol outputting an ad-

ditive sharing of P

s

(I)

def

= (P

s

(i

1

); : : : ; P

s

(i

m

)). That is, the

server's input is s, the client's input is I, and the server and

8

It su�ces for our purposes that the latter distribution

be computationally indistinguishable from uniform; however,

our solutions do not utilize this relaxation.

the client output (respectively) random vectors c; d 2 D

m

such that c+d = P

s

(I); (4) The server outputs a = �c (i.e.,

uses �c as its share of x

I

) and the client outputs b = x

0

I

�d.

It is easy to verify that the sum of the outputs a; b is indeed

equal to x

I

. Note that since x

0

I

is uniformly distributed

over D

m

, step 2 reveals nothing to the client. Since step 3

does not rely on step 2, both can be executed in parallel,

and so the entire input selection protocol can potentially be

implemented in one round.

We turn to the question of e�ciency. The above proto-

col leaves two parameters unspeci�ed: the function family

fP

s

g and the secure MPC protocol of step 3. Our e�cient

solutions will be obtained by letting fP

s

g be the family of

degree-m polynomials over a prime �eld F , where jF j > n.

That is, each s = (s

0

; : : : ; s

m�1

) 2 F

m

naturally de�nes a

degree-m polynomial P

s

(Y ) = s

0

+ s

1

Y + � � �+ s

m�1

Y

m�1

.

We assume here that D = F and view the indices i

j

as

elements of F .

We present two variants for the secure MPC protocol re-

quired in step 3. The �rst requires a single round, but incurs

an m

2

� additive communication overhead. The second re-

duces this communication overhead to m�, but does this at

the cost of increasing the round complexity and weakening

the (provable) security of the resultant protocol. Both vari-

ants utilize homomorphic encryption (see Section 2), which

allows us to e�ciently compute linear functions on a vector

of encrypted values.

First variant. (1) The client picks keys to a homomorphic

encryption scheme over the plaintext group (F;+). It sends

the public key E to the server along with them

2

encryptions

E(i

k

j

), 1 � j � m, 0 � k < m; (2) The server picks random

blinding elements r

1

; : : : ; r

m

2 F , and for j = 1; : : : ;m it

sends E(

P

m�1

k=0

s

k

i

k

j

� r

j

) = E(P

s

(i

j

) � r

j

); (3) The server

outputs (r

1

; : : : ; r

m

) and the client outputs the decryptions

of the m encryptions sent by the server.

Second variant. (1) The server picks keys to a homomor-

phic encryption scheme as above, and sends the public key E

to the client along with them encryptions E(s

0

); : : : ; E(s

m�1

).

(2) The client picks a random mask r = (r

1

; : : : ; r

m

), and

computes E(P

s

(i

1

)� r

1

); : : : ; E(P

s

(i

m

)� r

m

). (This can be

done, since each encrypted value is a �xed linear combina-

tion, depending on I, of the m coe�cients s

j

and an entry

from r.) It sends the m encryptions to the server. (3) The

server outputs the decryptions of the m encryptions sent by

the client, and the client outputs r.

The above two variants can viewed as two dual approaches

for computing a matrix-vector product, where the �rst con-

siders the product as a linear function of the matrix de�ned

by the vector, and the second as a linear function of the

vector de�ned by the matrix.

E�ciency. While the two variants signi�cantly di�er in

their communication complexity, their computational com-

plexity is similar: Step 2 in both requires one of the parties

to perform O(m

2

) modular exponentiations. When m is

large, this is very expensive. However, since F can be cho-

sen to be roughly of size n, the exponents can be made small

(by using small-modulus homomorphic encryption [9]). The

computational overhead will be thus dominated by O(m

2

log n) modular multiplications. Finally, while both variants

seem to require one round, the communication pattern in

the second is incompatible with that of the SPIR protocol.

Consequently, the second input selection protocol requires



1.5 rounds to complete: a message from the server followed

by a standard round.

Security. In contrast to the �rst protocol, the second can-

not even be proved to be weakly secure against a malicious

client. In fact, it is easy to construct a contrived (yet secure)

encryption scheme which, when used in an SPFE protocol

computing a simple function f , allows a malicious client to

obtain the decryption key D. Consequently, in this protocol

the client will be able to learn all m items x

I

. We note,

however, that when using the above with natural homomor-

phic encryption candidates, it is plausible that the resultant

SPFE protocol enjoys (heuristic) weak security against a ma-

licious client. The protocol can be made provably secure by

requiring the client to prove in zero-knowledge that it knows

the function it applies to the encrypted values. However,

this would result in a signi�cant overhead to the e�ciency

of the protocol.

The Boolean case. As is, the SPFE protocol based on ei-

ther of the above variants seems to require secure MPC over

a �eld of size � n even in the default Boolean case. Since the

best known 1-round secure MPC protocols do not generalize

e�ciently to arithmetic circuits, this may result in a consid-

erable overhead. One approach for solving this problem is

to compose the Boolean circuit for f with a Boolean circuit

of size O(m log n) computing the bit-vector x

I

from the bi-

nary representations of the share vectors a; b. However, this

overhead can be completely eliminated in most implemen-

tations of Yao's 1-round MPC protocol. Details are omitted

from this version.

Asymptotic improvements. By choosing fP

s

g to be a

family of cryptographic pseudorandom functions (and rely-

ing on generic secure MPC in step 3 of the general input

selection protocol), it is possible to improve both the com-

munication and computation overhead of the �rst variant to

�

O(1)

m. An even further improvement is possible if one uses

the polynomial family fP

s

g as in the original protocols, but

relies on a nearly-linear FFT-based algorithm for evaluating

the polynomial P

s

on the points (i

1

; : : : ; i

m

). Unfortunately,

both improvements do not seem to apply to practical choices

of the parameters.

3.3.3 The third protocol for input selection

We present a third alternative to the implementation of

the input selection phase. In comparison to the �rst variant

of the previous protocol, its relative disadvantages are that it

fails to give provable security against a malicious client and

that it uses SPIR(n;m;�), where � is of the length of a homo-

morphic encryption, instead of SPIR(n;m; log n). However,

similarly to the second variant, its communication overhead

is only linear in m, and its computational complexity is su-

perior to both variants of the previous protocol.

The protocol, which is similar in spirit to a protocol from

[20], proceeds as follows. First, the server chooses keys for

a homomorphic encryption scheme over D, sends the public

key E to the client, and prepares (but does not send) encryp-

tions E(x

1

); : : : ; E(x

n

). Next, the client uses SPIR(n;m;D)

to retrieve E(x

i

1

); : : : ; E(x

i

m

). It picks random blinding el-

ements r

1

; : : : ; r

m

2 D, computes E(x

i

j

� r

j

), and sends

these values back to the server. Finally, the server decrypts

and outputs a

j

= x

i

j

� r

j

, and the client outputs b

j

= r

j

.

The SPFE protocol obtained from this input selection pro-

tocol can be implemented in 2 rounds, by letting the client

send its MPC message together with its second message of

the input selection protocol. The complexity of the input

selection protocol is dominated by that of SPIR(n;m;D).

3.3.4 Secure protocol for arithmetic circuits

In the second phase, called function evaluation, any secure

MPC protocol can be used for evaluating f on the input

shares. Yao's protocol, which is the best known protocol for

the Boolean case, does not scale well to compute arithmetic

circuits.

We present a light-weight secure MPC protocol for arith-

metic circuits over a ring D = Z

u

. Its round complexity is

proportional to the circuit (multiplicative) depth, and it re-

quires a constant number of exponentiations per gate. While

not providing full security (hence its e�ciency), it can be

proved to satisfy our notion of weak security against a ma-

licious client, and can therefore be naturally combined with

any of the input selection protocols in this section. The

protocol is reminiscent of protocols described in [15, 1, 18,

24].

The arithmetic circuit is evaluated gate by gate. Before

evaluating each gate, the server holds a homomorphic en-

cryption of the input values for the gate (where the encryp-

tion is under the client's key). At the end of the evaluation

of the gate the server holds an encryption of the output value

of the gate. The encrypted values are computationally hid-

den from the server. Furthermore, the protocol guarantees

that both the client and the server learn nothing during the

evaluation process. At the end of the protocol the server

reveals the encryption of the output of the circuit. The

client decrypts the value and outputs the result. We pro-

vide e�cient constant round implementations for addition

and multiplication gates.

The protocol begins with the client picking keys to a ho-

momorphic encryption scheme over D = Z

u

, and sending

the public key E to the server along with an encryption

of its inputs. We describe procedures for evaluating mod-

ular addition and multiplication gates on encrypted values.

That is, consider the following problem: The server holds

an encryption of values v

1

; v

2

2 [0; : : : ; u � 1]. The parties

wish to provide the server with an encryption of the value

c = v

1

+ v

2

mod u or c = v

1

� v

2

mod u. The client should

learn nothing from participating in the protocol. In the fol-

lowing, assume that all operations are performed mod u.

Evaluating an addition gate. Given E(v

1

); E(v

2

), the

server computes the encoding of v

1

+ v

2

on its own by com-

puting E(v

1

+ v

2

) = E(v

1

) �E(v

2

).

Evaluating a gate which multiplies by a value known

to the server. Given E(v); a, the server computes the

encoding of v � a, by computing E(a � v) = E(v)

a

.

Evaluating a gate which multiplies by a value un-

known to the server. Given E(v

1

); E(v

2

), we describe

how the server uses the help of the client in order to ob-

tain E(v

1

� v

2

). (1) The server chooses r

1

; r

2

uniformly

from [0; : : : ; r � 1]. (2) The server computes E(v

1

+ r

1

),

E(v

2

+ r

2

) and sends them to the client. (3) The client

decrypts to obtain v

1

+ r

1

and v

2

+ r

2

, and sends e =

E((v

1

+r

1

)�(v

2

+r

2

)) to the server. (4) The server computes

E(r

1

� r

2

); E(v

1

� r

2

); E(v

2

� r

1

) and divides them from e to

obtain E(v

1

� v

2

).



4. STATISTICAL FUNCTIONS
In this section, we consider speci�c instances of the SPFE

problem which are geared towards privately computing stan-

dard statistics on a selected data set. We discuss the appli-

cability of our general solutions from previous sections to

several statistical computation functions, and also present

some direct constructions. Throughout most of this section

we view the data items as integer-valued.

Average and variance. The sum function is particularly

important for statistical applications since it can capture

several interesting statistical quantities. Indeed, learning

the sum of m values is equivalent to learning their average.

The variance ofm values is a linear combination of their sum

and the sum of their squares. Thus, given a 1-round SPFE

protocol for the sum function, one can e�ciently implement

a 1-round SPFE protocol for a \package" combination of

average and variance. The server stores x

0

= (x

2

1

; : : : ; x

2

n

)

in addition to the original database. Upon receiving the

client's queries, generated according to the sum protocol,

it replies twice: once with the original database, and once

with the database x

0

. Note that if the SPFE protocol is

strongly secure against a malicious client, then so is the

above protocol (since learning both the average and variance

of the same set of items is equivalent to learning both their

sum and the sum of their squares).

E�ciency of previous constructions. To e�ciently solve

the special case of SPFE where the function f is the sum

function, we view the items as elements of a �eld F = Z

u

,

where u is an upper bound on the sum. Applying the

generic approach of Section 3.1 (and utilizing the fact that

f admits a degree-1 representation over F ), we may get a

(t log n + 1)-server 1-round protocol (where t is the client

privacy threshold), in which the communication consists of

roughly tm log

2

n �eld elements. The main disadvantages of

this approach is the number of servers and the computation

time of O(mn).

We turn to the single-server setting. The PSM-based con-

struction of Section 3.2, while not e�ciently scalable to gen-

eral arithmetic circuits, can provide a fairly e�cient solu-

tion in our special case of the sum function, as described

in Example 1. However, this solution still requires m in-

vocations of SPIR on m di�erent databases, which is pro-

hibitive when m is large. To gain better e�ciency, it is

desirable to reduce the problem to a single invocation of a

SPIR(n;m; �) primitive. This is achieved by the technique of

Sections 3.3.2, 3.3.3. However, the round complexity of the

resultant protocols will not be optimal, and they either incur

a high computational overhead or require the application of

SPIR on relatively long strings.

An e�cient solution for the weighted sum function.

We now show a 1-round solution which avoids the above

weaknesses of our general solutions. First, we relax the

problem and allow the client to compute any selected linear

combination of m items. We refer to this as the weighted

sum problem. Note that a useful feature of this relaxation

is that it allows us to compute the weighted average and

variance of the selected data set, where the weights can be

freely chosen by the client.

Our protocol is similar to the �rst variant of the input se-

lection protocol from Section 3.3.2. However, it relies on the

linearity of the weighted sum function to achieve greater ef-

�ciency. As in the input selection protocol, the server picks

a random degree-(m � 1) polynomial P

s

over F with co-

e�cients s

0

; : : : ; s

m�1

, prepares a virtual database x

0

such

that x

0

i

= x

i

+ P

s

(i), and lets the client use SPIR(n;m;F )

to learn x

0

I

. These alone are uniform and independent �eld

elements. The next observation is that learning x

0

I

together

with the sum P

s

(i

1

) + � � �+ P

s

(i

m

) is equivalent to learning

x

i

1

+ � � �+x

i

m

. Finally, note that this sum is a linear combi-

nation of s

0

; : : : ; s

m�1

, whose coe�cients c

0

; : : : ; c

m�1

are

known to the client. Speci�cally, c

k

= i

k

1

+ � � � + i

k

m

. We

can thus complete the protocol by letting the client send

E(c

0

); : : : ; E(c

m�1

) to the server and get E(s

0

c

0

+ s

1

c

1

+

� � �+ s

m�1

c

m�1

) = E(P

s

(i

1

) + P

s

(i

2

) + � � �+ P

s

(i

m

)) in re-

turn. The client outputs x

0

i

1

+ � � �+x

0

i

m

� (P

s

(i

1

)+P

s

(i

2

)+

� � �+P

s

(i

m

)). Note that since the linear combination proto-

col can be done in parallel to the SPIR protocol, the entire

protocol requires only one round.

The generalization to weighted sum is straightforward: by

choosing di�erent coe�cients c

k

the client can learn an ar-

bitrary linear combination of x

i

1

; : : : ; x

i

m

. Moreover, by

a counting argument every choice of c

0

; : : : ; c

m�1

induces

some valid linear combination of the selected items. This

implies that even a malicious client cannot learn more than

some linear combination of the selected items.

E�ciency. As noted above, the protocol can be imple-

mented in one round. Its communication complexity is dom-

inated by that of SPIR(n;m;F ), where jF j should be larger

than the maximum of n and (an upper bound on) the sum of

the m largest items. Its computational complexity includes

an additional overhead of O(m) modular exponentiations.

Counting frequencies. We end this section by brie
y dis-

cussing an additional useful special case of private statistics:

counting the number of occurrences, or frequency, of a cho-

sen value or keyword in the selected data set. Let w be a

keyword, taken from the data domain D. We embed D in

a �nite �eld F = Z

u

where u > jDj. Our function may

be formally de�ned as f(y

1

; : : : ; y

m

) =

P

m

j=1

�

w

(y

j

), where

�

w

(y) is 1 if w = y and is 0 otherwise.

Suppose that the client and the server already share the

selected items x

I

in an additive way. This can be achieved

in one round using our input selection protocols. Let a and

b be the two shares of x

I

, held by the server and the client

respectively. The protocol requires one additional round,

and proceeds as follows: (1) The client sends m encryptions

E(b

j

� w), where w is the keyword to be searched; (2) For

each 1 � j �m, the server picks a random blinding element

r

j

from the �eld, computes an encryption E(r

j

� (a

j

+ b

j

�

w)) = E(r

j

� (x

i

j

�w)), and sends a random permutation of

the m encryptions to the client. (3) The client decrypts the

m encryptions and counts the number of zeros.

Note that a malicious client can alter the m encrypted

values it sends. However, this only has the e�ect of allowing

it to compute a more general function, in which a di�erent

keyword is speci�ed for each selected item.

Acknowledgements

We are grateful to Prabhakar Raghavan for suggesting this

line of research, and to Rosario Gennaro and Eyal Kushile-

vitz for helpful discussions.



5. REFERENCES
[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. J.

Cryptology 2(1): 1{12 (1990).

[2] N. R. Adam and J. C. Wortmann. Security-control

methods for statistical databases: A comparative study.

ACM Computing Surveys 21(4), 1989.

[3] W. Aiello, Y. Ishai and O. Reingold. Priced oblivious

transfer: How to sell digital goods. Proc. EUROCRYPT,

2001.

[4] A. Ambainis. An upper bound on the communication

complexity of private information retrieval. Proc. 24th

ICALP, Springer LNCS, 1256:401{407, 1997.

[5] D. Beaver and J. Feigenbaum. Hiding instances in

multioracle queries. Proc. STACS, Springer LNCS,

415:37{48, 1990.

[6] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway.

Locally random reductions: Improvements and

applications. J. Cryptology 10(1): 17{36 (1997). A

preliminary version appeared in CRYPTO '90.

[7] A. Beimel and Y. Ishai. Information-Theoretic Private

Information Retrieval: A Uni�ed Construction. Proc.

ICALP, 2001.

[8] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers'

computation in private information retrieval: PIR with

preprocessing. Proc. CRYPTO, Springer LNCS,

1880:56{74, 2000.

[9] J. Benaloh. Veri�able Secret Ballot Elections. Ph. D.

Thesis, Yale University, 1996.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson.

Completeness theorems for non-cryptographic

fault-tolerant distributed computation. Proc. 20th STOC,

pp. 1{10, 1988.

[11] C. Cachin, J. Camenisch, J. Kilian, and J. Muller.

One-round secure computation and secure autonomous

mobile agents. Proc. ICALP, 2000.

[12] C. Cachin, S. Micali, and M. Stadler. Computationally

private information retrieval with polylogarithmic

communication. Proc. EUROCRYPT, 1999.

[13] R. Canetti, Security and composition of multiparty

cryptographic protocols, J. Cryptology, 13(1), Winter 2000.

[14] D. Chaum, C. Cr�epeau, and I. Damg�ard. Multiparty

unconditionally secure protocols (extended abstract). Proc.

20th STOC, pp. 11{19, 1988.

[15] D. Chaum, I. Damg�ard, and J. van de Graaf. Multiparty

computations ensuring privacy of each party's input and

correctness of the result. Proc. CRYPTO, Springer LNCS,

293:87{119, 1989.

[16] B. Chor and N. Gilboa. Computationally private

information retrieval. Proc. 29th STOC, pp. 304{313, 1997.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.

Private information retrieval. Proc. 36th FOCS, pp. 41{50,

1995.

[18] R. Cramer, I. Damg�ard, and J. Nielsen, Multiparty

computation from threshold homomorphic encryption,

Proc. EUROCRYPT, 2001.

[19] D. E. Denning. Cryptography and Data Security.

Addison-Wesley, 1982.

[20] Y. Dodis, S. Halevi, and T. Rabin A Cryptographic

Solution to a Game Theoretic Problem. Proc. CRYPTO,

2000.

[21] S. Even, O. Goldreich, and A. Lempel. A randomized

protocol for signing contracts. C. ACM, 28:637{647, 1985.

[22] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss,

and R. Wright. Secure Multiparty Computation of

Approximations. Proc. ICALP, 2001.

[23] U. Feige, J. Kilian, and M. Naor. A minimal model for

secure computation. Proc. 26th STOC, pp. 554{563, 1994.

[24] M. Franklin and S. Haber, Joint encryption and

message-e�cient secure multiparty computation, J.

Cryptology, 9(4):217{232, Autumn 1996.

[25] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.

Protecting data privacy in private information retrieval

schemes. Proc. 30th STOC, pp. 151{160, 1998.

[26] O. Goldreich, Secure multi-party computation, (working

draft, Version 1.1), 1998. Available from

http://philby.ucsd.edu/cryptolib/BOOKS/oded-sc.html.

[27] O. Goldreich and A. Kahan. How to construct

constant-round zero-knowledge proof systems for NP. J.

Cryptology. 9(3):167{189, 1996.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to play

any mental game { A completeness theorem for protocols

with honest majority. Proc. 19th STOC, pp. 218{229, 1987.

[29] S. Goldwasser and S. Micali. Probabilistic encryption.

JCSS, 28(21):270{299, 1984.

[30] Y. Ishai and E. Kushilevitz. Private simultaneous messages

protocols with applications. Proc. 5th ISTCS, pp. 174{183,

1997.

[31] Y. Ishai and E. Kushilevitz. Improved upper bounds on

information theoretic private information retrieval. Proc.

31st STOC, pp. 79{88, 1999.

[32] E. Kushilevitz and R. Ostrovsky. Replication is not needed:

Single database computationally-private information

retrieval. Proc. 38th FOCS, pp. 364{373, 1997.

[33] Y. Lindell and B. Pinkas, Privacy preserving data mining.

Proc. CRYPTO, Springer LNCS, 1880:36{54, 2000.

[34] E. Mann. Private access to distributed information.

Master's thesis, Technion - Israel Institute of Technology,

Haifa, 1998.

[35] M. Naor, and K. Nissim. Communication preserving

protocols for secure function evaluation. Proc. 33rd STOC,

2001.

[36] M. Naor and B. Pinkas. Oblivious transfer and polynomial

evaluation. Proc. 31st STOC, pp. 245{254, 1999.

[37] M. Naor and B. Pinkas. Oblivious transfer with adaptive

queries. Proc. CRYPTO, Springer LNCS, 1666:573{590,

1999.

[38] M. Naor and B. Pinkas. E�cient oblivious transfer

protocols. Proc. 11th SODA, 2001.

[39] D. Naccache and J. Stern. A new public key cryptosystem.

Proc. EUROCRYPT, pp. 27{36, 1997.

[40] T. Okamoto and S. Uchiyama. A new public key

cryptosystem as secure as factoring. Proc. EUROCRYPT,

Springer LNCS, 1403:308{318, 1998.

[41] P. Paillier. Public-key cryptosystems based on composite

degree residuosity classes. Proc. EUROCRYPT, Springer

LNCS, 1592:223{238, 1999.

[42] M. O. Rabin. How to exchange secrets by oblivious

transfer. Technical report TR-81, Harvard Aiken

Computation Laboratory, 1981.

[43] J. P. Stern. A new and e�cient all-or-nothing disclosure of

secrets protocol. Proc. ASIACRYPT, Springer LNCS,

1514:357{371, 1998.

[44] S. Wiesner. Conjugate coding. SIGACT News 15:78{88,

1983.

[45] A. C-C. Yao. Protocols for secure computation. Proc. 23rd

FOCS, pp. 160{164, 1982.

[46] A. C-C. Yao. How to generate and exchange secrets. Proc.

27th FOCS, pp. 162{167, 1986.


