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Abstra
t

Convex and Submodular fun
tions play an important role in many appli
ations, and in

parti
ular in 
ombinatorial optimization. Here we study two spe
ial 
ases: 
onvexity in one

dimension and submodularity in two dimensions. The latter type of fun
tions are equivalent to

the well known Monge matri
es . A matrix V = fv

i;j

g

i=n

1

;j=n

2

i;j=0

is 
alled a Monge matrix if for

every 0 � i < i

0

� n

1

and 0 � j < j

0

� n

2

, we have v

i;j

+ v

i

0

;j

0

� v

i;j

0

+ v

i

0

;j

. If inequality holds

in the opposite dire
tion then V is an inverse Monge matrix (supermodular fun
tion). Many

problems, su
h as the traveling salesperson problem and various transportation problems, 
an

be solved more eÆ
iently if the input is a Monge matrix.

In this work we present testing algorithms for the above properties. A Testing algorithm

for a predetermined property P is given query a

ess to an unknown fun
tion f , and a distan
e

parameter �. The algorithm should a

ept f with high probability if it has the property P , and

reje
t it with high probability if more than an �-fra
tion of the fun
tion values should be modi�ed

so that f obtains the property. Our algorithm for testing whether a one-dimensional fun
tion

f : [n℄ ! R is 
onvex (
on
ave), has query 
omplexity and running time of O ((logn)=�). Our

algorithm for testing whether an n

1

�n

2

matrix V is a Monge (inverse Monge) matrix has query


omplexity and running time of O ((logn

1

� logn

2

)=�).

�
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1 Introdu
tion

Convex fun
tions and their 
ombinatorial analogs, submodular fun
tions, play an important role

in many dis
iplines and appli
ations, in
luding 
ombinatorial optimization, game theory, prob-

ability theory, and ele
troni
 trade. Su
h fun
tions exhibit a ri
h mathemati
al stru
ture (see

Lov�asz [Lov83℄), whi
h often makes it possible to eÆ
iently �nd their minimum [GLS81, IFF01,

S
h00℄, and thus leads to eÆ
ient algorithms for many important optimization problems.

Convex fun
tions over dis
rete domains are de�ned as follows.

De�nition 1 (Convex and Con
ave) Let f be a fun
tion de�ned over a dis
rete domain X.

The fun
tion f is 
onvex if for all x; y 2 X and for all 0 � � � 1 su
h that �x+ (1 � �)y 2 X, it

holds that f(�x+(1��)y) � �f(x)+(1��)f(y). The fun
tion f is 
on
ave if for all x; y 2 X and

for all 0 � � � 1 su
h that �x+(1��)y 2 X, it holds that f(�x+(1��)y) � �f(x)+(1��)f(y).

Submodular fun
tions are de�ned as follows: Let I = I

1

� I

2

� : : : � I

d

, d � 2, be a produ
t

spa
e where I

q

� R. In parti
ular, we are interested in dis
rete domains I

q

= f0; : : : ; n

q

g. The join

and meet operations are de�ned for every x; y 2 I:

(x

1

; : : : ; x

d

) _ (y

1

; : : : ; y

d

)

def

= (maxfx

1

; y

1

g; : : : ;maxfx

d

; y

d

g)

and

(x

1

; : : : ; x

d

) ^ (y

1

; : : : ; y

d

)

def

= (minfx

1

; y

1

g; : : : ;minfx

d

; y

d

g) ;

respe
tively.

De�nition 2 (Submodularity and Supermodularity) A fun
tion f : I ! R is submodular if

for every x; y 2 I, f(x _ y) + f(x ^ y) � f(x) + f(y). The fun
tion f is supermodular if for every

x; y 2 I, f(x _ y) + f(x ^ y) � f(x) + f(y).

Certain sub
lasses of submodular fun
tions are of parti
ular interest. One su
h sub
lass is that

of submodular set fun
tions, whi
h are de�ned over binary domains. That is, I

q

= f0; 1g for every

1 � q � d, and so ea
h x 2 I 
orresponds to a subset of f1; : : : ; dg. Su
h fun
tions are used for

example in the s
enario of 
ombinatorial au
tions on the internet (e.g. [dVV00℄,[LLN01℄).

Another important sub
lass is the 
lass of Monge fun
tions, whi
h are obtained when the

domain is large but the dimension is d = 2. Sin
e su
h fun
tions are 2-dimensional, it is 
onvenient

to represent them as 2-dimensional matri
es, whi
h are referred to as Monge matri
es. When the

fun
tion is a 2-dimensional supermodular fun
tion the 
orresponding matrix is 
alled an inverse

Monge matrix .

The �rst problem that was shown to be solvable more eÆ
iently if the underlying 
ost matrix

is a Monge matrix is the 
lassi
al Hit
h
o
k transportation problem (see Ho�man [Hof63℄). Sin
e

then it has been shown that many other 
ombinatorial optimization problems 
an be solved more

eÆ
iently in this 
ase (e.g. weighted bipartite mat
hing, and NP-hard problems su
h as the traveling

salesperson problem). See [BKR96℄ for a 
omprehensive survey on Monge matri
es and their

appli
ations.
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1.1 Testing Convexity and Submodularity

In this paper we approa
h the questions of 
onvexity and submodularity from within the framework

of property testing [RS96, GGR98℄. (For surveys on property testing see [Ron01, Fis01℄.) Let f be

a �xed but unknown fun
tion, and let P be a �xed property of fun
tions (su
h as the 
onvexity

or submodularity of a fun
tion). A testing algorithm for the property P should determine, by

querying f , whether f has the property P, or whether it is �-far from having the property for a

given distan
e parameter �. By �-far we mean that more than an �{fra
tion of the values of f

should be modi�ed so that f obtains the desired property P.

Our Results. We present eÆ
ient testing algorithms for dis
rete 
onvexity in one dimension and

for Monge matri
es. Spe
i�
ally:

� We des
ribe and analyze an algorithm that tests whether a fun
tion f : [n℄ ! R is 
onvex

(
on
ave). The running time of this algorithm is O (log n=�).

� We des
ribe and analyze a testing algorithm for Monge and inverse Monge matri
es whose

running time is O ((log n

1

� logn

2

)=�), when given an n

1

� n

2

matrix.

Furthermore, the testing algorithm for inverse Monge matri
es 
an be used to derive a testing

algorithm, with the same 
omplexity, for an important sub-family of Monge matri
es, named

distribution matri
es. A matrix V = fv

i;j

g is said to be a distribution matrix, if there exists

a non-negative density matrix D = fd

i;j

g, su
h that every entry v

i;j

in V is of the form

v

i;j

=

P

k�i

P

`�j

d

k;`

. In other words, the entry v

i;j


orresponds to the 
umulative density of

all entries d

k;`

su
h that k � i and ` � j.

In both 
ases the 
omplexity of the algorithms is linear in 1=� and polylogarithmi
 in the size of

the domain.

1.2 Te
hniques

Convexity in One Dimension. We start with the following basi
 observation: A fun
tion f :

[n℄! R is 
onvex if and only if for every 1 � i � n�1, (f(i+1)�f(i))�(f(i)�f(i�1)) � 0. Given

this 
hara
terization, 
onsider the di�eren
e fun
tion f

0

whi
h is de�ned as f

0

(i) = f(i)� f(i� 1).

The fun
tion f

0


an be viewed as the dis
rete analog of the �rst derivative of f . By the above

observation we have that f is 
onvex if an only if f

0

is monotone non-de
reasing. Hen
e, a tempting

approa
h for testing whether f is 
onvex would be to test whether f

0

is monotone non-de
reasing,

where this 
an be done in time O(log n=�) [EKK

+

00, BRW99, DGL

+

99℄.

Unfortunately this approa
h does not work. There are fun
tions f that are very far from 
onvex

but their di�eren
e fun
tion f

0

is very 
lose to monotone.

1

Therefore, instead of 
onsidering only


onse
utive points i; i+1, we 
onsider pairs of points i; j 2 [n℄ that are not ne
essarily 
onse
utive.

More pre
isely, we sele
t intervals fi; : : : ; jg of varying lengths and 
he
k that for ea
h interval

sele
ted, 
ertain 
onstraints are satis�ed. If f is 
onvex then these 
onstraints are satis�ed for

every interval. On the other hand, we show that if f is �-far from 
onvex then the probability that

we observe a violation of some 
onstraint is suÆ
iently large.

Monge Matri
es. As stated above, it is 
onvenient to represent 2-dimensional submodular fun
-

tions as 2-dimensional Monge matri
es. Thus a fun
tion f : f0; : : : ; n

1

g � f0; : : : ; n

2

g ! R 
an be

1

In parti
ular 
onsider the fun
tion f su
h that for every i � n=2, f(i) = i, and for i > n=2, f(i) = i� 1. In other

words, f

0

(i) = 1 for every i ex
ept i = n=2 where f

0

(i) = 0. Then f

0

is very 
lose to monotone, but it is not hard to

verify that f is far from 
onvex.

2



represented as the matrix V = fv

i;j

g

i=n

1

;j=n

2

i;j=0

where v

i;j

= f(i; j). Observe that for every pair

of indi
es (i; j

0

); (i

0

; j) su
h that i < i

0

and j < j

0

we have that (i; j

0

) _ (i

0

; j) = (i

0

; j

0

) and

(i; j

0

) ^ (i

0

; j) = (i; j). It follows from De�nition 2 that V is a Monge matrix (f is a 2-dimensional

submodular fun
tion) if and only if:

8i; j; i

0

; j

0

s.t. i < i

0

; j < j

0

: v

i;j

+ v

i

0

;j

0

� v

i;j

0

+ v

i

0

;j

and V is an inverse Monge matrix (f is a 2-dimensional supermodular fun
tion) if and only if:

8i; j; i

0

; j

0

s.t. i < i

0

; j < j

0

: v

i;j

+ v

i

0

;j

0

� v

i;j

0

+ v

i

0

;j

:

That is, in both 
ases we have a 
onstraint for every quadruple v

i;j

, v

i

0

;j

0

, v

i;j

0

, v

i

0

;j

su
h that

i < i

0

and j < j

0

.

2

Our algorithm sele
ts su
h quadruples a

ording to a parti
ular (non-uniform)

distribution and veri�es that the 
onstraint is satis�ed for every quadruple sele
ted. Clearly the

algorithm always a

epts Monge matri
es. The main thrust of the analysis is in showing that if the

matrix V is far from being Monge then the probability of obtaining a \bad" quadruple is suÆ
iently

large.

A 
entral building blo
k in proving the above, is the following 
ombinatorial problem, whi
h

may be of independent interest. Let C be a given matrix, possibly 
ontaining negative values, and

let R be a subset of positions in C. We are interested in re�lling the entries of C that reside in

R with non-negative values, su
h that the following 
onstraint is satis�ed: for every position (i; j)

that does not belong to R, the sum of the modi�ed values in C that are below

3

(i; j), is the same as

in the original matrix C. That is, the sum of the modi�ed values in entries (k; `), su
h that k � i

and j � `, remains as it was.

We provide suÆ
ient 
onditions on C and R under whi
h the above is possible, and des
ribe

the 
orresponding pro
edure that re�lls the entries of C that reside in R. Our starting point is a

simple spe
ial 
ase in whi
h R 
orresponds to a sub-matrix of C. In su
h a 
ase it suÆ
es that for

ea
h row and ea
h 
olumn in R, the sum of the 
orresponding entries in the original matrix C is

non-negative. Under these 
onditions a simple greedy algorithm 
an modify C as required. Our

pro
edure for general subsets R is more involved but uses the sub-matrix 
ase as a subroutine.

1.3 Further Resear
h

We suggest the following open problems. First it remains open to determine the 
omplexity of

testing dis
rete 
onvexity (
on
avity) when the dimension d of the input domain is greater than

1, and for testing submodular (supermodular) fun
tions when the dimension d is greater than 2.

Note that though submodular fun
tions 
an be viewed as a 
ertain interpretation of 
onvexity in

dimensions d � 2, they do not ne
essarily satisfy De�nition 1.

It seems that our algorithm for testing Monge matri
es and its analysis 
an be extended to work

for testing the spe
ial 
ase of distribution matri
es of dimension d > 2, where the 
omplexity of the

resulting algorithm is O

�

(

Q

d

q=1

logn

q

)=�

�

. However, as opposed to the d = 2 
ase, where Monge

matri
es are only slightly more general than distribution matri
es, for d > 2 Monge matri
es are

more expressive. Hen
e it is not immediately 
lear how to adapt our algorithm to testing Monge

matri
es in higher dimensions.

2

It is easy to verify that for all other i; j; i

0

; j

0

(with the ex
eption of the symmetri
 
ase where i

0

< i and j

0

< j),

the 
onstraint holds trivially (with equality).

3

We denote the lower left position of the matrix C by (0; 0):

3



It would also be interesting to �nd an eÆ
ient testing algorithm for the sub
lass of submodular

set fun
tions, whi
h are de�ned over binary domains.

Finally, in many optimization problems it is enough that the underlying 
ost matrix is a per-

mutation of a Monge matrix. In su
h 
ases it may be useful to test whether a given matrix is a

permutation of some Monge matrix or far from any permuted Monge matrix.

Organization. The testing algorithm for 
onvexity is des
ribed in Se
tion 2. The remainder

of the paper is dedi
ated to testing Monge matri
es. In Se
tion 3 we des
ribe several building

blo
ks that will be used by our testing algorithm for Monge matri
es. In Se
tion 4 we des
ribe a

testing algorithm for Monge matri
es whose 
omplexity is O(n=�), where we assume for simpli
ity

that the matrix is n � n. Building on this algorithm and its analysis, in Se
tion 5 we present a

signi�
antly faster algorithm whose 
omplexity is O

�

(log

2

n)=�

�

. We 
on
lude this se
tion with a

short dis
ussion 
on
erning distribution matri
es.

2 Testing Convexity in 1-Dimension

As noted in the introdu
tion, in the 
ase that the domain is X = [n℄ = f0; : : : ; ng, we get the

following 
hara
terization for 
onvexity, whose proof is in
luded for 
ompleteness.

Claim 1 (1-D Convex) A fun
tion f : [n℄ ! R is 
onvex if and only if for all 1 � i � n � 1,

f(i)� f(i� 1) � f(i+ 1)� f(i).

Proof: If f is 
onvex then in parti
ular for x = i�1, y = i+1 and � = 1=2 we have �x+(1��)y =

i�1

2

+

i+1

2

= i. By De�nition 1, f(i) �

1

2

f(i � 1) +

1

2

f(i + 1), or equivalently, f(i) � f(i � 1) �

f(i+ 1)� f(i).

In the other dire
tion, suppose that f(i) � f(i � 1) � f(i + 1) � f(i) for every 1 � i � n � 1.

Consider any x; y 2 [n℄ and 0 < � < 1 su
h that z = � �x+(1��) �y is an integer. Assume without

loss of generality that x < y. Now we have that

f(y)�f(y�1) � f(y�1)�f(y�2) � : : : � f(z+1)�f(z) � f(z)�f(z�1) � : : : � f(x+1)�f(x) :

Then, sin
e the di�eren
es are monotone non-in
reasing, the average of the �rst �(y�x) di�eren
es

is greater or equal to the average of the next (1 � �)(y � x) di�eren
es. Sin
e z = y � �(y � x) =

x+ (1� �)(y � x), we have that

(f(y)� f(y � 1)) + (f(y � 1)� f(y � 2)) + : : :+ (f(z + 1)� f(z))

�(y � x)

(1)

�

(f(z)� f(z � 1)) + (f(z � 1) � f(z � 2)) + : : :+ (f(x+ 1)� f(x))

(1� �)(y � x)

: (2)

This is equivalent to (1��)(f(y)� f(z)) � �(f(z)� f(x)), that is f(z) � �f(x) + (1��)f(y), as

required.

Denote by I

i;j

the interval fi; i+1; : : : ; jg of points. Let mid = b(i + j)=2
 be the mid point of I

i;j

.

De�nition 3 For every 0 � i < j � n su
h that j � i > 7, we say that the interval I

i;j

is good

with respe
t to f if the following holds:

f(i+ 1)� f(i) �

f(mid� 1)� f(i+ 1)

(mid� 1)� (i+ 1)

� f(mid)� f(mid� 1) � f(mid+ 1)� f(mid)

� f(mid+ 2)� f(mid+ 1) �

f(j � 1)� f(mid+ 2)

(j � 1)� (mid+ 2)

� f(j)� f(j � 1)

4



Otherwise we say that the interval is bad with respe
t to f . If j� i � 7, then I

i;j

is good with respe
t

to f if and only if the fun
tion f is 
onvex over I

i;j

.

In order to test if f is 
onvex we test re
ursively if sub-intervals of I

0;n

are good.

Algorithm 1 Test-Convex

1. Repeat 2=� times: Test-Interval(I

0;n

).

2. If all of the tests in Step 1 a

epted then a

ept, otherwise reje
t.

Pro
edure Test-Interval(I

i;j

)

1. Che
k that I

i;j

is good with respe
t to f . In not, reje
t.

2. If j � i > 7 then: Uniformly at random 
all either Test-Interval(I

i;mid

) or Test-

Interval(I

mid+1;j

), where mid = b(i+ j)=2
.

3. If the test in Step 2 a

epted then a

ept, otherwise reje
t.

Theorem 1 If f is 
onvex then Algorithm 1 always a

epts, and if f is �-far from 
onvex then the

algorithm reje
ts with a probability of at least 2=3.

Proof: For the sake of brevity, unless stated otherwise, when we say that an interval is good, then

we mean with respe
t to f . If f is 
onvex then all intervals I

i;j

are good, and hen
e Algorithm 1

a

epts with probability 1. In order to prove that if f is �-far from 
onvex then the algorithm

reje
ts with probability of at least 2=3, we prove the 
ontrapositive statement. Assume that the

algorithm a

epts with a probability greater than a 1=3. We will show that f is �-
lose to a 
onvex

fun
tion.

To this end we de�ne a tree, whose verti
es 
orrespond to all possible intervals I

i;j

that may be

tested re
ursively in 
alls to Test-Interval(I

i;j

). Spe
i�
ally, the root of the tree 
orresponds to I

0;n

.

The 
hildren of the internal vertex 
orresponding to I

i;j

are the verti
es 
orresponding to I

i;mid

and I

mid+1;j

, where mid = b(i+ j)=2
. The leaves of the tree 
orrespond to the smallest intervals

tested, that is, intervals I

i;j

for whi
h j � i � 7.

We say that an internal vertex in the tree is good if the 
orresponding interval is good. We say

that a leaf is good if its 
orresponding interval and all its an
estors are good. Otherwise, the vertex

(leaf) is bad. We say that a path from the root to a leaf is good if all verti
es along it are good.

Otherwise the path is bad. For ea
h level ` in the tree, ` = 0; : : : ; log n, let B

`

be the subset of

verti
es in the `'th level of the tree that are bad but whose an
estors are all good. Let B =

S

`

B

`

,

and let �

`

be the fra
tion of verti
es in level ` of the tree that belong to B

`

.

Sub-Claim 1 If Algorithm 1 a

epts f with a probability greater than a 1=3, then

P

`

�

`

� �.

Proof: Assume by 
ontradi
tion that

P

`

�

`

> �. Observe that by the de�nition of B, all leaves

whi
h are des
endents of a vertex in B are bad, and every bad leaf either belongs to B or has a

single an
estor in B. Therefore, if

P

`

�

`

> �, then the fra
tion of bad leaves is greater than �. But

in su
h a 
ase, the probability that the algorithm does not follow a bad path to a bad leaf (passing

through a vertex in B), in any one of its 2=� iterations, is at most (1 � �)

2=�

< e

�2

< 1=3. This


ontradi
ts our assumption that the algorithm a

epts with a probability greater than a 1=3. �

5



Hen
e we assume from now on that

P

`

�

`

� �. Note also that in this 
ase I

0;n

=2 B. We show how

to modify f in at most � �n pla
es so that the resulting fun
tion, denoted g, is 
onvex. In parti
ular,

we shall modify the value of f on every bad interval I

i;j

whose 
orresponding vertex in the tree

belongs to B. The value of g is de�ned to be the same as the value of f on all points outside of these

intervals. Sin
e

P

`

�

`

� �, the total fra
tion of points modi�ed is at most � as required. Observe

that by the de�nition of the tree and B, for every two intervals whose 
orresponding verti
es belong

to B, the interse
tion of the intervals is empty. Hen
e we 
an modify ea
h one of these intervals

independently.

Let I

i;j

be a bad interval 
orresponding to a vertex in B. We modify f on points in I

i;j

as

follows:

� f(i); f(i+1), f(j�1) and f(j) remain un
hanged. That is, set g(i) = f(i), g(i+1) = f(i+1),

g(j � 1) = f(j � 1) and g(j) = f(j).

� For every t, i+ 1 < t < j � 1, set g(t) = f(i+ 1) +

f(j�1)�f(i+1)

(j�1)�(i+1)

� (t� (i+ 1)).

Sub-Claim 2 Let I

i;j

be a bad interval 
orresponding to a vertex in B. Then for every i < t < j,

g(t)� g(t� 1) � g(t+ 1)� g(t).

Proof: By de�nition of B, the parent of I

i;j

is good (the parent exists by our assumption that

I

0;n

62 B). Hen
e

f(i+ 1)� f(i) �

f(j � 1)� f(i+ 1)

(j � 1)� (i+ 1)

� f(j)� f(j � 1): (3)

By de�nition of g(�), g(i + 1) � g(i) = f(i + 1) � f(i), g(j) � g(j � 1) = f(j) � f(j � 1), and for

every i + 1 < t � j � 1, g(t) � g(t � 1) =

f(j�1)�f(i+1)

(j�1)�(i+1)

. Therefore, for every i + 1 < t < j � 1,

g(t) � g(t � 1) = g(t + 1) � g(t), and for both t = i + 1 and t = j � 1, we have g(t) � g(t � 1) �

g(t+ 1)� g(t), as required. �

Sub-Claim 3 The fun
tion g is 
onvex.

Proof: We shall �rst show that all intervals I

i;j


orresponding to verti
es in the tree are good with

respe
t to g, and from this derive the 
onvexity of g.

We start with the �rst part. Consider any su
h interval I

i;j

whose 
orresponding vertex in the

tree is v. Let An
hor = fi; i+1;mid� 1;mid;mid+1;mid+2; j � 1; jg be the set of points whi
h

parti
ipate in the de�nition of a good interval I

i;j

. We will show that the value of g on points

p 2 An
hor is su
h that the interval I

i;j

is good with respe
t to g. There are two 
ases:

1. The interval I

i;j

is good with respe
t to f , and v does not have any an
estors in B. If v also

has no des
endents in B, then it 
learly remains good with respe
t to g, sin
e no modi�
ation

is performed on any point in the interval, and so g(t) = f(t) for every i � t � j. Otherwise, v

has a des
endent in B. In this 
ase, let p 2 An
hor, let v

0

be a des
endent of v, and let I

i

0

;j

0

denote the interval 
orresponding to v

0

. If i

0

� p � j

0

, then by de�nition of the tree, either

p = i

0

or p = i

0

+ 1 or p = j

0

� 1 or p = j

0

. Therefore, even if v

0

2 B and the interval I

i

0

;j

0

is

modi�ed, then by the de�nition of g we have that g(p) = f(p) for every p 2 An
hor. Thus

I

i;j

remains good with respe
t to g.

2. Either v 2 B or v has an an
estor in B. In the former 
ase, let v

0

= v, and in the latter


ase let v

0

be the an
estor that v has in B. Let I

i

0

;j

0

be the 
orresponding interval of v

0

. By

de�nition, I

i;j

� I

i

0

;j

0

. By Sub-Claim 2, g(t)� g(t� 1) � g(t+ 1)� g(t) for every i

0

< t < j

0

,

and in parti
ular for every i < t < j. It follows that I

i;j

is good with respe
t to g.
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Hen
e all intervals 
orresponding to verti
es in the tree are good with respe
t to g. We now prove

that for every 0 < t < n it holds that g(t) � g(t � 1) � g(t + 1) � g(t), and thus g is 
onvex.

Let I

i;j

be the smallest interval in the tree su
h that i < t < j. If j � i � 7 then we are done,

sin
e the goodness of I

i;j

in this 
ase means that g is 
onvex over the whole interval. Otherwise,

either t = mid or t = mid + 1, where mid = b(i + j)=2
. To verify this, note that if this were

not the 
ase then either i < t < mid or mid + 1 < t < j. Hen
e t is 
ontained in a smaller

interval in the tree, 
ontradi
ting the minimality of I

i;j

. But sin
e I

i;j

is good with respe
t to g,

g(mid)� g(mid� 1) � g(mid+ 1)� g(mid), and g(mid+ 1)� g(mid) � g(mid+ 2)� g(mid+ 1).

Thus we are done with the proof of Sub-Claim 3, and Theorem 1 follows.

3 Building Blo
ks for Our Algorithms for Testing Inverse Monge

From this point on we fo
us on inverse Monge matri
es. Analogous 
laims hold for Monge matri
es.

We also assume for simpli
ity that the dimensions of the matri
es are n

1

= n

2

= n. In what follows

we provide a 
hara
terization of inverse Monge matri
es that is exploited by our algorithms. Given

any real valued matrix V = fv

i;j

g

i;j=n

i;j=0

we de�ne an (n + 1) � (n + 1) matrix C

0

V

= f


i;j

g

i;j=n

i;j=0

as

follows:

� 


0;0

= v

0;0

;

� For i > 0: 


i;0

= v

i;0

� v

i�1;0

;

� For j > 0: 


0;j

= v

0;j

� v

0;j�1

;

� And for every i; j > 0:




i;j

= (v

i;j

� v

i�1;j

)� (v

i;j�1

� v

i�1;j�1

)

= (v

i;j

� v

i;j�1

)� (v

i�1;j

� v

i�1;j�1

): (4)

Let C

V

= f


i;j

g

i;j=n

i;j=1

be the sub-matrix of C

0

V

that in
ludes all but the �rst (0'th) row and


olumn of C

0

V

. The following two 
laims are well known and easy to verify. We in
lude their proofs

for 
ompleteness.

Claim 2 For every 0 � i; j � n, v

i;j

=

P

i

k=0

P

j

`=0




k;`

.

Proof: The 
laim is proved by indu
tion on i and j.

The base 
ase, i; j = 0 holds by de�nition of 


0;0

.

Consider any i > 0 and assume that the 
laim holds for every k < i, j = 0. We prove it for

i and for j = 0. By de�nition of 


i;0

we have v

i;0

= v

i�1;0

+ 


i;0

. By the indu
tion hypothesis,

v

i�1;0

=

P

i�1

k=0




k;0

, and the indu
tion step follows. The 
laim is similarly proved for every j > 0

and i = 0.

Finally, 
onsider any i; j > 0 and assume that the 
laim holds for every k < i and ` � j, and for

every k � i and ` < j. We prove it for i; j. By de�nition of 


i;j

, v

i;j

= v

i�1;j

+(v

i;j�1

�v

i�1;j�1

)+


i;j

.

By the indu
tion hypothesis,

v

i�1;j

+ (v

i;j�1

� v

i�1;j�1

) =

i�1

X

k=0

j

X

`=0




k;`

+

j�1

X

`=0




i;`

and the indu
tion step follows.
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Claim 3 A matrix V is an inverse Monge matrix if and only if C

V

is a non-negative matrix.

Proof: If V is an inverse Monge matrix, then in parti
ular, for every i; j � 1 we have that

v

i;j

+ v

i�1;j�1

� v

i;j�1

+ v

i�1;j

, whi
h is equivalent to the 
ondition 


i;j

� 0.

In the other dire
tion, 
onsider any two points (i; j) and (i

0

; j

0

) su
h that 0 � i < i

0

� n,

0 � j < j

0

� n. Using Claim 2 we obtain

v

i

0

;j

0

� v

i

0

;j

� v

i;j

0

+ v

i;j

=

i

0

X

k=0

j

0

X

`=0




k;`

�

i

0

X

k=0

j

X

`=0




k;`

�

i

X

k=0

j

0

X

`=0




k;`

+

i

X

k=0

j

X

`=0




k;`

=

i

0

X

k=i+1

j

0

X

`=j+1




k;`

(5)

But C

V

is non-negative and therefore v

i

0

;j

0

� v

i

0

;j

� v

i;j

0

+ v

i;j

� 0 as required.

It follows from Claim 3 that if we �nd some entry of C

V

that is negative, then we have eviden
e

that V is not an inverse Monge matrix. However, it is not ne
essarily true that if V is far from

being an inverse Monge matrix, then C

V


ontains many negative entries. For example, suppose

that C

V

is 1 in all entries ex
ept the entry 


n=2;n=2

whi
h is �n

2

. Then it 
an be veri�ed that

V is very far from being an inverse Monge matrix (this 
an be proved by showing that there are

�(n

2

) disjoint quadruples v

i;j

; v

i

0

;j

0

; v

i;j

0

; v

i

0

;j

in V , su
h that from any su
h quadruple at least one

value should be 
hanged in order to transform V into an inverse Monge matrix). However, as our

analysis will show, in su
h a 
ase there are many sub-matri
es in C

V

whose sum of elements is

negative. Thus our testing algorithms will sample 
ertain sub-matri
es of C

V

and 
he
k that the

sum of elements in ea
h sub-matrix sampled is non-negative. We �rst observe that it is possible to


he
k this eÆ
iently.

Claim 4 Given a

ess to V it is possible to 
he
k in time O(1) if the sum of elements in a given

sub-matrix A of C

V

is non-negative. In parti
ular, if the lower-left entry of A is (i; j) and its

upper-right entry is (i

0

; j

0

) then the sum of elements of A is v

i

0

;j

0

� v

i

0

;j�1

� v

i�1;j

0

+ v

i�1;j�1

.

Proof: Assume that A = (


k;`

)

k=i

0

;`=j

0

k=i;`=j

is a sub-matrix of C

V

. Re
all that for any q; p, we have

v

q;p

=

P

q

k=0

P

p

`=0




k;`

. Thus the sum of elements of A is:

i

0

X

k=i

j

0

X

`=j




k;`

=

i

0

X

k=0

j

0

X

`=j




k;`

�

i�1

X

k=0

j

0

X

`=j




k;`

=

0

�

i

0

X

k=0

j

0

X

`=0




k;`

�

i

0

X

k=0

j�1

X

`=0




k;`

1

A

�

0

�

i�1

X

k=0

j

0

X

`=0




k;`

�

i�1

X

k=0

j�1

X

`=0




k;`

1

A

= (v

i

0

;j

0

� v

i

0

;j�1

)� (v

i�1;j

0

� v

i�1;j�1

) :

Therefore 
omputing the sum of elements of any sub-matrix A of C

V

, 
an be done by 
he
king only

4 entries in the matrix V .
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3.1 Filling Sub-matri
es

An important building blo
k for the analysis of our algorithms is a pro
edure for \�lling in" a

sub-matrix. That is, given 
onstraints on the sum of elements in ea
h row and 
olumn of a given

sub-matrix, we are interested in assigning values to the entries of the sub-matrix so that these


onstraints are met.

Spe
i�
ally, let a

1

; : : : ; a

s

and b

1

; : : : ; b

t

be non-negative real numbers su
h that

P

s

i=1

a

i

�

P

t

j=1

b

j

. Then it is possible to 
onstru
t an s � t non-negative real matrix T , su
h that the sum

of elements in 
olumn j is exa
tly b

j

and the sum of elements in row i is at most a

i

. In the spe
ial


ase that

P

s

i=1

a

i

=

P

t

j=1

b

j

, the sum of elements in row i will equal a

i

. In parti
ular, this 
an be

done by applying the following pro
edure, whi
h is the same as the one applied to obtain an initial

feasible solution for the linear-programming formulation of the transportation problem.

Pro
edure 1 [Fill Matrix T = (t

i;j

)

i=s;j=t

i;j=1

℄

Initialize �a

i

= a

i

for i = 1; : : : ; s and

�

b

j

= b

j

for j = 1; : : : ; t.

(In ea
h of the following iterations, �a

i

is an upper bound on what remains to be �lled in row i,

and

�

b

j

is what remains to be �lled in 
olumn j.)

for j = 1,. . . ,t:

for i = 1,. . . ,s:

Assign to entry (i; j) the value x = minf�a

i

;

�

b

j

g

Update �a

i

= �a

i

� x,

�

b

j

=

�

b

j

� x.

Claim 5 Pro
edure 1 �lls the matrix T with non-negative values t

i;j

, su
h that at the end of the

pro
edure,

P

s

i=1

t

i;j

= b

j

for every j = 1; : : : ; t, and

P

t

j=1

t

i;j

� a

i

for every i = 1; : : : ; s. If initially

P

t

j=1

b

j

=

P

s

i=1

a

i

then

P

t

j=1

t

i;j

= a

i

for every i = 1; : : : ; s.

Proof: Noti
e that initially �a

i

= a

i

� 0 and

�

b

j

= b

j

� 0. Thus when we update �a

i

= �a

i

� x =

�a

i

�minf�a

i

;

�

b

j

g � 0 and similarly

�

b

j

=

�

b

j

� x =

�

b

j

�minf�a

i

;

�

b

j

g � 0. Therefore the �a

i

's and

�

b

j

's

are always non-negative. Hen
e all values x �lled in T are non-negative, sin
e x = minf�a

i

;

�

b

j

g � 0.

Furthermore, after ea
h su
h update the new sum over the �a

i

's equals the old sum over the �a

i

's

minus x and a similar statement holds for the sum over the

�

b

j

's. Thus at all stages of the pro
edure,

P

s

i=1

�a

i

�

P

t

j=1

�

b

j

, and if initially

P

s

i=1

a

i

=

P

t

j=1

b

j

then

P

s

i=1

�a

i

=

P

t

j=1

�

b

j

.

We now show that the sum of elements in ea
h 
olumn is as required. Observe that the

pro
edure �lls the 
olumns one by one. Therefore when we start to �ll 
olumn j we have

�

b

j

= b

j

.

Sin
e

P

s

i=1

�a

i

�

P

t

j=1

�

b

j

at this stage, and all �a

i

's are non-negative, ne
essarily,

P

s

i=1

�a

i

�

�

b

j

= b

j

.

Let 1 � k � s be the minimum integer su
h that

P

k

i=1

�a

i

� b

j

. Then by de�nition of the pro
edure,

for every i < k, the entry (i; j) is �lled with the value �a

i

, and the entry (k + 1; j) is �lled with the

value b

j

�

P

k

i=1

�a

i

. The total is hen
e b

j

as required.

As for the rows, at all stages �a

i

equals a

i

minus the sum of all elements �lled so far in row i.

Therefore sin
e �a

i

� 0, then then sum of elements in row i is at most a

i

. Furthermore, if initially

P

s

i=1

a

i

=

P

t

j=1

b

j

, then the sum of elements in row i will be exa
tly a

i

. To show this note that

at the end of the pro
edure,

P

t

j=1

�

b

j

= 0, sin
e ea
h

�

b

j

equals b

j

minus the sum of all elements in


olumn j, and we have shown that the sum of elements in 
olumn j is b

j

. But

P

s

i=1

�a

i

=

P

t

j=1

�

b

j

,

and therefore also

P

s

i=1

�a

i

= 0 at the end. Sin
e �a

i

� 0, this means that �a

i

= 0. Hen
e the sum of

elements in row i must be a

i

.
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4 A Testing Algorithm for Inverse Monge Matri
es

We �rst present a simple algorithm for testing if a matrix V is an inverse Monge Matrix, whose

running time is O(n=�). In the next se
tion we show a signi�
antly faster algorithm that is partly

based on the ideas presented here. We may assume without loss of generality that n is a power of

2. This is true sin
e our algorithms probe the 
oeÆ
ients matrix C

V

, and we may simply \pad" it

by 0's to obtain rows and 
olumns that have lengths whi
h are powers of 2 and run the algorithm

with � �=4. We shall need the following two de�nitions for both algorithms.

De�nition 4 (Sub-Rows, Sub-Columns and Sub-Matri
es) A sub-row in an n�n matrix is

a 
onse
utive sequen
e of entries that belong to the same row. The sub-row ((i; j); (i; j+1); : : : ; (i; j+

t�1)) is denoted by [ ℄

1;t

i;j

. A sub-
olumn is de�ned analogously, and is denoted by [ ℄

s;1

i;j

= ((i; j); (i+

1; j); : : : ; (i + s � 1; j)). More generally, an s � t sub-matrix whose bottom-left entry is (i; j) is

denoted [ ℄

s;t

i;j

.

De�nition 5 (Legal Sub-Matri
es) A sub-row in an n � n matrix is a legal sub-row if it 
an

result from bise
ting the row of length n that 
ontains it in a re
ursive manner. That is, a 
omplete

(length n) row is legal, and if [ ℄

1;t

i;j

is legal, then so are [ ℄

1;t=2

i;j

and [ ℄

1;t=2

i;j+t=2

. A legal sub-
olumn is

de�ned analogously. A sub-matrix is legal if both its rows and its 
olumns are legal.

Note that the legality of a sub-row [ ℄

1;t

i;j

is independent of the a
tual row i it belongs to, but rather

it depends on its starting position j and ending position j + t � 1 within its row. An analogous

statement holds for legal sub-
olumns. See also Figure 1 for an illustration of the 
on
ept of legal

sub-matri
es.

16

15
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13

12
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9

8

7

6
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4

3

2

1

16151413121110987654321

 

Figure 1: An illustration of three legal sub-matri
es. One of the legal sub-matri
es is a square (4� 4) sub-

matrix, and the other two are re
tangular (but legal) sub-matri
es. The 8� 1 sub-matrix on the top-right

is a legal sub-
olumn

Although a sub-matrix is just a 
olle
tion of positions (entries) in an n � n matrix, we talk

throughout the paper about sums of elements in 
ertain sub-matri
es A of C

V

. In this we mean

the sum of elements of C

V

determined by the set of positions in A.
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De�nition 6 (Good and Bad Sub-Matri
es) We say that a sub-matrix A of C

V

is good if the

sum of elements in ea
h row of A is non-negative and the sum of elements in ea
h 
olumn of A is

non-negative. Otherwise, A is bad.

De�nition 7 (Good and Bad Points) We say that point (i; j) is good if all legal square sub-

matri
es A of C

V

whi
h 
ontain (i; j) are good. Otherwise, the point is bad.

Algorithm 2 [Test Monge I℄

1. Choose 8=� points in the matrix C

V

and 
he
k that they are good.

2. If all points are good then a

ept, otherwise reje
t.

By Claim 4, it is possible to 
he
k in 
onstant time that the sum of elements in a sub-row

(sub-
olumn) of C

V

is non-negative. Therefore, it is possible to test that an s � s square sub-

matrix A of C

V

is good in time �(s). Noti
e that every point in an n � n matrix is 
ontained

in log n legal square sub-matri
es. Hen
e the time required to 
he
k whether a point is good is

O(n)+O(n=2)+ : : :+O(n=2

i

)+ : : :+O(1) = O(n), and the 
omplexity of the algorithm is O(n=�).

Theorem 2 If V is an inverse Monge matrix then Algorithm 2 always a

epts, and if V is �-far

from being an inverse Monge matrix, then Algorithm 2 reje
ts with probability at least 2=3.

Proof: The �rst part of the theorem follows dire
tly from Claim 3. In order to prove the se
ond

part of the theorem, we show that if V is �-far from being inverse Monge, then C

V


ontains more

than (�=4)n

2

bad points. The se
ond part of the theorem dire
tly follows be
ause the probability

in su
h a 
ase that no bad point is sele
ted by the algorithm, is at most (1� �=4)

(8=�)

< e

�2

< 1=3.

Assume 
ontrary to the 
laim that C

V


ontains at most (�=4)n

2

bad points. We shall show

that by modifying at most �n

2

entries in V we obtain an inverse Monge matrix (in 
ontradi
tion to

our assumption 
on
erning V ). Let us look at the set of bad points in C

V

, and for ea
h su
h bad

point look at the largest bad legal square sub-matrix in C

V

that 
ontains this bad point. By our

assumption on the number of bad points, it must be the 
ase that the area of all these maximal

bad sub-matri
es is at most (�=4)n

2

, be
ause all the points in a bad sub-matrix are bad.

For ea
h maximal bad legal square sub-matrix B of C

V

we will look at the legal square sub-

matrix A that 
ontains B. By de�nition of legal square sub-matri
es, the matrix A is uniquely

de�ned. By the maximality of B, the sub-matrix A must be good. Indeed, sin
e B is maximal, if

it is of size s� s where s < n, then the legal square sub-matrix of size 2s� 2s that 
ontains it must

be good. But if s = n, then B = C

V

implying that all n

2

points in C

V

are bad, 
ontradi
ting our

assumption on the number of bad points.

Next observe that every two di�erent maximal bad legal square sub-matri
es B and B

0

are

disjoint. This is true sin
e every two di�erent legal square sub-matri
es are either disjoint, or one

is 
ontained in the other. Combining this with the fa
t that for ea
h maximal bad legal square

sub-matrix we take the good square legal sub-matrix that is 4 times its size, the area of the union

of all these good sub-matri
es is at most 4 � (�=4)n

2

= �n

2

.

Turning to the 
olle
tion of resulting good sub-matri
es, note that every two of these sub-

matri
es are either disjoint, or are exa
tly the same, or one is 
ontained in the other. If a good

sub-matrix is stri
tly 
ontained in another one, then we ignore it, and deal only with the larger

good sub-matrix 
ontaining it. Thus we have a set of disjoint good sub-matri
es that 
ontain

all negative entries in the matrix. For ea
h of these good sub-matri
es A, we modify A so that it


ontains only non-negative elements, and the sum of elements in ea
h row and 
olumn of A remains

11



as it was. This 
an be done by applying Pro
edure 1 to A as des
ribed in Se
tion 3.1 (using the

a
tual (non-negative) sums of rows and 
olumns of A as the input to the pro
edure).

Note that after modifying all these good sub-matri
es of C

V

, the new matrix C

V

is non-negative,

and thus the 
orresponding new matrix V must be an inverse Monge matrix. It remains to show,

that at most �n

2

values were 
hanged in V following the 
hanges to C

V

. Noti
e that we made sure

that the sum of elements in ea
h row and 
olumn of ea
h modi�ed sub-matrix A remains as it was.

Therefore the values of all points v

k;`

in V that are outside A are not a�e
ted by the 
hange to A,

sin
e by Claim 2 we have that v

k;`

=

P

k

i=0

P

`

j=0




i;j

.

5 A Faster Algorithm for Inverse Monge Matri
es

Algorithm 2 des
ribed above has running time linear in n, whi
h is already sub-linear in the size

of the matrix, n

2

. In this se
tion we show how to signi�
antly improve the dependen
e on n. We

present a variant of the algorithm whose running time is O(�

�1

log

2

n). The new algorithm will

be based on a similar prin
iple as that of Algorithm 2. That is, it will uniformly sele
t points

and verify that 
ertain sub-matri
es that 
ontain them are good. However, there will be two main

di�eren
es whi
h we now des
ribe brie
y.

Algorithm 2 su�ers from a relatively slow running time, sin
e for ea
h sub-matrix that the

algorithm 
he
ks, it veri�es that the sum of elements in every row and 
olumn is non-negative.

Therefore, we �rst relax the 
on
ept of a good sub-matrix and demand only that the sum of all

its elements be non-negative (instead of the sum of every row and 
olumn). This 
hange however

requires us to 
he
k for ea
h point sele
ted by the algorithm, not only that the legal square sub-

matri
es whi
h 
ontain it are good, but rather to verify that all legal sub-matri
es that 
ontain

the point are good. A
tually, we 
he
k something slightly stronger: The algorithm will verify for

ea
h legal sub-matrix T that it examines that the 4 legal equal-size sub-matri
es that reside within

T and are half of T 's length in ea
h dimension, are good as well. In order to formalize the above,

we �rst rede�ne the 
on
epts of good (bad) sub-matri
es and good (bad) points, and introdu
e the

notion of tainted sub-matri
es and tainted points.

De�nition 8 (Good and Bad Sub-Matri
es and Points) A (legal) sub-matrix T of C

V

is

good if the sum of all its elements is non-negative. Otherwise, T is bad.

A point is good if every legal sub-matrix of C

V

that 
ontains it is good. Otherwise the point is

bad.

De�nition 9 (Tainted Sub-Matri
es and Points) A good legal sub-matrix T of C

V

is tainted

if any one of the four legal sub-matri
es that it 
ontains and are half its height and half its width is

bad. A point is tainted if some legal sub-matrix that 
ontains it is tainted.

Note that every bad point is tainted, but good points may be tainted as well.

For the sake of the presentation, we shall assume that every row and every 
olumn in C

V

(that

is, every sub-row and sub-
olumn of length n) have non-negative sums. In Subse
tion 5.2 we explain

how to remove this assumption. Note that this assumption implies that every s� n sub-matrix is

good, and similarly every n� s sub-matrix is good (but of 
ourse it has no impli
ations on smaller

sub-matri
es).

Algorithm 3 [Test Monge II℄

1. Uniformly sele
t 2=� points in the matrix C

V

and 
he
k for ea
h of them whether it is tainted.

12



2. If no point sele
ted is tainted then a

ept, otherwise reje
t.

Note that by De�nition 5, ea
h point in an n � n matrix is 
ontained in O(log

2

n) legal sub-

matri
es. Thus by Claim 4, 
he
king whether a point is tainted takes time O(log

2

n). Therefore

the running time of the algorithm is O((log

2

n)=�).

Theorem 3 If V is an inverse Monge matrix then Algorithm 3 always a

epts, and if V is �-far

from being an inverse Monge matrix, then Algorithm 3 reje
ts with probability at least 2=3.

5.1 Outline of the Proof of Theorem 3

If V is an inverse Monge matrix then by Claim 3 all elements in C

V

are non-negative. This dire
tly

implies that all (legal) sub-matri
es and good, and so all points are good and are not tainted. Hen
e

in this 
ase the algorithm always a

epts. Suppose that V is �-far from being inverse Monge. We


laim that in su
h a 
ase C

V

must 
ontain more than �n

2

tainted points, 
ausing the algorithm to

reje
t with probability at least

1� (1 � �)

(2=�)

> 1� e

�2

> 2=3:

Assume 
ontrary to the 
laim that C

V


ontains at most �n

2

tainted points. Our goal from this

point on is to show that in su
h a 
ase V is �-
lose to being an inverse Monge matrix.

The proof of this part will follow similar lines to those used in the proof of Theorem 2. That is,

we 
onsider all maximal bad legal sub-matri
es of C

V

, and for ea
h su
h bad sub-matrix we 
onsider

the legal good sub-matrix that is 4 times its area and 
ontains it. On
e again, this sub-matrix is

unique. By De�nition 9, this sub-matrix is tainted. We then take the union of all these good but

tainted sub-matri
es. By our assumption on the number of tainted points, the area of this union is

at most �n

2

sin
e all points in the union are tainted.

Finally we show how to modify the values in this union, so that the resulting matrix is an

inverse Monge matrix. This time however, sin
e the maximal bad sub-matri
es may interse
t

(whi
h was not the 
ase in the slower algorithm), the good tainted sub-matri
es that 
ontain them

may interse
t in non-trivial ways (that is, not only by 
oin
iding or by stri
t 
ontainment). As a

result, the union of the good sub-matri
es has a possibly 
omplex stru
ture (and in parti
ular it

is no longer a simple union of disjoint sub-matri
es), and the pro
ess of properly modifying this

union is mu
h more involved. We now des
ribe pre
isely the ne
essary de�nitions and pro
eed with

a detailed proof.

De�nition 10 (Maximal bad legal sub-matrix) A bad legal sub-matrix T of C

V

is a maximal

bad legal sub-matrix of C

V

if it is not 
ontained in any larger bad legal sub-matrix of C

V

.

Now 
onsider all maximal bad legal sub-matri
es of C

V

. Note that every negative entry in

C

V

is 
ontained in the union of these bad sub-matri
es. For ea
h su
h sub-matrix B let us take

the (unique) legal sub-matrix T that 
ontains it and has twi
e the number of rows and twi
e the

number of 
olumns of B (by our assumption that all full rows and 
olumns have a non-negative

sum it is indeed possible to double the rows and 
olumns of B). Then by the maximality of B,

the resulting sub-matrix is good. We now take the union of all these good (but tainted) legal

sub-matri
es. Re
all that the area of the union of all tainted (legal) sub-matri
es of C

V

is at most

�n

2

. Denote the union of all these good tainted sub-matri
es by R. See for example Figure 2.

In Subse
tions 5.3 and 5.4 we show that it is possible to 
hange the (at most �n

2

) entries of C

V

within R to non-negative values so that the following property holds:
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Figure 2: An example of the stru
ture of a subset R, where R is the union of all gray 
ells in the matrix

(both dark and light gray). All values in 
ells outside of R are non-negative, and are not displayed for sake

of simpli
ity. The bad legal sub-matri
es determining R are the dark gray sub-matri
es. Ea
h is 
ontained

inside a good but tainted legal sub-matrix that has twi
e the number of rows and twi
e the number of


olumns (good tainted sub-matri
es are marked both by light and dark gray). For example, there is a bad

sub-matrix in 
olumn 1, rows 13 and 14, and the good legal sub-matrix 
ontaining it is the sub-matrix over


olumns 1 and 2 and rows 13 through 16. Observe that maximal bad legal sub-matri
es may interse
t. For

example, the bad sub-matrix 
ontaining the two 
ells in row 9 and 
olumns 5 and 6 interse
ts with the bad

sub-matrix 
ontaining the two 
ells in 
olumn 5 and rows 9 and 10. Their 
orresponding good sub-matri
es

also interse
t.

Property 1 (Sum Property for R) For every point (i; j) outside of R, the sum of

the elements in the modi�ed entries (i

0

; j

0

) within R su
h that i

0

� i and j

0

� j is the

same as in the original matrix C

V

.

Let

~

C

V

be the matrix obtained from C

V

by modifying R so that Property 1 holds, and let

~

V be

the matrix whi
h 
orresponds to

~

C

V

. Then it follows from Claim 2 that

~

V is at most �-far from the

original matrix V , and this 
ompletes the proof of Theorem 3. Before we 
ontinue with showing

how to obtain Property 1, we explain shortly how to remove the assumption that all (full) rows

and 
olumns in C

V

have a non-negative sum.

5.2 Dealing with Rows/Columns Having a Negative Sum

Suppose �rst that � � 4=n. Then we may dire
tly 
he
k in time O(1=�) that in fa
t all rows

and 
olumns of the matrix C

V

have non-negative sums (using Claim 4), and reje
t if some row or


olumn has a negative sum. Hen
e in this 
ase our assumption is valid. Thus assume that � > 4=n.

First we slightly modify Algorithm 3 so that it uniformly sele
ts 4=� points in C

V

(instead of

2=�). In su
h a 
ase, if C

V


ontains more than (�=2)n

2

tainted points then the algorithm reje
ts

with probability at least 2=3. We thus assume that C

V


ontains at most (�=2)n

2

tainted points

and strive to show that in su
h a 
ase V is �-
lose to being an inverse Monge matrix. Sin
e we do
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not assume that every row and 
olumn in C

V

has a non-negative sum, we �rst modify C

V

so that

it has this property.

Consider ea
h row i in C

V

whose sum of elements in negative. Suppose that we modify the

last entry in the row, 


i;n

, so that the new sum of all elements is 0. Similarly, we modify the last

entry 


n;j

in ea
h 
olumn j that has a negative sum. Let

�

C

V

be the resulting matrix, and let

�

V be

the matrix 
orresponding to

�

C

V

. Then all rows and 
olumns in

�

C

V

have a non-negative sum, and

by Claim (2)

�

V and V di�er on at most 2n� 1 < (�=2)n

2

entries (at most all elements in the last


olumn and last row).

Now we may de�ne the region R as we did in the previous subse
tion. Note that in this 
ase

the area of the region R is at most (�=2)n

2

. We 
an therefore 
ontinue in proving that it is possible

to modify only the elements within R so that they are all non-negative and Property 1 holds. This

will imply that the total number of entries that should be modi�ed (�rst to obtain non-negative

rows and 
olumns, and then to re�ll R) is at most �n

2

, as desired.

5.3 Re�lling R to Obtain Property 1

Let R be as de�ned in Se
tion 5.1. Re
all that R 
onsists of a union of good legal sub-matri
es.

(The fa
t that they are tainted is no longer relevant.) In the following dis
ussion, when we talk

about elements in sub-matri
es of R we mean the elements in C

V

determined by the 
orresponding

set of positions in R.

We are interested in re�lling the entries in R with non-negative values, so that Property 1 will

hold. Note that if R is just a sub-matrix (blo
k) of C

V

then we 
an use Pro
edure 1 to re�ll R

as desired. However, in general the stru
ture of R is more 
omplex. We show that there is a way

to partition R into disjoint blo
ks and re�ll ea
h blo
k using Pro
edure 1. In Subse
tion 5.3.1 we

de�ne pre
isely what blo
ks are and present several other notions that are needed for the re�lling

pro
edure. The re�lling pro
edure for R is des
ribed in Subse
tion 5.3.2 and its 
orre
tness is

proved in Subse
tion 5.4.

5.3.1 Preliminaries for the Re�lling Pro
edure

As stated above, the re�lling pro
edure will partition R into disjoint blo
ks (sub-matri
es) and �ll

ea
h blo
k separately with non-negative values, so that Property 1 is maintained. We start with

de�ning the following term that will be needed to de�ne blo
ks.

De�nition 11 (Maximal (legal) sub-row/
olumn) Given a subset R of entries in an n � n

matrix, a sub-row T is a maximal (legal) sub-row with respe
t to R if T is 
ontained in R and there

is no larger (legal) sub-row T

0

su
h that T � T

0

� R. A maximal (legal) sub-
olumn with respe
t to

R is de�ned analogously.

For sake of su

in
tness, whenever it is 
lear what R is, we shall just say maximal (legal) sub-

row and drop the suÆx, \with respe
t to R". Note that a maximal sub-row is simply a maximal


onse
utive sequen
e of entries in R that belong to the same row, while a maximal legal sub-row

is a more 
onstrained notion. In parti
ular, a maximal sub-row may be a 
on
atenation of several

maximal legal sub-rows. We 
an now de�ne blo
ks as follows.

De�nition 12 (Maximal Blo
k) A maximal blo
k B = [ ℄

s;t

i;j

in R is a sub-matrix 
ontained in

R whi
h has the following property: It 
onsists of a maximal 
onse
utive sequen
e of maximal legal

sub-
olumns of the same height. The maximality of ea
h sub-
olumn is as in De�nition 11. That

is, for every j � r � j + t� 1, the 
olumn [ ℄

s;1

i;r

is a maximal legal sub-
olumn (with respe
t to R).
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Figure 3: An example of the partition of R shown in Figure 2 into maximal blo
ks (numbered B

1

{B

7

).

Note that the ratio between the heights of any two blo
ks is always a power of 2. Furthermore, the blo
ks

are aligned in the following way. Suppose a blo
k B has height s and a blo
k B

0

has height s

0

� s and some

of their sub-rows belong to the same row of the matrix (e.g., B

3

and B

4

, or B

4

and B

5

). Then the shorter

blo
k B

0

must be aligned either with the �rst or se
ond half of B, or with one of the quarters of B, or with

one of its eighth's, et
.

The height of a maximal blo
k B is the height of the 
olumns in B (equivalently, the number of

rows in B).

The maximality of the sequen
e of sub-
olumns in a blo
k B = [ ℄

s;t

i;j

means that we 
annot extend

the sequen
e of 
olumns neither to the left nor to the right. That is, neither [ ℄

s;1

i;j�1

nor [ ℄

s;1

i;j+t

are

maximal legal sub-
olumns in R. (Spe
i�
ally, ea
h is either not fully 
ontained in R or R 
ontains

a larger legal sub-
olumn that 
ontains it.)

We shall sometimes refer to maximal blo
ks simply as blo
ks. Observe that by this de�nition, R

is indeed partitioned in a unique way into maximal disjoint blo
ks. See Figure 3 for an illustration

to how the subset R from Figure 2 is partitioned into maximal blo
ks.

Three additional notions that will be needed for the re�lling pro
edure are de�ned below. The

�rst two are illustrated in Figure 4.

De�nition 13 (Covers) We say that a sub-matrix A 
overs a given blo
k B with respe
t to R, if

B � A � R and the number of rows in A equals the height of B.

We say that A is a maximal row-
over with respe
t to R, if A 
onsists of maximal sub-rows with

respe
t to R.

De�nition 14 (Borders) We say that a sub-matrix T = [ ℄

s;t

i;j

borders another sub-matrix T

0

=

[ ℄

s

0

;t

0

i

0

;j

0

, if i

0

� i + s� 1 and i � i

0

+ s

0

� 1, and either j

0

= j + t (so that T is to the left of T

0

), or

j

0

+ t

0

= j (so that T is to the right of T

0

).

De�nition 15 (Sums) For a given sub-matrix T , we denote the sum of the elements in T by

sum(T ).
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Figure 4: An illustration of the notions of 
overs and borders. Here the sub-matrix A (extending from row

9 to 12 and from 
olumn 5 to 12) 
overs the blo
k B

3

(but is not a maximal row-
over with respe
t to R).

The sub-matrix A borders blo
k B

1

(from the left of A), and blo
k B

4

(from the right of A).

5.3.2 The Pro
edure for Re�lling R

We now des
ribe the pro
edure that re�lls the entries of R with non-negative values so as to obtain

Property 1. Re
all that R is a disjoint union of maximal blo
ks. Hen
e if we remove a maximal

blo
k from R, then the maximal blo
ks of the remaining stru
ture are simply the remaining maximal

blo
ks of R. For simpli
ity of this introdu
tory dis
ussion, after removing a blo
k from R, we refer

to the remaining stru
ture as R. The pro
edure des
ribed below will remove the blo
ks of R

one by one, in order of in
reasing (non-de
reasing) height, and re�ll ea
h blo
k separately using

Pro
edure 1.

Re
all that when (re)�lling an s � t sub-matrix, Pro
edure 1 is provided with non-negative

values a

1

; : : : ; a

s

and b

1

; : : : ; b

t

su
h that

P

s

i=1

a

i

�

P

t

j=1

b

j

. It then �lls the sub-matrix with

non-negative values so that the sum of elements in 
olumn j is exa
tly b

j

and the sum of elements

in row i is at most a

i

. Whenever we apply Pro
edure 1 to a blo
k B, the 
olumn sums b

1

; : : : ; b

t

are simply set to be the sums of the elements in the 
orresponding sub-
olumns of B in C

V

. By

de�nition of (maximal) blo
ks, these sub-
olumns are maximal legal sub-
olumns, and as we show

in Subse
tion 5.4.1, this ensures that their sums are non-negative.

The setting of the upper bounds a

1

; : : : ; a

s

for the row sums is a little more involved. At any

point in the algorithm, ea
h maximal sub-row L is asso
iated with a designated sum, denoted

sum(L). This is the sum we intend it to have when the re�lling pro
edure terminates. Initially,

for every maximal sub-row L in R, we set sum(L) = sum(L). That is, sum(L) is equal to the

original sum of sub-row L in C

V

. In Subse
tion 5.4.1 we show that these sums are all non-negative.

When re�lling a blo
k B, we �rst �nd the row-
over A of B that is a maximal row-
over with

respe
t to (the 
urrent) R. Sin
e the blo
ks are �lled by order of height, and blo
ks are removed

after they are �lled, su
h a maximal row-
over must exist when B is 
overed, and is unique. We

then use the designated sums of the (maximal) rows of A as the upper bounds a

1

; : : : ; a

s

for the

sums of rows of B. As we prove subsequently, it always holds that

P

s

i=1

a

i

�

P

t

j=1

b

j

, as required
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by Pro
edure 1. After removing a blo
k B from R, we obtain new, shorter, maximal sub-rows in

the remaining stru
ture R nB, and we must asso
iate with these shorter sub-rows new designated

sums. Pro
edure 1 is used here as well to determine how to set these designated row sums, in a

manner explained in detail in Step 3
 below.
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Figure 5: An illustration of one step of the re�lling pro
edure, where we apply it to the matrix illustrated

in Figures 2 and 3. The �rst blo
k �lled may be either B

2

, B

4

, or B

6

(all three have height 2, whi
h is

the minimum among all blo
ks). Here we have sele
ted to re�ll B

4

�rst. On the left we see the maximal

row-
over A that 
overs B

4

, where the designated sums of the two rows of A are 8 and 7 (in a

ordan
e with

the values appearing in Figure 2). On the right we see the values that the Pro
edure 1 has entered in the


ells of B

4

. We also see the two sub-matri
es, A

0

and A

00

, that remain of A after B

4

is removed from R, and

the designated sums of the new maximal rows in A

0

and A

00

.

Pro
edure 2 [Re�ll R℄

1. We assign ea
h maximal sub-row L in R a designated sum of elements for that row, whi
h is

denoted by sum(L). Initially we set sum(L) to be sum(L).

2. Let m be the number of maximal blo
ks in R, and let R

1

= R.

3. for p = 1; : : : ;m:

(a) Let B

p

be a maximal blo
k in R

p

whose height is minimum among all maximal blo
ks of

R

p

, and assume that B

p

is an s � t sub-matrix. Let A

p

be a maximal row-
over of B

p

with respe
t to R

p

. For 1 � ` � s, let L

`

denote the sub-row of A

p

that 
overs the `'th

sub-row of B

p

.

(b) Re�ll B

p

by applying Pro
edure 1 (see Se
tion 3.1), where the sum �lled in the k'th sub-


olumn of B

p

, 1 � k � t, should be the original sum of this sub-
olumn in C

V

, and the

sum �lled in the `'th sub-row of B

p

, 1 � ` � s, is at most sum(L

`

).

For ea
h 1 � ` � s, let x

`

denote the sum of elements �lled by Pro
edure 1 in the `'th

sub-row of B

p

.
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(
) Let R

p+1

= R

p

nB

p

. We next assign designated sums to the rows of R

p+1

that have been

either shortened or broken into two parts by the removal of B

p

from R

p

. This is done

as follows:

The set A

p

n B

p

is the union of two non-
onse
utive sub-matri
es, A

0

and A

00

, so that

A

0

borders B

p

from the left of B

p

and A

00

borders B

p

from the right of B

p

(where it is

possible that one or both of these sub-matri
es does not exist). Let L

0

`

and L

00

`

be the sub-

rows in A

0

and A

00

respe
tively that are 
ontained in sub-row L

`

of A

p

. We assign to L

0

`

and L

00

`

non-negative designated sums, sum(L

0

`

) and sum(L

00

`

), that satisfy the following:

sum(L

0

`

) + sum(L

00

`

) = sum(L

`

)� x

`

;

and furthermore,

X

row L2A

0

sum(L) = sum(A

0

);

X

row L2A

00

sum(L) = sum(A

00

):

This is done by applying Pro
edure 1 to a 2 � s matrix whose sums of 
olumns are

sum(A

0

) and sum(A

00

) and sums of rows are sum(L

`

)� x

`

, where 1 � ` � s.

(Note that one or both of A

0

and A

00

may not exist. This 
an happen if B

p

bordered

A

p

n B

p

on one side and its boundary 
oin
ided with R

p

, or if A

p

= B

p

. In this 
ase,

if, for example, A

0

does not exist then we view it as a sub-matrix of height 0 where

sum(A

0

) = 0.)

5.4 Proving that Pro
edure 2 is Corre
t

In order to prove that Pro
edure 2 is 
orre
t we have to prove two 
laims. First we have to show that

the pro
edure does not \get stu
k". Namely, that all iterations of the pro
edure 
an be 
ompleted.

Se
ond, we have to prove that at the end of the pro
edure, the re�lled stru
ture R has Property 1.

Before we prove these two 
laims we �rst prove some properties relating to the sum of elements

in maximal blo
ks and other sub-matri
es of R. These properties will be used to show that the

pro
edure does not get stu
k.

5.4.1 Sums of Blo
ks and Other Sub-Matri
es

Lemma 6 The sum of elements in every maximal legal sub-row and every maximal legal sub-
olumn

in R is non-negative.

Proof: We prove the lemma for maximal legal sub-rows. The 
laim for maximal legal sub-
olumns

is analogous. Assume, 
ontrary to the 
laim, that R 
ontains some maximal legal sub-row L = [ ℄

1;t

i;j

whose sum of elements is negative. Let T be the maximal bad legal sub-matrix in C

V

that 
ontains

L. By the maximality of L, ne
essarily T = [ ℄

s;t

i

0

;j

for some i

0

� i and s � 1. That is, the rows

of T (one of whi
h is L) are of length t. By the 
onstru
tion of R, R must 
ontain a good legal

sub-matrix T

0

that 
ontains T and is twi
e as large in ea
h dimension. But this 
ontradi
ts the

maximality of L.

It dire
tly follows from Lemma 6 that every maximal row in R has a non-negative sum, and that

every maximal blo
k has a non-negative sum. We would like to 
hara
terize other sub-matri
es of

R whose sum is ne
essarily non-negative.
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Lemma 7 Consider any two maximal blo
ks B = [ ℄

s;t

i;j

and B

0

= [ ℄

s

0

;t

0

i

0

;j

0

where i � i

0

� i + s � 1,

i

0

+ s

0

� i + s. That is, B has height s and B

0

has height s

0

� s, and B

0

starts at row i

0

� i and

ends at row i

0

+ s

0

� 1 � i+ s� 1. Consider the sub-matrix T of height s \between them". That is,

T = [ ℄

s;j

0

�(j+t)

i;j+t

or T = [ ℄

s;j�(j

0

+t

0

)

i;j

0

+t

0

. Suppose that T � R. Then sum(T ) � 0.

See Figure 6 for a illustration of the lemma and its proof.

Proof: Assume without loss of generality that B

0

is to the right of B (that is, j

0

� j + t and

T = [ ℄

s;j

0

�(j+t)

i;j+t

). If T is empty then the 
laim follows trivially sin
e sum(T ) = 0. Hen
e we may

assume from now on that T is not empty and we separate the proof into two 
ases.

Case 1: T is a legal sub-matrix. Assume, 
ontrary to the 
laim, that sum(T ) < 0. That is, T

is a bad legal sub-matrix. Let T

0

be the maximal bad legal sub-matrix 
ontaining T (where T

0

may equal T ). By 
onstru
tion of R, R should 
ontain a good legal sub-matrix T

00

that 
ontains

T

0

and has twi
e the number of rows and twi
e the number of 
olumns. But this would 
ontradi
t

the maximality of the sub-
olumns of B or of B

0

. To see why this is true, assume without loss of

generality that for any legal sub-
olumn [ ℄

s;1

i;r

, the legal 
olumn that is twi
e its height is [ ℄

2s;1

i;r

(the


ase in whi
h it is [ ℄

2s;1

i�s;r

, is treated analogously). Then T

00

must 
ontain either the sub-
olumn

[ ℄

2s;1

i;j

0

, or the sub-
olumn [ ℄

2s;1

i;j+t�1

(depending on the identity of the legal sub-rows that are twi
e

the length of the rows of T ). In the �rst 
ase we would get a 
ontradi
tion to the fa
t that B

0

is a maximal blo
k, and in the se
ond 
ase we would get a 
ontradi
tion to the fa
t that B is a

maximal blo
k.

Case 2: T is not a legal sub-matrix. Observe that its 
olumns are ne
essarily legal sub-
olumns

(given that the 
olumns of B are legal). Hen
e, only its rows are not legal sub-rows. Therefore,

T 
an be partitioned into sub-matri
es T

1

; : : : ; T

k

, su
h that ea
h is of height s, and is a maximal

legal sub-matrix with respe
t to T . We 
laim that for every T

`

, sum(T

`

) � 0. Consider any �xed

T

`

. By its maximality with respe
t to T , we know that the legal sub-rows that 
ontain the rows of

T

`

and are twi
e their length, are not stri
tly 
ontained in T , but rather extend either to the right

or to the left of T . Hen
e these rows (or some of them in 
ase the height of B

0

is stri
tly smaller

than the height of T

`

), must interse
t either B or B

0

. Assume, 
ontrary to what we 
laim, that

sum(T

`

) < 0. Let T

0

`

be the maximal bad legal sub-matrix with respe
t to R that 
ontains T

`

, and

let T

00

`

be the good legal sub-matrix that 
ontains T

0

`

and has twi
e its height and twi
e its width.

Then T

00

`

interse
ts either B or B

0

, and in this interse
tion, the (legal) sub-
olumns of T

00

`

stri
tly


ontain the sub-
olumns of B or B

0

(as in the 
ase 
onsidered in the previous paragraph). But this


ontradi
ts the maximality of B or B

0

.

By Lemma 7, we get the following 
orollary whose proof is illustrated in Figure 7.

Corollary 8 Let A be a sub-matrix of R that 
overs a given blo
k B. If on ea
h of its sides A

either borders a blo
k with height smaller than the height of B or its border 
oin
ides with the border

of R, then sum(A) � sum(B).

Proof: Let B

1

; : : : ; B

k

be the set of maximal blo
ks that are 
overed by A (where B = B

i

for some

1 � i � k). Note that by de�nition of maximal blo
ks and 
overs, they are all of the same height,

whi
h is the height of A. Let D

1

and D

2

be two shorter blo
ks that border A on the left side and

the right side of A, respe
tively. (If there is no su
h blo
k on one of the sides, then we think of

the 
orresponding D

i

as having height 0). Let T

0

; : : : ; T

k

be the sub-matri
es between these blo
ks

(that have the same height as the blo
ks). That is, T

0

is between D

1

and B

1

, T

k

is between B

k

and

D

2

, and for 1 � i � k � 1, T

i

is between B

i

and B

i+1

. Then, by Lemma 7 and the fa
t that every
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Figure 6: An illustration for Lemma 7. The �gure on the top illustrates the 
ase, in the proof of Lemma 7,

where T is a legal sub-matrix (for simpli
ity, we assume T

0

= T ). The �gure on the bottom illustrates the

se
ond 
ase in the proof when T is a union of legal sub-matri
es (all having the height of B).

blo
k has a non-negative sum we get that:

sum(A) =

k

X

i=1

sum(B

i

) +

k

X

i=0

sum(T

i

) � sum(B): (6)

5.4.2 Proving that Pro
edure 2 Does not Get Stu
k

Re
all that for ea
h 1 � p � m, R

p

is what remains of R at the start of the p'th iteration of

Pro
edure 2. In parti
ular, R

1

= R. In this se
tion we show that the pro
edure does not \get

stu
k". That is, for ea
h iteration p, Pro
edure 1 
an be applied to the blo
k B

p

sele
ted in this

D1
B2 B3T0 T1 T2 T3

A

B1
D2

Figure 7: An illustration for Corollary 8. Here A 
overs the blo
ks B

1

, B

2

and B

3

, and borders the blo
ks

D

1

and D

2

. The sub-matri
es T

0

{T

4

are parts of larger blo
ks (that extend above and/or below A).
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iteration, and it is possible to update the designated sums of the rows that have been shortened by

the removal of B

p

. Note that sin
e the blo
ks are sele
ted a

ording to in
reasing (non-de
reasing)

height, then in ea
h iteration there indeed exists a unique 
over A

p

of B

p

that is a maximal row-
over

with respe
t to R

p

.

For every 1 � p � m, let s

p

be the minimum height of the maximal blo
ks of R

p

, and let s

0

= 1.

Observe that whenever s

p

in
reases, it does so by a fa
tor of 2

k

for some k. This is true be
ause

the 
olumns of maximal blo
ks are legal sub-
olumns.

Lemma 9 For every 1 � p � m, Pro
edure 1 
an be applied to the blo
k B

p

sele
ted in R

p

, and the

updating pro
ess of the designated sum of rows 
an be applied. Moreover, if A is a sub-matrix of

R

p

with height of at least s

p�1

, whose 
olumns are legal sub-
olumns and whose rows are maximal

rows with respe
t to R

p

, then

P

row L2A

sum(L) = sum(A).

Proof: Let B

p

be the blo
k sele
ted in iteration p, where B

p

is an s� t sub-matrix, and let A

p

be

the maximal row-
over of B

p

with respe
t to R

p

. As noted in Subse
tion 3.1, all that is required

for Pro
edure 1 to work is:

(1) For every 
olumn K in B

p

, sum(K) � 0.

(2) For every row L in A

p

, sum(L) � 0.

(3)

P

row L2A

p

sum(L) �

P


olumn K2B

p

sum(K).

In order for the updating pro
ess to su

eed in Step 3
 of Pro
edure 2, we must have that:

(4) For ea
h 1 � ` � s, let x

`

be the sum of elements �lled in the `'th sub-row of B

p

, and let L

`

be the sub-row of A

p

that 
overs this sub-row of B

p

. Then, sum(L

`

)� x

`

� 0.

(5) If A

p

n B

p


onsists of the two sub-matri
es A

0

and A

00

(between whi
h resided B), then

sum(A

0

) � 0, sum(A

00

) � 0, and

X

row L

`

2A

p

(sum(L

`

)� x

`

) = sum(A

0

) + sum(A

00

):

By Lemma 6, Item (1) holds at the start of every iteration. In order to prove the other items

for every p, we �rst extend and generalize Item (2):

(2') Let A be any sub-matrix in R

p

having height at least s

p�1

whose 
olumns are legal sub-


olumns and whose rows are maximal rows with respe
t to R

p

. Then for every row L of A

we have sum(L) � 0, and

P

row L2A

sum(L) = sum(A).

Observe that if Item (2') holds at the start of iteration p, then in parti
ular it holds for A

p

. Hen
e

by Corollary 8

X

row L2A

p

sum(L) = sum(A

p

) � sum(B

p

) (7)

and so Item (3) holds as well.

Furthermore, if Items (1){(3) hold at the start of iteration p, then Pro
edure 1 
an be applied

su

essfully. Thus Item (4) ne
essarily holds by de�nition of Pro
edure 1. The �rst part of Item (5),


on
erning the non-negativity of A

0

and A

00

, follows from Lemma 7 very similarly to the way
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Corollary 8 follows from this lemma. The se
ond part of Item (5) follows from Item (2') holding

for A

p

and the fa
t that

P

s

`=1

x

`

= sum(B

p

) (sin
e Pro
edure 1 
ompleted su

essfully). Hen
e,

X

row L

`

2A

p

(sum(L

`

)� x

`

) = sum(A

p

)� sum(B

p

) = sum(A

0

) + sum(A

00

) (8)

as required.

Hen
e, it remains to prove that Item (2') holds at the start of every iteration p. We do so

by indu
tion on p. Consider the base 
ase, p = 1, so that R

p

= R

1

= R. By the initialization

of Pro
edure 2, for every maximal sub-row L of R, sum(L) = sum(L). By Lemma 6 (applied to

the maximal legal sub-rows that partition L), we know that sum(L) � 0. Furthermore, for every

sub-matrix A of R having height of at least s

p�1

= s

0

= 1 and whose rows are maximal sub-rows

of R,

X

row L2A

sum(L) =

X

row L2A

sum(L) = sum(A) (9)

as required.

Assuming that the indu
tion 
laim holds for p� 1, we prove it for p. Consider any sub-matrix

A having height at least s

p�1

, whose 
olumns are legal sub-
olumns and whose rows are maximal

sub-rows with respe
t to R

p

. If A also 
onsisted of maximal sub-rows with respe
t to R

p�1

, then

we are done by the indu
tion hypothesis.

Otherwise, the blo
k B

p�1

of height s

p�1

that was removed from R

p�1

, bordered A on one of

its sides. Let A

1

; : : : ; A

q

be the disjoint sub-matri
es of height s

p�1

su
h that A = [

q

h=1

A

h

. That

is, A

1

; : : : ; A

q

are lo
ated one on top of the other (for an illustration, see Figure 8). In this 
ase,

all but at most one of these sub-matri
es, say A

q

, 
onsisted of maximal sub-rows with respe
t to

R

p�1

, and B

p�1

bordered A

q

.

For ea
h of the sub-matri
es A

1

; : : : ; A

q�1

we 
an apply the indu
tion hypothesis (Item (2')).

We get that for ea
h su
h A

h

: (a) For every row L inA

h

, sum(L) � 0; and (b)

P

row L2A

h

sum(L) =

sum(A

h

).

As for A

q

, assume without loss of generality that B

p�1

bordered A

q

from the right of A

q

. Let

A

0

be the sub-matrix that bordered B

p�1

from the right of B

p�1

(A

0

may be empty). This means

that A

p�1

is of the form A

p�1

= A

q

[ B

p�1

[ A

0

(see Figure 8). But then, by de�nition of the

updating rule and sin
e it su

eeded by the indu
tion hypothesis (Items (4) and (5)), we have that

for every row L in A

q

, sum(L) � 0 and

P

row L2A

q

sum(L) = sum(A

q

).

It follows that for every row L in A we have sum(L) � 0 and

X

row L2A

sum(L) =

q

X

h=1

X

rowL2A

h

sum(L) =

q

X

h=1

sum(A

h

) = sum(A) : (10)

The indu
tion step is proven.

5.4.3 Proving that Property 1 holds at the end of Pro
edure 2

Finally, we have to show that when Pro
edure 2 terminates and R is re�lled with non-negative

values, then Property 1 holds. This will 
omplete the proof of Theorem 3.

Let

~

C

V

= f~


i;j

g be the matrix resulting from the appli
ation of Pro
edure 2 to the matrix

C

V

= f


i;j

g. For any sub-matrix T of C

V

(and in parti
ular of R), we let gsum(T ) denote the sum

of elements of T in

~

C

V

. By de�nition of the pro
edure, gsum(K) = sum(K) for every maximal legal

sub-
olumn K of R. Hen
e this holds also for every maximal sub-
olumn of R. We next prove a

related 
laim 
on
erning rows.
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Figure 8: An illustration for the indu
tion step in the proof of Lemma 9 (where q = 4).

Lemma 10 For every sub-row L in R, su
h that L is assigned sum(L) as a designated sum at

some iteration of Pro
edure 2, we have that gsum(L) = sum(L).

Observe that by 
ombining Lemma 10 with Lemma 6 we get that for every maximal sub-row L

of R, gsum(L) = sum(L) = sum(L).

Proof: Let L the the set of sub-rows L of R, su
h that L is assigned sum(L) as a designated

sum at some iteration of Pro
edure 2. Observe that the set L 
onsists exa
tly of those rows that

are maximal sub-rows for some R

p

. We prove the lemma by indu
tion on the length of L 2 L.

For the base of the indu
tion, 
onsider any sub-row L 2 L that is shortest among all sub-rows in

L. Sin
e L is shortest, it must be 
ompletely �lled in a single iteration as part of a blo
k B (or

otherwise there would be a shorter L

0

� L with a designated sum sum(L

0

)). But by de�nition of

the pro
edure, we get that gsum(L) = sum(L) as required.

Assume that the 
laim holds for every L of length less than `, we prove it for L having length

`. Consider the �rst iteration after whi
h L be
ame a maximal sub-row (and so re
eived the

designated sum sum(L)) in whi
h part of L is �lled. If all of L is �lled, then the indu
tion 
laim

follows as in the base 
ase. Otherwise, let x be the sum of elements that was �lled in the part

P � L. Let L

0

and L

00

be what remains of L to the left and right of P respe
tively. Then the

pro
edure sets sum(L

0

) + sum(L

00

) = sum(L) � x. But L

0

and L

00

are stri
tly shorter than L,

and therefore by the indu
tion hypothesis gsum(L

0

) = sum(L

0

) and gsum(L

00

) = sum(L

00

). Thus

gsum(L) = gsum(L

0

) + gsum(L

00

) + x = sum(L

0

) + sum(L

00

) + x = sum(L) as required.

De�nition 16 (Boundary) We say that a point (i; j) is on the boundary of R if (i; j) 2 R, but

either (i+ 1; j) =2 R, or (i; j + 1) =2 R, or (i+ 1; j + 1) =2 R. We denote the set of boundary points

by B.

De�nition 17 For a point (i; j), 1 � i; j � n let R

�

(i; j) denote the subset of points (i

0

; j

0

) 2

R; i

0

� i; j

0

� j, and let sum

R

(i; j) =

P

(i

0

;j

0

)2R

�

(i;j)




i

0

;j

0

and gsum

R

(i; j) =

P

(i

0

;j

0

)2R

�

(i;j)

~


i

0

;j

0

.

Property 1 and therefore Theorem 3 will follow dire
tly from the next two lemmas.

Lemma 11 For every point (i; j) 2 B, gsum

R

(i; j) = sum

R

(i; j).

Proof: Consider any point (i; j) 2 B and let U = R

�

(i; j). Let C(U) = fB

1

; : : : ; B

q

g be the

minimal set of (maximal) blo
ks whose union 
ontains U . For ea
h B

h

2 C(U) we know that
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B10
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B8

(i,j)

Figure 9: An illustration for the proof of Lemma 11. The solid line denotes the outline of U = R

�

(i; j),

where point (i; j) is in the top-right 
orner. Blo
ks B

1

{B

6

are fully 
ontained in U and therefore belong to

C

1

(U). Blo
ks B

7

and B

8

belong to C

2

(U) and blo
ks B

9

{B

11

belong to C

3

(U). Blo
k B

10

is twi
e the height

of B

9

and B

11

and so \extends out of the �gure".

gsum(B

h

) = sum(B

h

). In parti
ular this is true for every B

h

� U . Let C

1

(U) = fB

h

2 C(U) : B

h

�

Ug. Hen
e we have that

X

B

h

2C

1

(U)

gsum(B

h

\ U) =

X

B

h

2C

1

(U)

gsum(B

h

) =

X

B

h

2C

1

(U)

sum(B

h

) : (11)

If every B

h

2 C(U) is fully 
ontained in U then C

1

(U) = C(U) and we are done.

Otherwise, 
onsider the remaining B

h

's in C(U)nC

1

(U) (i.e., blo
ks that are not fully 
ontained

in U but rather interse
t it). Ea
h of them either 
ontains a 
olumn that is a sub-
olumn of 
olumn

j + 1, or a row that is a sub-row of row i+ 1 (re
all that U = R

�

(i; j)). Let the former subset be

denoted C

2

(U) and the latter C

3

(U). Thus C

2

(U) 
ontains blo
ks that \interse
t U from the right",

and C

3

(U) 
ontain blo
ks that \interse
t U from the top". See for example Figure 9.

It is important to note that C

2

(U) \ C

3

(U) = ;: If there existed a blo
k B

h

2 C

2

(U) \ C

2

(U),

it would ne
essarily 
ontain both (i; j), and the three neighboring points, (i + 1; j), (i; j + 1) and

(i+ 1; j + 1). But this 
ontradi
ts the fa
t that (i; j) is a boundary point.

For ea
h B

h

2 C

2

(U), B

h

\U is a subset of maximal legal sub-
olumns with respe
t to R (sin
e

ea
h B

h

2 C

2

(U) 
annot extend beyond row i). Let K

2

(U) denote the set of all maximal legal

sub-
olumns that belong to

S

B

h

2C

2

(U)

(B

h

\ U). Sin
e for every maximal legal sub-
olumn K, it

holds that gsum(K) = sum(K), we have that

X

B

h

2C

2

(U)

gsum(B

h

\ U) =

X

K2K

2

(U)

gsum(K) =

X

K2K

2

(U)

sum(K): (12)

Next 
onsider the blo
ks B

h

2 C

3

(U). Let L

3

(U) be the set of sub-rows in U that are maximal

sub-rows with respe
t to

S

B

h

2C

3

(U)

(B

h

\ U). Thus,

S

B

h

2C

3

(U)

(B

h

\ U) =

S

L2L

3

L. We next
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observe that for every B

h

2 C

3

(U), all blo
ks that border B

h

and belong either to C

1

(U) or to

C

2

(U), must be stri
tly shorter than B

h

. This follows from the de�nition of legal sub-
olumns.

Hen
e, the blo
ks in C

1

(U) and C

2

(U) are all removed before the blo
ks in C

3

(U).

For ea
h sub-row in L

3

(U) there exists the �rst iteration p in whi
h it be
omes a maximal

sub-row with respe
t to R

p

(following the removal of some blo
k in C

1

(U)[C

2

(U) from R

p�1

). We

partition the rows in L

3

(U) a

ordingly. Let L

p

3

(U) denote all sub-rows in L

3

(U), that are maximal

sub-rows with respe
t to R

p

but were not maximal sub-rows with respe
t to R

p�1

. Observe that in

parti
ular, L

1

3

(U) is the set of sub-rows in L

3

(U) that were already maximal sub-rows with respe
t

to R. By this de�nition the sub-rows in L

p

3

(U) 
onstitute a sub-matrix of height s

p�1

. By the

se
ond part of Lemma 9,

P

L2L

p

3

(U)

sum(L) =

P

L2L

p

3

(U)

sum(L), and by applying Lemma 10 we

get that

P

L2L

3

(U)

gsum(L) =

P

L2L

3

(U)

sum(L). Therefore,

X

B

h

2C

3

(U)

gsum(B

h

\ U) =

X

L2L

3

(U)

gsum(L) =

X

L2L

3

(U)

sum(L): (13)

By 
ombining Equations (11){(13) we get

gsum(U) =

X

B

h

2C(U)

gsum(B

h

\ U)

=

3

X

q=1

X

B

h

2C

q

(U)

gsum(B

h

\ U)

=

X

B

h

2C

1

(U)

sum(B

h

) +

X

K2K

2

(U)

sum(K) +

X

L2L

3

(U)

sum(L)

= sum(U)

L1

R(i’,j’)
<=

L2 L3
L4

L5 L6

(i’,j’)

(i,j)

Figure 10: An illustration for the proof of Lemma 12. The point (i

0

; j

0

) is as de�ned in the proof, and the

rows L

1

; : : : ; L

6

are all maximal sub-rows of R that belong to rows i

0

+ 1; : : : ; i and end by 
olumn j (that

is, the set L(i; i

0

; j)).
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Lemma 12 Let (i; j) be any point su
h that (i; j) =2 R. Then gsum

R

(i; j) = sum

R

(i; j).

Proof: Let (i

0

; j

0

) 2 R, i

0

< i, j

0

� j, be the point for whi
h j

0

is maximized, and if there are

several su
h points, let it be the one amongst them for whi
h i

0

is maximized. Thus, (i

0

; j

0

) is

maximal in the sense that for every (i

00

; j

00

), i

00

< i, j

00

� j su
h that (i

00

; j

00

) > (i

0

; j

0

) it holds that

(i

00

; j

00

) =2 R. Furthermore, among all su
h maximal points it is the right-most one (i.e., it belongs to

the 
olumn with the highest index). By de�nition, (i

0

; j

0

) belongs to B, sin
e (i

0

+ 1; j

0

) ne
essarily

does not belong to R. Let L(i; i

0

; j) be the subset of all maximal sub-rows of R that belong to

rows i

0

+ 1; : : : ; i, and end by 
olumn j. Then gsum

R

(i; j) = gsum

R

(i

0

; j

0

) +

P

L2L(i;i

0

;j)

gsum(L). By

applying Lemma 11 and Lemma 10, we get that gsum

R

(i; j) = sum

R

(i; j).

5.5 Distribution Matri
es

As noted in the introdu
tion, a sub-family of inverse Monge matri
es that is of parti
ular interest

is the 
lass of distribution matri
es. A matrix V = fv

i;j

g is said to be a distribution matrix, if

there exists a non-negative density matrix D = fd

i;j

g, su
h that every entry v

i;j

in V is of the form

v

i;j

=

P

k�i

P

`�j

d

k;`

. In parti
ular, if V is a distribution matrix then the 
orresponding density

matrix D is simply the matrix C

0

V

(as de�ned in Se
tion 3). Hen
e, in order to test that V is a

distribution matrix, we simply run our algorithm for inverse Monge matrix on C

0

V

instead of C

V

.
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