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Abstrat

Convex and Submodular funtions play an important role in many appliations, and in

partiular in ombinatorial optimization. Here we study two speial ases: onvexity in one

dimension and submodularity in two dimensions. The latter type of funtions are equivalent to

the well known Monge matries . A matrix V = fv

i;j

g

i=n

1

;j=n

2

i;j=0

is alled a Monge matrix if for

every 0 � i < i

0

� n

1

and 0 � j < j

0

� n

2

, we have v

i;j

+ v

i

0

;j

0

� v

i;j

0

+ v

i

0

;j

. If inequality holds

in the opposite diretion then V is an inverse Monge matrix (supermodular funtion). Many

problems, suh as the traveling salesperson problem and various transportation problems, an

be solved more eÆiently if the input is a Monge matrix.

In this work we present testing algorithms for the above properties. A Testing algorithm

for a predetermined property P is given query aess to an unknown funtion f , and a distane

parameter �. The algorithm should aept f with high probability if it has the property P , and

rejet it with high probability if more than an �-fration of the funtion values should be modi�ed

so that f obtains the property. Our algorithm for testing whether a one-dimensional funtion

f : [n℄ ! R is onvex (onave), has query omplexity and running time of O ((logn)=�). Our

algorithm for testing whether an n

1

�n

2

matrix V is a Monge (inverse Monge) matrix has query

omplexity and running time of O ((logn

1

� logn

2

)=�).

�
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1 Introdution

Convex funtions and their ombinatorial analogs, submodular funtions, play an important role

in many disiplines and appliations, inluding ombinatorial optimization, game theory, prob-

ability theory, and eletroni trade. Suh funtions exhibit a rih mathematial struture (see

Lov�asz [Lov83℄), whih often makes it possible to eÆiently �nd their minimum [GLS81, IFF01,

Sh00℄, and thus leads to eÆient algorithms for many important optimization problems.

Convex funtions over disrete domains are de�ned as follows.

De�nition 1 (Convex and Conave) Let f be a funtion de�ned over a disrete domain X.

The funtion f is onvex if for all x; y 2 X and for all 0 � � � 1 suh that �x+ (1 � �)y 2 X, it

holds that f(�x+(1��)y) � �f(x)+(1��)f(y). The funtion f is onave if for all x; y 2 X and

for all 0 � � � 1 suh that �x+(1��)y 2 X, it holds that f(�x+(1��)y) � �f(x)+(1��)f(y).

Submodular funtions are de�ned as follows: Let I = I

1

� I

2

� : : : � I

d

, d � 2, be a produt

spae where I

q

� R. In partiular, we are interested in disrete domains I

q

= f0; : : : ; n

q

g. The join

and meet operations are de�ned for every x; y 2 I:

(x

1

; : : : ; x

d

) _ (y

1

; : : : ; y

d

)

def

= (maxfx

1

; y

1

g; : : : ;maxfx

d

; y

d

g)

and

(x

1

; : : : ; x

d

) ^ (y

1

; : : : ; y

d

)

def

= (minfx

1

; y

1

g; : : : ;minfx

d

; y

d

g) ;

respetively.

De�nition 2 (Submodularity and Supermodularity) A funtion f : I ! R is submodular if

for every x; y 2 I, f(x _ y) + f(x ^ y) � f(x) + f(y). The funtion f is supermodular if for every

x; y 2 I, f(x _ y) + f(x ^ y) � f(x) + f(y).

Certain sublasses of submodular funtions are of partiular interest. One suh sublass is that

of submodular set funtions, whih are de�ned over binary domains. That is, I

q

= f0; 1g for every

1 � q � d, and so eah x 2 I orresponds to a subset of f1; : : : ; dg. Suh funtions are used for

example in the senario of ombinatorial autions on the internet (e.g. [dVV00℄,[LLN01℄).

Another important sublass is the lass of Monge funtions, whih are obtained when the

domain is large but the dimension is d = 2. Sine suh funtions are 2-dimensional, it is onvenient

to represent them as 2-dimensional matries, whih are referred to as Monge matries. When the

funtion is a 2-dimensional supermodular funtion the orresponding matrix is alled an inverse

Monge matrix .

The �rst problem that was shown to be solvable more eÆiently if the underlying ost matrix

is a Monge matrix is the lassial Hithok transportation problem (see Ho�man [Hof63℄). Sine

then it has been shown that many other ombinatorial optimization problems an be solved more

eÆiently in this ase (e.g. weighted bipartite mathing, and NP-hard problems suh as the traveling

salesperson problem). See [BKR96℄ for a omprehensive survey on Monge matries and their

appliations.
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1.1 Testing Convexity and Submodularity

In this paper we approah the questions of onvexity and submodularity from within the framework

of property testing [RS96, GGR98℄. (For surveys on property testing see [Ron01, Fis01℄.) Let f be

a �xed but unknown funtion, and let P be a �xed property of funtions (suh as the onvexity

or submodularity of a funtion). A testing algorithm for the property P should determine, by

querying f , whether f has the property P, or whether it is �-far from having the property for a

given distane parameter �. By �-far we mean that more than an �{fration of the values of f

should be modi�ed so that f obtains the desired property P.

Our Results. We present eÆient testing algorithms for disrete onvexity in one dimension and

for Monge matries. Spei�ally:

� We desribe and analyze an algorithm that tests whether a funtion f : [n℄ ! R is onvex

(onave). The running time of this algorithm is O (log n=�).

� We desribe and analyze a testing algorithm for Monge and inverse Monge matries whose

running time is O ((log n

1

� logn

2

)=�), when given an n

1

� n

2

matrix.

Furthermore, the testing algorithm for inverse Monge matries an be used to derive a testing

algorithm, with the same omplexity, for an important sub-family of Monge matries, named

distribution matries. A matrix V = fv

i;j

g is said to be a distribution matrix, if there exists

a non-negative density matrix D = fd

i;j

g, suh that every entry v

i;j

in V is of the form

v

i;j

=

P

k�i

P

`�j

d

k;`

. In other words, the entry v

i;j

orresponds to the umulative density of

all entries d

k;`

suh that k � i and ` � j.

In both ases the omplexity of the algorithms is linear in 1=� and polylogarithmi in the size of

the domain.

1.2 Tehniques

Convexity in One Dimension. We start with the following basi observation: A funtion f :

[n℄! R is onvex if and only if for every 1 � i � n�1, (f(i+1)�f(i))�(f(i)�f(i�1)) � 0. Given

this haraterization, onsider the di�erene funtion f

0

whih is de�ned as f

0

(i) = f(i)� f(i� 1).

The funtion f

0

an be viewed as the disrete analog of the �rst derivative of f . By the above

observation we have that f is onvex if an only if f

0

is monotone non-dereasing. Hene, a tempting

approah for testing whether f is onvex would be to test whether f

0

is monotone non-dereasing,

where this an be done in time O(log n=�) [EKK

+

00, BRW99, DGL

+

99℄.

Unfortunately this approah does not work. There are funtions f that are very far from onvex

but their di�erene funtion f

0

is very lose to monotone.

1

Therefore, instead of onsidering only

onseutive points i; i+1, we onsider pairs of points i; j 2 [n℄ that are not neessarily onseutive.

More preisely, we selet intervals fi; : : : ; jg of varying lengths and hek that for eah interval

seleted, ertain onstraints are satis�ed. If f is onvex then these onstraints are satis�ed for

every interval. On the other hand, we show that if f is �-far from onvex then the probability that

we observe a violation of some onstraint is suÆiently large.

Monge Matries. As stated above, it is onvenient to represent 2-dimensional submodular fun-

tions as 2-dimensional Monge matries. Thus a funtion f : f0; : : : ; n

1

g � f0; : : : ; n

2

g ! R an be

1

In partiular onsider the funtion f suh that for every i � n=2, f(i) = i, and for i > n=2, f(i) = i� 1. In other

words, f

0

(i) = 1 for every i exept i = n=2 where f

0

(i) = 0. Then f

0

is very lose to monotone, but it is not hard to

verify that f is far from onvex.
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represented as the matrix V = fv

i;j

g

i=n

1

;j=n

2

i;j=0

where v

i;j

= f(i; j). Observe that for every pair

of indies (i; j

0

); (i

0

; j) suh that i < i

0

and j < j

0

we have that (i; j

0

) _ (i

0

; j) = (i

0

; j

0

) and

(i; j

0

) ^ (i

0

; j) = (i; j). It follows from De�nition 2 that V is a Monge matrix (f is a 2-dimensional

submodular funtion) if and only if:

8i; j; i

0

; j

0

s.t. i < i

0

; j < j

0

: v

i;j

+ v

i

0

;j

0

� v

i;j

0

+ v

i

0

;j

and V is an inverse Monge matrix (f is a 2-dimensional supermodular funtion) if and only if:

8i; j; i

0

; j

0

s.t. i < i

0

; j < j

0

: v

i;j

+ v

i

0

;j

0

� v

i;j

0

+ v

i

0

;j

:

That is, in both ases we have a onstraint for every quadruple v

i;j

, v

i

0

;j

0

, v

i;j

0

, v

i

0

;j

suh that

i < i

0

and j < j

0

.

2

Our algorithm selets suh quadruples aording to a partiular (non-uniform)

distribution and veri�es that the onstraint is satis�ed for every quadruple seleted. Clearly the

algorithm always aepts Monge matries. The main thrust of the analysis is in showing that if the

matrix V is far from being Monge then the probability of obtaining a \bad" quadruple is suÆiently

large.

A entral building blok in proving the above, is the following ombinatorial problem, whih

may be of independent interest. Let C be a given matrix, possibly ontaining negative values, and

let R be a subset of positions in C. We are interested in re�lling the entries of C that reside in

R with non-negative values, suh that the following onstraint is satis�ed: for every position (i; j)

that does not belong to R, the sum of the modi�ed values in C that are below

3

(i; j), is the same as

in the original matrix C. That is, the sum of the modi�ed values in entries (k; `), suh that k � i

and j � `, remains as it was.

We provide suÆient onditions on C and R under whih the above is possible, and desribe

the orresponding proedure that re�lls the entries of C that reside in R. Our starting point is a

simple speial ase in whih R orresponds to a sub-matrix of C. In suh a ase it suÆes that for

eah row and eah olumn in R, the sum of the orresponding entries in the original matrix C is

non-negative. Under these onditions a simple greedy algorithm an modify C as required. Our

proedure for general subsets R is more involved but uses the sub-matrix ase as a subroutine.

1.3 Further Researh

We suggest the following open problems. First it remains open to determine the omplexity of

testing disrete onvexity (onavity) when the dimension d of the input domain is greater than

1, and for testing submodular (supermodular) funtions when the dimension d is greater than 2.

Note that though submodular funtions an be viewed as a ertain interpretation of onvexity in

dimensions d � 2, they do not neessarily satisfy De�nition 1.

It seems that our algorithm for testing Monge matries and its analysis an be extended to work

for testing the speial ase of distribution matries of dimension d > 2, where the omplexity of the

resulting algorithm is O

�

(

Q

d

q=1

logn

q

)=�

�

. However, as opposed to the d = 2 ase, where Monge

matries are only slightly more general than distribution matries, for d > 2 Monge matries are

more expressive. Hene it is not immediately lear how to adapt our algorithm to testing Monge

matries in higher dimensions.

2

It is easy to verify that for all other i; j; i

0

; j

0

(with the exeption of the symmetri ase where i

0

< i and j

0

< j),

the onstraint holds trivially (with equality).

3

We denote the lower left position of the matrix C by (0; 0):
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It would also be interesting to �nd an eÆient testing algorithm for the sublass of submodular

set funtions, whih are de�ned over binary domains.

Finally, in many optimization problems it is enough that the underlying ost matrix is a per-

mutation of a Monge matrix. In suh ases it may be useful to test whether a given matrix is a

permutation of some Monge matrix or far from any permuted Monge matrix.

Organization. The testing algorithm for onvexity is desribed in Setion 2. The remainder

of the paper is dediated to testing Monge matries. In Setion 3 we desribe several building

bloks that will be used by our testing algorithm for Monge matries. In Setion 4 we desribe a

testing algorithm for Monge matries whose omplexity is O(n=�), where we assume for simpliity

that the matrix is n � n. Building on this algorithm and its analysis, in Setion 5 we present a

signi�antly faster algorithm whose omplexity is O

�

(log

2

n)=�

�

. We onlude this setion with a

short disussion onerning distribution matries.

2 Testing Convexity in 1-Dimension

As noted in the introdution, in the ase that the domain is X = [n℄ = f0; : : : ; ng, we get the

following haraterization for onvexity, whose proof is inluded for ompleteness.

Claim 1 (1-D Convex) A funtion f : [n℄ ! R is onvex if and only if for all 1 � i � n � 1,

f(i)� f(i� 1) � f(i+ 1)� f(i).

Proof: If f is onvex then in partiular for x = i�1, y = i+1 and � = 1=2 we have �x+(1��)y =

i�1

2

+

i+1

2

= i. By De�nition 1, f(i) �

1

2

f(i � 1) +

1

2

f(i + 1), or equivalently, f(i) � f(i � 1) �

f(i+ 1)� f(i).

In the other diretion, suppose that f(i) � f(i � 1) � f(i + 1) � f(i) for every 1 � i � n � 1.

Consider any x; y 2 [n℄ and 0 < � < 1 suh that z = � �x+(1��) �y is an integer. Assume without

loss of generality that x < y. Now we have that

f(y)�f(y�1) � f(y�1)�f(y�2) � : : : � f(z+1)�f(z) � f(z)�f(z�1) � : : : � f(x+1)�f(x) :

Then, sine the di�erenes are monotone non-inreasing, the average of the �rst �(y�x) di�erenes

is greater or equal to the average of the next (1 � �)(y � x) di�erenes. Sine z = y � �(y � x) =

x+ (1� �)(y � x), we have that

(f(y)� f(y � 1)) + (f(y � 1)� f(y � 2)) + : : :+ (f(z + 1)� f(z))

�(y � x)

(1)

�

(f(z)� f(z � 1)) + (f(z � 1) � f(z � 2)) + : : :+ (f(x+ 1)� f(x))

(1� �)(y � x)

: (2)

This is equivalent to (1��)(f(y)� f(z)) � �(f(z)� f(x)), that is f(z) � �f(x) + (1��)f(y), as

required.

Denote by I

i;j

the interval fi; i+1; : : : ; jg of points. Let mid = b(i + j)=2 be the mid point of I

i;j

.

De�nition 3 For every 0 � i < j � n suh that j � i > 7, we say that the interval I

i;j

is good

with respet to f if the following holds:

f(i+ 1)� f(i) �

f(mid� 1)� f(i+ 1)

(mid� 1)� (i+ 1)

� f(mid)� f(mid� 1) � f(mid+ 1)� f(mid)

� f(mid+ 2)� f(mid+ 1) �

f(j � 1)� f(mid+ 2)

(j � 1)� (mid+ 2)

� f(j)� f(j � 1)
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Otherwise we say that the interval is bad with respet to f . If j� i � 7, then I

i;j

is good with respet

to f if and only if the funtion f is onvex over I

i;j

.

In order to test if f is onvex we test reursively if sub-intervals of I

0;n

are good.

Algorithm 1 Test-Convex

1. Repeat 2=� times: Test-Interval(I

0;n

).

2. If all of the tests in Step 1 aepted then aept, otherwise rejet.

Proedure Test-Interval(I

i;j

)

1. Chek that I

i;j

is good with respet to f . In not, rejet.

2. If j � i > 7 then: Uniformly at random all either Test-Interval(I

i;mid

) or Test-

Interval(I

mid+1;j

), where mid = b(i+ j)=2.

3. If the test in Step 2 aepted then aept, otherwise rejet.

Theorem 1 If f is onvex then Algorithm 1 always aepts, and if f is �-far from onvex then the

algorithm rejets with a probability of at least 2=3.

Proof: For the sake of brevity, unless stated otherwise, when we say that an interval is good, then

we mean with respet to f . If f is onvex then all intervals I

i;j

are good, and hene Algorithm 1

aepts with probability 1. In order to prove that if f is �-far from onvex then the algorithm

rejets with probability of at least 2=3, we prove the ontrapositive statement. Assume that the

algorithm aepts with a probability greater than a 1=3. We will show that f is �-lose to a onvex

funtion.

To this end we de�ne a tree, whose verties orrespond to all possible intervals I

i;j

that may be

tested reursively in alls to Test-Interval(I

i;j

). Spei�ally, the root of the tree orresponds to I

0;n

.

The hildren of the internal vertex orresponding to I

i;j

are the verties orresponding to I

i;mid

and I

mid+1;j

, where mid = b(i+ j)=2. The leaves of the tree orrespond to the smallest intervals

tested, that is, intervals I

i;j

for whih j � i � 7.

We say that an internal vertex in the tree is good if the orresponding interval is good. We say

that a leaf is good if its orresponding interval and all its anestors are good. Otherwise, the vertex

(leaf) is bad. We say that a path from the root to a leaf is good if all verties along it are good.

Otherwise the path is bad. For eah level ` in the tree, ` = 0; : : : ; log n, let B

`

be the subset of

verties in the `'th level of the tree that are bad but whose anestors are all good. Let B =

S

`

B

`

,

and let �

`

be the fration of verties in level ` of the tree that belong to B

`

.

Sub-Claim 1 If Algorithm 1 aepts f with a probability greater than a 1=3, then

P

`

�

`

� �.

Proof: Assume by ontradition that

P

`

�

`

> �. Observe that by the de�nition of B, all leaves

whih are desendents of a vertex in B are bad, and every bad leaf either belongs to B or has a

single anestor in B. Therefore, if

P

`

�

`

> �, then the fration of bad leaves is greater than �. But

in suh a ase, the probability that the algorithm does not follow a bad path to a bad leaf (passing

through a vertex in B), in any one of its 2=� iterations, is at most (1 � �)

2=�

< e

�2

< 1=3. This

ontradits our assumption that the algorithm aepts with a probability greater than a 1=3. �
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Hene we assume from now on that

P

`

�

`

� �. Note also that in this ase I

0;n

=2 B. We show how

to modify f in at most � �n plaes so that the resulting funtion, denoted g, is onvex. In partiular,

we shall modify the value of f on every bad interval I

i;j

whose orresponding vertex in the tree

belongs to B. The value of g is de�ned to be the same as the value of f on all points outside of these

intervals. Sine

P

`

�

`

� �, the total fration of points modi�ed is at most � as required. Observe

that by the de�nition of the tree and B, for every two intervals whose orresponding verties belong

to B, the intersetion of the intervals is empty. Hene we an modify eah one of these intervals

independently.

Let I

i;j

be a bad interval orresponding to a vertex in B. We modify f on points in I

i;j

as

follows:

� f(i); f(i+1), f(j�1) and f(j) remain unhanged. That is, set g(i) = f(i), g(i+1) = f(i+1),

g(j � 1) = f(j � 1) and g(j) = f(j).

� For every t, i+ 1 < t < j � 1, set g(t) = f(i+ 1) +

f(j�1)�f(i+1)

(j�1)�(i+1)

� (t� (i+ 1)).

Sub-Claim 2 Let I

i;j

be a bad interval orresponding to a vertex in B. Then for every i < t < j,

g(t)� g(t� 1) � g(t+ 1)� g(t).

Proof: By de�nition of B, the parent of I

i;j

is good (the parent exists by our assumption that

I

0;n

62 B). Hene

f(i+ 1)� f(i) �

f(j � 1)� f(i+ 1)

(j � 1)� (i+ 1)

� f(j)� f(j � 1): (3)

By de�nition of g(�), g(i + 1) � g(i) = f(i + 1) � f(i), g(j) � g(j � 1) = f(j) � f(j � 1), and for

every i + 1 < t � j � 1, g(t) � g(t � 1) =

f(j�1)�f(i+1)

(j�1)�(i+1)

. Therefore, for every i + 1 < t < j � 1,

g(t) � g(t � 1) = g(t + 1) � g(t), and for both t = i + 1 and t = j � 1, we have g(t) � g(t � 1) �

g(t+ 1)� g(t), as required. �

Sub-Claim 3 The funtion g is onvex.

Proof: We shall �rst show that all intervals I

i;j

orresponding to verties in the tree are good with

respet to g, and from this derive the onvexity of g.

We start with the �rst part. Consider any suh interval I

i;j

whose orresponding vertex in the

tree is v. Let Anhor = fi; i+1;mid� 1;mid;mid+1;mid+2; j � 1; jg be the set of points whih

partiipate in the de�nition of a good interval I

i;j

. We will show that the value of g on points

p 2 Anhor is suh that the interval I

i;j

is good with respet to g. There are two ases:

1. The interval I

i;j

is good with respet to f , and v does not have any anestors in B. If v also

has no desendents in B, then it learly remains good with respet to g, sine no modi�ation

is performed on any point in the interval, and so g(t) = f(t) for every i � t � j. Otherwise, v

has a desendent in B. In this ase, let p 2 Anhor, let v

0

be a desendent of v, and let I

i

0

;j

0

denote the interval orresponding to v

0

. If i

0

� p � j

0

, then by de�nition of the tree, either

p = i

0

or p = i

0

+ 1 or p = j

0

� 1 or p = j

0

. Therefore, even if v

0

2 B and the interval I

i

0

;j

0

is

modi�ed, then by the de�nition of g we have that g(p) = f(p) for every p 2 Anhor. Thus

I

i;j

remains good with respet to g.

2. Either v 2 B or v has an anestor in B. In the former ase, let v

0

= v, and in the latter

ase let v

0

be the anestor that v has in B. Let I

i

0

;j

0

be the orresponding interval of v

0

. By

de�nition, I

i;j

� I

i

0

;j

0

. By Sub-Claim 2, g(t)� g(t� 1) � g(t+ 1)� g(t) for every i

0

< t < j

0

,

and in partiular for every i < t < j. It follows that I

i;j

is good with respet to g.
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Hene all intervals orresponding to verties in the tree are good with respet to g. We now prove

that for every 0 < t < n it holds that g(t) � g(t � 1) � g(t + 1) � g(t), and thus g is onvex.

Let I

i;j

be the smallest interval in the tree suh that i < t < j. If j � i � 7 then we are done,

sine the goodness of I

i;j

in this ase means that g is onvex over the whole interval. Otherwise,

either t = mid or t = mid + 1, where mid = b(i + j)=2. To verify this, note that if this were

not the ase then either i < t < mid or mid + 1 < t < j. Hene t is ontained in a smaller

interval in the tree, ontraditing the minimality of I

i;j

. But sine I

i;j

is good with respet to g,

g(mid)� g(mid� 1) � g(mid+ 1)� g(mid), and g(mid+ 1)� g(mid) � g(mid+ 2)� g(mid+ 1).

Thus we are done with the proof of Sub-Claim 3, and Theorem 1 follows.

3 Building Bloks for Our Algorithms for Testing Inverse Monge

From this point on we fous on inverse Monge matries. Analogous laims hold for Monge matries.

We also assume for simpliity that the dimensions of the matries are n

1

= n

2

= n. In what follows

we provide a haraterization of inverse Monge matries that is exploited by our algorithms. Given

any real valued matrix V = fv

i;j

g

i;j=n

i;j=0

we de�ne an (n + 1) � (n + 1) matrix C

0

V

= f

i;j

g

i;j=n

i;j=0

as

follows:

� 

0;0

= v

0;0

;

� For i > 0: 

i;0

= v

i;0

� v

i�1;0

;

� For j > 0: 

0;j

= v

0;j

� v

0;j�1

;

� And for every i; j > 0:



i;j

= (v

i;j

� v

i�1;j

)� (v

i;j�1

� v

i�1;j�1

)

= (v

i;j

� v

i;j�1

)� (v

i�1;j

� v

i�1;j�1

): (4)

Let C

V

= f

i;j

g

i;j=n

i;j=1

be the sub-matrix of C

0

V

that inludes all but the �rst (0'th) row and

olumn of C

0

V

. The following two laims are well known and easy to verify. We inlude their proofs

for ompleteness.

Claim 2 For every 0 � i; j � n, v

i;j

=

P

i

k=0

P

j

`=0



k;`

.

Proof: The laim is proved by indution on i and j.

The base ase, i; j = 0 holds by de�nition of 

0;0

.

Consider any i > 0 and assume that the laim holds for every k < i, j = 0. We prove it for

i and for j = 0. By de�nition of 

i;0

we have v

i;0

= v

i�1;0

+ 

i;0

. By the indution hypothesis,

v

i�1;0

=

P

i�1

k=0



k;0

, and the indution step follows. The laim is similarly proved for every j > 0

and i = 0.

Finally, onsider any i; j > 0 and assume that the laim holds for every k < i and ` � j, and for

every k � i and ` < j. We prove it for i; j. By de�nition of 

i;j

, v

i;j

= v

i�1;j

+(v

i;j�1

�v

i�1;j�1

)+

i;j

.

By the indution hypothesis,

v

i�1;j

+ (v

i;j�1

� v

i�1;j�1

) =

i�1

X

k=0

j

X

`=0



k;`

+

j�1

X

`=0



i;`

and the indution step follows.
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Claim 3 A matrix V is an inverse Monge matrix if and only if C

V

is a non-negative matrix.

Proof: If V is an inverse Monge matrix, then in partiular, for every i; j � 1 we have that

v

i;j

+ v

i�1;j�1

� v

i;j�1

+ v

i�1;j

, whih is equivalent to the ondition 

i;j

� 0.

In the other diretion, onsider any two points (i; j) and (i

0

; j

0

) suh that 0 � i < i

0

� n,

0 � j < j

0

� n. Using Claim 2 we obtain

v

i

0

;j

0

� v

i

0

;j

� v

i;j

0

+ v

i;j

=

i

0

X

k=0

j

0

X

`=0



k;`

�

i

0

X

k=0

j

X

`=0



k;`

�

i

X

k=0

j

0

X

`=0



k;`

+

i

X

k=0

j

X

`=0



k;`

=

i

0

X

k=i+1

j

0

X

`=j+1



k;`

(5)

But C

V

is non-negative and therefore v

i

0

;j

0

� v

i

0

;j

� v

i;j

0

+ v

i;j

� 0 as required.

It follows from Claim 3 that if we �nd some entry of C

V

that is negative, then we have evidene

that V is not an inverse Monge matrix. However, it is not neessarily true that if V is far from

being an inverse Monge matrix, then C

V

ontains many negative entries. For example, suppose

that C

V

is 1 in all entries exept the entry 

n=2;n=2

whih is �n

2

. Then it an be veri�ed that

V is very far from being an inverse Monge matrix (this an be proved by showing that there are

�(n

2

) disjoint quadruples v

i;j

; v

i

0

;j

0

; v

i;j

0

; v

i

0

;j

in V , suh that from any suh quadruple at least one

value should be hanged in order to transform V into an inverse Monge matrix). However, as our

analysis will show, in suh a ase there are many sub-matries in C

V

whose sum of elements is

negative. Thus our testing algorithms will sample ertain sub-matries of C

V

and hek that the

sum of elements in eah sub-matrix sampled is non-negative. We �rst observe that it is possible to

hek this eÆiently.

Claim 4 Given aess to V it is possible to hek in time O(1) if the sum of elements in a given

sub-matrix A of C

V

is non-negative. In partiular, if the lower-left entry of A is (i; j) and its

upper-right entry is (i

0

; j

0

) then the sum of elements of A is v

i

0

;j

0

� v

i

0

;j�1

� v

i�1;j

0

+ v

i�1;j�1

.

Proof: Assume that A = (

k;`

)

k=i

0

;`=j

0

k=i;`=j

is a sub-matrix of C

V

. Reall that for any q; p, we have

v

q;p

=

P

q

k=0

P

p

`=0



k;`

. Thus the sum of elements of A is:

i

0

X

k=i

j

0

X

`=j



k;`

=

i

0

X

k=0

j

0

X

`=j



k;`

�

i�1

X

k=0

j

0

X

`=j



k;`

=

0

�

i

0

X

k=0

j

0

X

`=0



k;`

�

i

0

X

k=0

j�1

X

`=0



k;`

1

A

�

0

�

i�1

X

k=0

j

0

X

`=0



k;`

�

i�1

X

k=0

j�1

X

`=0



k;`

1

A

= (v

i

0

;j

0

� v

i

0

;j�1

)� (v

i�1;j

0

� v

i�1;j�1

) :

Therefore omputing the sum of elements of any sub-matrix A of C

V

, an be done by heking only

4 entries in the matrix V .
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3.1 Filling Sub-matries

An important building blok for the analysis of our algorithms is a proedure for \�lling in" a

sub-matrix. That is, given onstraints on the sum of elements in eah row and olumn of a given

sub-matrix, we are interested in assigning values to the entries of the sub-matrix so that these

onstraints are met.

Spei�ally, let a

1

; : : : ; a

s

and b

1

; : : : ; b

t

be non-negative real numbers suh that

P

s

i=1

a

i

�

P

t

j=1

b

j

. Then it is possible to onstrut an s � t non-negative real matrix T , suh that the sum

of elements in olumn j is exatly b

j

and the sum of elements in row i is at most a

i

. In the speial

ase that

P

s

i=1

a

i

=

P

t

j=1

b

j

, the sum of elements in row i will equal a

i

. In partiular, this an be

done by applying the following proedure, whih is the same as the one applied to obtain an initial

feasible solution for the linear-programming formulation of the transportation problem.

Proedure 1 [Fill Matrix T = (t

i;j

)

i=s;j=t

i;j=1

℄

Initialize �a

i

= a

i

for i = 1; : : : ; s and

�

b

j

= b

j

for j = 1; : : : ; t.

(In eah of the following iterations, �a

i

is an upper bound on what remains to be �lled in row i,

and

�

b

j

is what remains to be �lled in olumn j.)

for j = 1,. . . ,t:

for i = 1,. . . ,s:

Assign to entry (i; j) the value x = minf�a

i

;

�

b

j

g

Update �a

i

= �a

i

� x,

�

b

j

=

�

b

j

� x.

Claim 5 Proedure 1 �lls the matrix T with non-negative values t

i;j

, suh that at the end of the

proedure,

P

s

i=1

t

i;j

= b

j

for every j = 1; : : : ; t, and

P

t

j=1

t

i;j

� a

i

for every i = 1; : : : ; s. If initially

P

t

j=1

b

j

=

P

s

i=1

a

i

then

P

t

j=1

t

i;j

= a

i

for every i = 1; : : : ; s.

Proof: Notie that initially �a

i

= a

i

� 0 and

�

b

j

= b

j

� 0. Thus when we update �a

i

= �a

i

� x =

�a

i

�minf�a

i

;

�

b

j

g � 0 and similarly

�

b

j

=

�

b

j

� x =

�

b

j

�minf�a

i

;

�

b

j

g � 0. Therefore the �a

i

's and

�

b

j

's

are always non-negative. Hene all values x �lled in T are non-negative, sine x = minf�a

i

;

�

b

j

g � 0.

Furthermore, after eah suh update the new sum over the �a

i

's equals the old sum over the �a

i

's

minus x and a similar statement holds for the sum over the

�

b

j

's. Thus at all stages of the proedure,

P

s

i=1

�a

i

�

P

t

j=1

�

b

j

, and if initially

P

s

i=1

a

i

=

P

t

j=1

b

j

then

P

s

i=1

�a

i

=

P

t

j=1

�

b

j

.

We now show that the sum of elements in eah olumn is as required. Observe that the

proedure �lls the olumns one by one. Therefore when we start to �ll olumn j we have

�

b

j

= b

j

.

Sine

P

s

i=1

�a

i

�

P

t

j=1

�

b

j

at this stage, and all �a

i

's are non-negative, neessarily,

P

s

i=1

�a

i

�

�

b

j

= b

j

.

Let 1 � k � s be the minimum integer suh that

P

k

i=1

�a

i

� b

j

. Then by de�nition of the proedure,

for every i < k, the entry (i; j) is �lled with the value �a

i

, and the entry (k + 1; j) is �lled with the

value b

j

�

P

k

i=1

�a

i

. The total is hene b

j

as required.

As for the rows, at all stages �a

i

equals a

i

minus the sum of all elements �lled so far in row i.

Therefore sine �a

i

� 0, then then sum of elements in row i is at most a

i

. Furthermore, if initially

P

s

i=1

a

i

=

P

t

j=1

b

j

, then the sum of elements in row i will be exatly a

i

. To show this note that

at the end of the proedure,

P

t

j=1

�

b

j

= 0, sine eah

�

b

j

equals b

j

minus the sum of all elements in

olumn j, and we have shown that the sum of elements in olumn j is b

j

. But

P

s

i=1

�a

i

=

P

t

j=1

�

b

j

,

and therefore also

P

s

i=1

�a

i

= 0 at the end. Sine �a

i

� 0, this means that �a

i

= 0. Hene the sum of

elements in row i must be a

i

.
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4 A Testing Algorithm for Inverse Monge Matries

We �rst present a simple algorithm for testing if a matrix V is an inverse Monge Matrix, whose

running time is O(n=�). In the next setion we show a signi�antly faster algorithm that is partly

based on the ideas presented here. We may assume without loss of generality that n is a power of

2. This is true sine our algorithms probe the oeÆients matrix C

V

, and we may simply \pad" it

by 0's to obtain rows and olumns that have lengths whih are powers of 2 and run the algorithm

with � �=4. We shall need the following two de�nitions for both algorithms.

De�nition 4 (Sub-Rows, Sub-Columns and Sub-Matries) A sub-row in an n�n matrix is

a onseutive sequene of entries that belong to the same row. The sub-row ((i; j); (i; j+1); : : : ; (i; j+

t�1)) is denoted by [ ℄

1;t

i;j

. A sub-olumn is de�ned analogously, and is denoted by [ ℄

s;1

i;j

= ((i; j); (i+

1; j); : : : ; (i + s � 1; j)). More generally, an s � t sub-matrix whose bottom-left entry is (i; j) is

denoted [ ℄

s;t

i;j

.

De�nition 5 (Legal Sub-Matries) A sub-row in an n � n matrix is a legal sub-row if it an

result from biseting the row of length n that ontains it in a reursive manner. That is, a omplete

(length n) row is legal, and if [ ℄

1;t

i;j

is legal, then so are [ ℄

1;t=2

i;j

and [ ℄

1;t=2

i;j+t=2

. A legal sub-olumn is

de�ned analogously. A sub-matrix is legal if both its rows and its olumns are legal.

Note that the legality of a sub-row [ ℄

1;t

i;j

is independent of the atual row i it belongs to, but rather

it depends on its starting position j and ending position j + t � 1 within its row. An analogous

statement holds for legal sub-olumns. See also Figure 1 for an illustration of the onept of legal

sub-matries.

16
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7
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1

16151413121110987654321

 

Figure 1: An illustration of three legal sub-matries. One of the legal sub-matries is a square (4� 4) sub-

matrix, and the other two are retangular (but legal) sub-matries. The 8� 1 sub-matrix on the top-right

is a legal sub-olumn

Although a sub-matrix is just a olletion of positions (entries) in an n � n matrix, we talk

throughout the paper about sums of elements in ertain sub-matries A of C

V

. In this we mean

the sum of elements of C

V

determined by the set of positions in A.
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De�nition 6 (Good and Bad Sub-Matries) We say that a sub-matrix A of C

V

is good if the

sum of elements in eah row of A is non-negative and the sum of elements in eah olumn of A is

non-negative. Otherwise, A is bad.

De�nition 7 (Good and Bad Points) We say that point (i; j) is good if all legal square sub-

matries A of C

V

whih ontain (i; j) are good. Otherwise, the point is bad.

Algorithm 2 [Test Monge I℄

1. Choose 8=� points in the matrix C

V

and hek that they are good.

2. If all points are good then aept, otherwise rejet.

By Claim 4, it is possible to hek in onstant time that the sum of elements in a sub-row

(sub-olumn) of C

V

is non-negative. Therefore, it is possible to test that an s � s square sub-

matrix A of C

V

is good in time �(s). Notie that every point in an n � n matrix is ontained

in log n legal square sub-matries. Hene the time required to hek whether a point is good is

O(n)+O(n=2)+ : : :+O(n=2

i

)+ : : :+O(1) = O(n), and the omplexity of the algorithm is O(n=�).

Theorem 2 If V is an inverse Monge matrix then Algorithm 2 always aepts, and if V is �-far

from being an inverse Monge matrix, then Algorithm 2 rejets with probability at least 2=3.

Proof: The �rst part of the theorem follows diretly from Claim 3. In order to prove the seond

part of the theorem, we show that if V is �-far from being inverse Monge, then C

V

ontains more

than (�=4)n

2

bad points. The seond part of the theorem diretly follows beause the probability

in suh a ase that no bad point is seleted by the algorithm, is at most (1� �=4)

(8=�)

< e

�2

< 1=3.

Assume ontrary to the laim that C

V

ontains at most (�=4)n

2

bad points. We shall show

that by modifying at most �n

2

entries in V we obtain an inverse Monge matrix (in ontradition to

our assumption onerning V ). Let us look at the set of bad points in C

V

, and for eah suh bad

point look at the largest bad legal square sub-matrix in C

V

that ontains this bad point. By our

assumption on the number of bad points, it must be the ase that the area of all these maximal

bad sub-matries is at most (�=4)n

2

, beause all the points in a bad sub-matrix are bad.

For eah maximal bad legal square sub-matrix B of C

V

we will look at the legal square sub-

matrix A that ontains B. By de�nition of legal square sub-matries, the matrix A is uniquely

de�ned. By the maximality of B, the sub-matrix A must be good. Indeed, sine B is maximal, if

it is of size s� s where s < n, then the legal square sub-matrix of size 2s� 2s that ontains it must

be good. But if s = n, then B = C

V

implying that all n

2

points in C

V

are bad, ontraditing our

assumption on the number of bad points.

Next observe that every two di�erent maximal bad legal square sub-matries B and B

0

are

disjoint. This is true sine every two di�erent legal square sub-matries are either disjoint, or one

is ontained in the other. Combining this with the fat that for eah maximal bad legal square

sub-matrix we take the good square legal sub-matrix that is 4 times its size, the area of the union

of all these good sub-matries is at most 4 � (�=4)n

2

= �n

2

.

Turning to the olletion of resulting good sub-matries, note that every two of these sub-

matries are either disjoint, or are exatly the same, or one is ontained in the other. If a good

sub-matrix is stritly ontained in another one, then we ignore it, and deal only with the larger

good sub-matrix ontaining it. Thus we have a set of disjoint good sub-matries that ontain

all negative entries in the matrix. For eah of these good sub-matries A, we modify A so that it

ontains only non-negative elements, and the sum of elements in eah row and olumn of A remains

11



as it was. This an be done by applying Proedure 1 to A as desribed in Setion 3.1 (using the

atual (non-negative) sums of rows and olumns of A as the input to the proedure).

Note that after modifying all these good sub-matries of C

V

, the new matrix C

V

is non-negative,

and thus the orresponding new matrix V must be an inverse Monge matrix. It remains to show,

that at most �n

2

values were hanged in V following the hanges to C

V

. Notie that we made sure

that the sum of elements in eah row and olumn of eah modi�ed sub-matrix A remains as it was.

Therefore the values of all points v

k;`

in V that are outside A are not a�eted by the hange to A,

sine by Claim 2 we have that v

k;`

=

P

k

i=0

P

`

j=0



i;j

.

5 A Faster Algorithm for Inverse Monge Matries

Algorithm 2 desribed above has running time linear in n, whih is already sub-linear in the size

of the matrix, n

2

. In this setion we show how to signi�antly improve the dependene on n. We

present a variant of the algorithm whose running time is O(�

�1

log

2

n). The new algorithm will

be based on a similar priniple as that of Algorithm 2. That is, it will uniformly selet points

and verify that ertain sub-matries that ontain them are good. However, there will be two main

di�erenes whih we now desribe briey.

Algorithm 2 su�ers from a relatively slow running time, sine for eah sub-matrix that the

algorithm heks, it veri�es that the sum of elements in every row and olumn is non-negative.

Therefore, we �rst relax the onept of a good sub-matrix and demand only that the sum of all

its elements be non-negative (instead of the sum of every row and olumn). This hange however

requires us to hek for eah point seleted by the algorithm, not only that the legal square sub-

matries whih ontain it are good, but rather to verify that all legal sub-matries that ontain

the point are good. Atually, we hek something slightly stronger: The algorithm will verify for

eah legal sub-matrix T that it examines that the 4 legal equal-size sub-matries that reside within

T and are half of T 's length in eah dimension, are good as well. In order to formalize the above,

we �rst rede�ne the onepts of good (bad) sub-matries and good (bad) points, and introdue the

notion of tainted sub-matries and tainted points.

De�nition 8 (Good and Bad Sub-Matries and Points) A (legal) sub-matrix T of C

V

is

good if the sum of all its elements is non-negative. Otherwise, T is bad.

A point is good if every legal sub-matrix of C

V

that ontains it is good. Otherwise the point is

bad.

De�nition 9 (Tainted Sub-Matries and Points) A good legal sub-matrix T of C

V

is tainted

if any one of the four legal sub-matries that it ontains and are half its height and half its width is

bad. A point is tainted if some legal sub-matrix that ontains it is tainted.

Note that every bad point is tainted, but good points may be tainted as well.

For the sake of the presentation, we shall assume that every row and every olumn in C

V

(that

is, every sub-row and sub-olumn of length n) have non-negative sums. In Subsetion 5.2 we explain

how to remove this assumption. Note that this assumption implies that every s� n sub-matrix is

good, and similarly every n� s sub-matrix is good (but of ourse it has no impliations on smaller

sub-matries).

Algorithm 3 [Test Monge II℄

1. Uniformly selet 2=� points in the matrix C

V

and hek for eah of them whether it is tainted.

12



2. If no point seleted is tainted then aept, otherwise rejet.

Note that by De�nition 5, eah point in an n � n matrix is ontained in O(log

2

n) legal sub-

matries. Thus by Claim 4, heking whether a point is tainted takes time O(log

2

n). Therefore

the running time of the algorithm is O((log

2

n)=�).

Theorem 3 If V is an inverse Monge matrix then Algorithm 3 always aepts, and if V is �-far

from being an inverse Monge matrix, then Algorithm 3 rejets with probability at least 2=3.

5.1 Outline of the Proof of Theorem 3

If V is an inverse Monge matrix then by Claim 3 all elements in C

V

are non-negative. This diretly

implies that all (legal) sub-matries and good, and so all points are good and are not tainted. Hene

in this ase the algorithm always aepts. Suppose that V is �-far from being inverse Monge. We

laim that in suh a ase C

V

must ontain more than �n

2

tainted points, ausing the algorithm to

rejet with probability at least

1� (1 � �)

(2=�)

> 1� e

�2

> 2=3:

Assume ontrary to the laim that C

V

ontains at most �n

2

tainted points. Our goal from this

point on is to show that in suh a ase V is �-lose to being an inverse Monge matrix.

The proof of this part will follow similar lines to those used in the proof of Theorem 2. That is,

we onsider all maximal bad legal sub-matries of C

V

, and for eah suh bad sub-matrix we onsider

the legal good sub-matrix that is 4 times its area and ontains it. One again, this sub-matrix is

unique. By De�nition 9, this sub-matrix is tainted. We then take the union of all these good but

tainted sub-matries. By our assumption on the number of tainted points, the area of this union is

at most �n

2

sine all points in the union are tainted.

Finally we show how to modify the values in this union, so that the resulting matrix is an

inverse Monge matrix. This time however, sine the maximal bad sub-matries may interset

(whih was not the ase in the slower algorithm), the good tainted sub-matries that ontain them

may interset in non-trivial ways (that is, not only by oiniding or by strit ontainment). As a

result, the union of the good sub-matries has a possibly omplex struture (and in partiular it

is no longer a simple union of disjoint sub-matries), and the proess of properly modifying this

union is muh more involved. We now desribe preisely the neessary de�nitions and proeed with

a detailed proof.

De�nition 10 (Maximal bad legal sub-matrix) A bad legal sub-matrix T of C

V

is a maximal

bad legal sub-matrix of C

V

if it is not ontained in any larger bad legal sub-matrix of C

V

.

Now onsider all maximal bad legal sub-matries of C

V

. Note that every negative entry in

C

V

is ontained in the union of these bad sub-matries. For eah suh sub-matrix B let us take

the (unique) legal sub-matrix T that ontains it and has twie the number of rows and twie the

number of olumns of B (by our assumption that all full rows and olumns have a non-negative

sum it is indeed possible to double the rows and olumns of B). Then by the maximality of B,

the resulting sub-matrix is good. We now take the union of all these good (but tainted) legal

sub-matries. Reall that the area of the union of all tainted (legal) sub-matries of C

V

is at most

�n

2

. Denote the union of all these good tainted sub-matries by R. See for example Figure 2.

In Subsetions 5.3 and 5.4 we show that it is possible to hange the (at most �n

2

) entries of C

V

within R to non-negative values so that the following property holds:
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Figure 2: An example of the struture of a subset R, where R is the union of all gray ells in the matrix

(both dark and light gray). All values in ells outside of R are non-negative, and are not displayed for sake

of simpliity. The bad legal sub-matries determining R are the dark gray sub-matries. Eah is ontained

inside a good but tainted legal sub-matrix that has twie the number of rows and twie the number of

olumns (good tainted sub-matries are marked both by light and dark gray). For example, there is a bad

sub-matrix in olumn 1, rows 13 and 14, and the good legal sub-matrix ontaining it is the sub-matrix over

olumns 1 and 2 and rows 13 through 16. Observe that maximal bad legal sub-matries may interset. For

example, the bad sub-matrix ontaining the two ells in row 9 and olumns 5 and 6 intersets with the bad

sub-matrix ontaining the two ells in olumn 5 and rows 9 and 10. Their orresponding good sub-matries

also interset.

Property 1 (Sum Property for R) For every point (i; j) outside of R, the sum of

the elements in the modi�ed entries (i

0

; j

0

) within R suh that i

0

� i and j

0

� j is the

same as in the original matrix C

V

.

Let

~

C

V

be the matrix obtained from C

V

by modifying R so that Property 1 holds, and let

~

V be

the matrix whih orresponds to

~

C

V

. Then it follows from Claim 2 that

~

V is at most �-far from the

original matrix V , and this ompletes the proof of Theorem 3. Before we ontinue with showing

how to obtain Property 1, we explain shortly how to remove the assumption that all (full) rows

and olumns in C

V

have a non-negative sum.

5.2 Dealing with Rows/Columns Having a Negative Sum

Suppose �rst that � � 4=n. Then we may diretly hek in time O(1=�) that in fat all rows

and olumns of the matrix C

V

have non-negative sums (using Claim 4), and rejet if some row or

olumn has a negative sum. Hene in this ase our assumption is valid. Thus assume that � > 4=n.

First we slightly modify Algorithm 3 so that it uniformly selets 4=� points in C

V

(instead of

2=�). In suh a ase, if C

V

ontains more than (�=2)n

2

tainted points then the algorithm rejets

with probability at least 2=3. We thus assume that C

V

ontains at most (�=2)n

2

tainted points

and strive to show that in suh a ase V is �-lose to being an inverse Monge matrix. Sine we do

14



not assume that every row and olumn in C

V

has a non-negative sum, we �rst modify C

V

so that

it has this property.

Consider eah row i in C

V

whose sum of elements in negative. Suppose that we modify the

last entry in the row, 

i;n

, so that the new sum of all elements is 0. Similarly, we modify the last

entry 

n;j

in eah olumn j that has a negative sum. Let

�

C

V

be the resulting matrix, and let

�

V be

the matrix orresponding to

�

C

V

. Then all rows and olumns in

�

C

V

have a non-negative sum, and

by Claim (2)

�

V and V di�er on at most 2n� 1 < (�=2)n

2

entries (at most all elements in the last

olumn and last row).

Now we may de�ne the region R as we did in the previous subsetion. Note that in this ase

the area of the region R is at most (�=2)n

2

. We an therefore ontinue in proving that it is possible

to modify only the elements within R so that they are all non-negative and Property 1 holds. This

will imply that the total number of entries that should be modi�ed (�rst to obtain non-negative

rows and olumns, and then to re�ll R) is at most �n

2

, as desired.

5.3 Re�lling R to Obtain Property 1

Let R be as de�ned in Setion 5.1. Reall that R onsists of a union of good legal sub-matries.

(The fat that they are tainted is no longer relevant.) In the following disussion, when we talk

about elements in sub-matries of R we mean the elements in C

V

determined by the orresponding

set of positions in R.

We are interested in re�lling the entries in R with non-negative values, so that Property 1 will

hold. Note that if R is just a sub-matrix (blok) of C

V

then we an use Proedure 1 to re�ll R

as desired. However, in general the struture of R is more omplex. We show that there is a way

to partition R into disjoint bloks and re�ll eah blok using Proedure 1. In Subsetion 5.3.1 we

de�ne preisely what bloks are and present several other notions that are needed for the re�lling

proedure. The re�lling proedure for R is desribed in Subsetion 5.3.2 and its orretness is

proved in Subsetion 5.4.

5.3.1 Preliminaries for the Re�lling Proedure

As stated above, the re�lling proedure will partition R into disjoint bloks (sub-matries) and �ll

eah blok separately with non-negative values, so that Property 1 is maintained. We start with

de�ning the following term that will be needed to de�ne bloks.

De�nition 11 (Maximal (legal) sub-row/olumn) Given a subset R of entries in an n � n

matrix, a sub-row T is a maximal (legal) sub-row with respet to R if T is ontained in R and there

is no larger (legal) sub-row T

0

suh that T � T

0

� R. A maximal (legal) sub-olumn with respet to

R is de�ned analogously.

For sake of suintness, whenever it is lear what R is, we shall just say maximal (legal) sub-

row and drop the suÆx, \with respet to R". Note that a maximal sub-row is simply a maximal

onseutive sequene of entries in R that belong to the same row, while a maximal legal sub-row

is a more onstrained notion. In partiular, a maximal sub-row may be a onatenation of several

maximal legal sub-rows. We an now de�ne bloks as follows.

De�nition 12 (Maximal Blok) A maximal blok B = [ ℄

s;t

i;j

in R is a sub-matrix ontained in

R whih has the following property: It onsists of a maximal onseutive sequene of maximal legal

sub-olumns of the same height. The maximality of eah sub-olumn is as in De�nition 11. That

is, for every j � r � j + t� 1, the olumn [ ℄

s;1

i;r

is a maximal legal sub-olumn (with respet to R).
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Figure 3: An example of the partition of R shown in Figure 2 into maximal bloks (numbered B

1

{B

7

).

Note that the ratio between the heights of any two bloks is always a power of 2. Furthermore, the bloks

are aligned in the following way. Suppose a blok B has height s and a blok B

0

has height s

0

� s and some

of their sub-rows belong to the same row of the matrix (e.g., B

3

and B

4

, or B

4

and B

5

). Then the shorter

blok B

0

must be aligned either with the �rst or seond half of B, or with one of the quarters of B, or with

one of its eighth's, et.

The height of a maximal blok B is the height of the olumns in B (equivalently, the number of

rows in B).

The maximality of the sequene of sub-olumns in a blok B = [ ℄

s;t

i;j

means that we annot extend

the sequene of olumns neither to the left nor to the right. That is, neither [ ℄

s;1

i;j�1

nor [ ℄

s;1

i;j+t

are

maximal legal sub-olumns in R. (Spei�ally, eah is either not fully ontained in R or R ontains

a larger legal sub-olumn that ontains it.)

We shall sometimes refer to maximal bloks simply as bloks. Observe that by this de�nition, R

is indeed partitioned in a unique way into maximal disjoint bloks. See Figure 3 for an illustration

to how the subset R from Figure 2 is partitioned into maximal bloks.

Three additional notions that will be needed for the re�lling proedure are de�ned below. The

�rst two are illustrated in Figure 4.

De�nition 13 (Covers) We say that a sub-matrix A overs a given blok B with respet to R, if

B � A � R and the number of rows in A equals the height of B.

We say that A is a maximal row-over with respet to R, if A onsists of maximal sub-rows with

respet to R.

De�nition 14 (Borders) We say that a sub-matrix T = [ ℄

s;t

i;j

borders another sub-matrix T

0

=

[ ℄

s

0

;t

0

i

0

;j

0

, if i

0

� i + s� 1 and i � i

0

+ s

0

� 1, and either j

0

= j + t (so that T is to the left of T

0

), or

j

0

+ t

0

= j (so that T is to the right of T

0

).

De�nition 15 (Sums) For a given sub-matrix T , we denote the sum of the elements in T by

sum(T ).
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Figure 4: An illustration of the notions of overs and borders. Here the sub-matrix A (extending from row

9 to 12 and from olumn 5 to 12) overs the blok B

3

(but is not a maximal row-over with respet to R).

The sub-matrix A borders blok B

1

(from the left of A), and blok B

4

(from the right of A).

5.3.2 The Proedure for Re�lling R

We now desribe the proedure that re�lls the entries of R with non-negative values so as to obtain

Property 1. Reall that R is a disjoint union of maximal bloks. Hene if we remove a maximal

blok from R, then the maximal bloks of the remaining struture are simply the remaining maximal

bloks of R. For simpliity of this introdutory disussion, after removing a blok from R, we refer

to the remaining struture as R. The proedure desribed below will remove the bloks of R

one by one, in order of inreasing (non-dereasing) height, and re�ll eah blok separately using

Proedure 1.

Reall that when (re)�lling an s � t sub-matrix, Proedure 1 is provided with non-negative

values a

1

; : : : ; a

s

and b

1

; : : : ; b

t

suh that

P

s

i=1

a

i

�

P

t

j=1

b

j

. It then �lls the sub-matrix with

non-negative values so that the sum of elements in olumn j is exatly b

j

and the sum of elements

in row i is at most a

i

. Whenever we apply Proedure 1 to a blok B, the olumn sums b

1

; : : : ; b

t

are simply set to be the sums of the elements in the orresponding sub-olumns of B in C

V

. By

de�nition of (maximal) bloks, these sub-olumns are maximal legal sub-olumns, and as we show

in Subsetion 5.4.1, this ensures that their sums are non-negative.

The setting of the upper bounds a

1

; : : : ; a

s

for the row sums is a little more involved. At any

point in the algorithm, eah maximal sub-row L is assoiated with a designated sum, denoted

sum(L). This is the sum we intend it to have when the re�lling proedure terminates. Initially,

for every maximal sub-row L in R, we set sum(L) = sum(L). That is, sum(L) is equal to the

original sum of sub-row L in C

V

. In Subsetion 5.4.1 we show that these sums are all non-negative.

When re�lling a blok B, we �rst �nd the row-over A of B that is a maximal row-over with

respet to (the urrent) R. Sine the bloks are �lled by order of height, and bloks are removed

after they are �lled, suh a maximal row-over must exist when B is overed, and is unique. We

then use the designated sums of the (maximal) rows of A as the upper bounds a

1

; : : : ; a

s

for the

sums of rows of B. As we prove subsequently, it always holds that

P

s

i=1

a

i

�

P

t

j=1

b

j

, as required
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by Proedure 1. After removing a blok B from R, we obtain new, shorter, maximal sub-rows in

the remaining struture R nB, and we must assoiate with these shorter sub-rows new designated

sums. Proedure 1 is used here as well to determine how to set these designated row sums, in a

manner explained in detail in Step 3 below.
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Figure 5: An illustration of one step of the re�lling proedure, where we apply it to the matrix illustrated

in Figures 2 and 3. The �rst blok �lled may be either B

2

, B

4

, or B

6

(all three have height 2, whih is

the minimum among all bloks). Here we have seleted to re�ll B

4

�rst. On the left we see the maximal

row-over A that overs B

4

, where the designated sums of the two rows of A are 8 and 7 (in aordane with

the values appearing in Figure 2). On the right we see the values that the Proedure 1 has entered in the

ells of B

4

. We also see the two sub-matries, A

0

and A

00

, that remain of A after B

4

is removed from R, and

the designated sums of the new maximal rows in A

0

and A

00

.

Proedure 2 [Re�ll R℄

1. We assign eah maximal sub-row L in R a designated sum of elements for that row, whih is

denoted by sum(L). Initially we set sum(L) to be sum(L).

2. Let m be the number of maximal bloks in R, and let R

1

= R.

3. for p = 1; : : : ;m:

(a) Let B

p

be a maximal blok in R

p

whose height is minimum among all maximal bloks of

R

p

, and assume that B

p

is an s � t sub-matrix. Let A

p

be a maximal row-over of B

p

with respet to R

p

. For 1 � ` � s, let L

`

denote the sub-row of A

p

that overs the `'th

sub-row of B

p

.

(b) Re�ll B

p

by applying Proedure 1 (see Setion 3.1), where the sum �lled in the k'th sub-

olumn of B

p

, 1 � k � t, should be the original sum of this sub-olumn in C

V

, and the

sum �lled in the `'th sub-row of B

p

, 1 � ` � s, is at most sum(L

`

).

For eah 1 � ` � s, let x

`

denote the sum of elements �lled by Proedure 1 in the `'th

sub-row of B

p

.
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() Let R

p+1

= R

p

nB

p

. We next assign designated sums to the rows of R

p+1

that have been

either shortened or broken into two parts by the removal of B

p

from R

p

. This is done

as follows:

The set A

p

n B

p

is the union of two non-onseutive sub-matries, A

0

and A

00

, so that

A

0

borders B

p

from the left of B

p

and A

00

borders B

p

from the right of B

p

(where it is

possible that one or both of these sub-matries does not exist). Let L

0

`

and L

00

`

be the sub-

rows in A

0

and A

00

respetively that are ontained in sub-row L

`

of A

p

. We assign to L

0

`

and L

00

`

non-negative designated sums, sum(L

0

`

) and sum(L

00

`

), that satisfy the following:

sum(L

0

`

) + sum(L

00

`

) = sum(L

`

)� x

`

;

and furthermore,

X

row L2A

0

sum(L) = sum(A

0

);

X

row L2A

00

sum(L) = sum(A

00

):

This is done by applying Proedure 1 to a 2 � s matrix whose sums of olumns are

sum(A

0

) and sum(A

00

) and sums of rows are sum(L

`

)� x

`

, where 1 � ` � s.

(Note that one or both of A

0

and A

00

may not exist. This an happen if B

p

bordered

A

p

n B

p

on one side and its boundary oinided with R

p

, or if A

p

= B

p

. In this ase,

if, for example, A

0

does not exist then we view it as a sub-matrix of height 0 where

sum(A

0

) = 0.)

5.4 Proving that Proedure 2 is Corret

In order to prove that Proedure 2 is orret we have to prove two laims. First we have to show that

the proedure does not \get stuk". Namely, that all iterations of the proedure an be ompleted.

Seond, we have to prove that at the end of the proedure, the re�lled struture R has Property 1.

Before we prove these two laims we �rst prove some properties relating to the sum of elements

in maximal bloks and other sub-matries of R. These properties will be used to show that the

proedure does not get stuk.

5.4.1 Sums of Bloks and Other Sub-Matries

Lemma 6 The sum of elements in every maximal legal sub-row and every maximal legal sub-olumn

in R is non-negative.

Proof: We prove the lemma for maximal legal sub-rows. The laim for maximal legal sub-olumns

is analogous. Assume, ontrary to the laim, that R ontains some maximal legal sub-row L = [ ℄

1;t

i;j

whose sum of elements is negative. Let T be the maximal bad legal sub-matrix in C

V

that ontains

L. By the maximality of L, neessarily T = [ ℄

s;t

i

0

;j

for some i

0

� i and s � 1. That is, the rows

of T (one of whih is L) are of length t. By the onstrution of R, R must ontain a good legal

sub-matrix T

0

that ontains T and is twie as large in eah dimension. But this ontradits the

maximality of L.

It diretly follows from Lemma 6 that every maximal row in R has a non-negative sum, and that

every maximal blok has a non-negative sum. We would like to haraterize other sub-matries of

R whose sum is neessarily non-negative.
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Lemma 7 Consider any two maximal bloks B = [ ℄

s;t

i;j

and B

0

= [ ℄

s

0

;t

0

i

0

;j

0

where i � i

0

� i + s � 1,

i

0

+ s

0

� i + s. That is, B has height s and B

0

has height s

0

� s, and B

0

starts at row i

0

� i and

ends at row i

0

+ s

0

� 1 � i+ s� 1. Consider the sub-matrix T of height s \between them". That is,

T = [ ℄

s;j

0

�(j+t)

i;j+t

or T = [ ℄

s;j�(j

0

+t

0

)

i;j

0

+t

0

. Suppose that T � R. Then sum(T ) � 0.

See Figure 6 for a illustration of the lemma and its proof.

Proof: Assume without loss of generality that B

0

is to the right of B (that is, j

0

� j + t and

T = [ ℄

s;j

0

�(j+t)

i;j+t

). If T is empty then the laim follows trivially sine sum(T ) = 0. Hene we may

assume from now on that T is not empty and we separate the proof into two ases.

Case 1: T is a legal sub-matrix. Assume, ontrary to the laim, that sum(T ) < 0. That is, T

is a bad legal sub-matrix. Let T

0

be the maximal bad legal sub-matrix ontaining T (where T

0

may equal T ). By onstrution of R, R should ontain a good legal sub-matrix T

00

that ontains

T

0

and has twie the number of rows and twie the number of olumns. But this would ontradit

the maximality of the sub-olumns of B or of B

0

. To see why this is true, assume without loss of

generality that for any legal sub-olumn [ ℄

s;1

i;r

, the legal olumn that is twie its height is [ ℄

2s;1

i;r

(the

ase in whih it is [ ℄

2s;1

i�s;r

, is treated analogously). Then T

00

must ontain either the sub-olumn

[ ℄

2s;1

i;j

0

, or the sub-olumn [ ℄

2s;1

i;j+t�1

(depending on the identity of the legal sub-rows that are twie

the length of the rows of T ). In the �rst ase we would get a ontradition to the fat that B

0

is a maximal blok, and in the seond ase we would get a ontradition to the fat that B is a

maximal blok.

Case 2: T is not a legal sub-matrix. Observe that its olumns are neessarily legal sub-olumns

(given that the olumns of B are legal). Hene, only its rows are not legal sub-rows. Therefore,

T an be partitioned into sub-matries T

1

; : : : ; T

k

, suh that eah is of height s, and is a maximal

legal sub-matrix with respet to T . We laim that for every T

`

, sum(T

`

) � 0. Consider any �xed

T

`

. By its maximality with respet to T , we know that the legal sub-rows that ontain the rows of

T

`

and are twie their length, are not stritly ontained in T , but rather extend either to the right

or to the left of T . Hene these rows (or some of them in ase the height of B

0

is stritly smaller

than the height of T

`

), must interset either B or B

0

. Assume, ontrary to what we laim, that

sum(T

`

) < 0. Let T

0

`

be the maximal bad legal sub-matrix with respet to R that ontains T

`

, and

let T

00

`

be the good legal sub-matrix that ontains T

0

`

and has twie its height and twie its width.

Then T

00

`

intersets either B or B

0

, and in this intersetion, the (legal) sub-olumns of T

00

`

stritly

ontain the sub-olumns of B or B

0

(as in the ase onsidered in the previous paragraph). But this

ontradits the maximality of B or B

0

.

By Lemma 7, we get the following orollary whose proof is illustrated in Figure 7.

Corollary 8 Let A be a sub-matrix of R that overs a given blok B. If on eah of its sides A

either borders a blok with height smaller than the height of B or its border oinides with the border

of R, then sum(A) � sum(B).

Proof: Let B

1

; : : : ; B

k

be the set of maximal bloks that are overed by A (where B = B

i

for some

1 � i � k). Note that by de�nition of maximal bloks and overs, they are all of the same height,

whih is the height of A. Let D

1

and D

2

be two shorter bloks that border A on the left side and

the right side of A, respetively. (If there is no suh blok on one of the sides, then we think of

the orresponding D

i

as having height 0). Let T

0

; : : : ; T

k

be the sub-matries between these bloks

(that have the same height as the bloks). That is, T

0

is between D

1

and B

1

, T

k

is between B

k

and

D

2

, and for 1 � i � k � 1, T

i

is between B

i

and B

i+1

. Then, by Lemma 7 and the fat that every
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T1 T2 T3

T1’’

T2’’ T3’’

B’ s’

t’

(i’,j’)

(i’,j’)

Figure 6: An illustration for Lemma 7. The �gure on the top illustrates the ase, in the proof of Lemma 7,

where T is a legal sub-matrix (for simpliity, we assume T

0

= T ). The �gure on the bottom illustrates the

seond ase in the proof when T is a union of legal sub-matries (all having the height of B).

blok has a non-negative sum we get that:

sum(A) =

k

X

i=1

sum(B

i

) +

k

X

i=0

sum(T

i

) � sum(B): (6)

5.4.2 Proving that Proedure 2 Does not Get Stuk

Reall that for eah 1 � p � m, R

p

is what remains of R at the start of the p'th iteration of

Proedure 2. In partiular, R

1

= R. In this setion we show that the proedure does not \get

stuk". That is, for eah iteration p, Proedure 1 an be applied to the blok B

p

seleted in this

D1
B2 B3T0 T1 T2 T3

A

B1
D2

Figure 7: An illustration for Corollary 8. Here A overs the bloks B

1

, B

2

and B

3

, and borders the bloks

D

1

and D

2

. The sub-matries T

0

{T

4

are parts of larger bloks (that extend above and/or below A).
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iteration, and it is possible to update the designated sums of the rows that have been shortened by

the removal of B

p

. Note that sine the bloks are seleted aording to inreasing (non-dereasing)

height, then in eah iteration there indeed exists a unique over A

p

of B

p

that is a maximal row-over

with respet to R

p

.

For every 1 � p � m, let s

p

be the minimum height of the maximal bloks of R

p

, and let s

0

= 1.

Observe that whenever s

p

inreases, it does so by a fator of 2

k

for some k. This is true beause

the olumns of maximal bloks are legal sub-olumns.

Lemma 9 For every 1 � p � m, Proedure 1 an be applied to the blok B

p

seleted in R

p

, and the

updating proess of the designated sum of rows an be applied. Moreover, if A is a sub-matrix of

R

p

with height of at least s

p�1

, whose olumns are legal sub-olumns and whose rows are maximal

rows with respet to R

p

, then

P

row L2A

sum(L) = sum(A).

Proof: Let B

p

be the blok seleted in iteration p, where B

p

is an s� t sub-matrix, and let A

p

be

the maximal row-over of B

p

with respet to R

p

. As noted in Subsetion 3.1, all that is required

for Proedure 1 to work is:

(1) For every olumn K in B

p

, sum(K) � 0.

(2) For every row L in A

p

, sum(L) � 0.

(3)

P

row L2A

p

sum(L) �

P

olumn K2B

p

sum(K).

In order for the updating proess to sueed in Step 3 of Proedure 2, we must have that:

(4) For eah 1 � ` � s, let x

`

be the sum of elements �lled in the `'th sub-row of B

p

, and let L

`

be the sub-row of A

p

that overs this sub-row of B

p

. Then, sum(L

`

)� x

`

� 0.

(5) If A

p

n B

p

onsists of the two sub-matries A

0

and A

00

(between whih resided B), then

sum(A

0

) � 0, sum(A

00

) � 0, and

X

row L

`

2A

p

(sum(L

`

)� x

`

) = sum(A

0

) + sum(A

00

):

By Lemma 6, Item (1) holds at the start of every iteration. In order to prove the other items

for every p, we �rst extend and generalize Item (2):

(2') Let A be any sub-matrix in R

p

having height at least s

p�1

whose olumns are legal sub-

olumns and whose rows are maximal rows with respet to R

p

. Then for every row L of A

we have sum(L) � 0, and

P

row L2A

sum(L) = sum(A).

Observe that if Item (2') holds at the start of iteration p, then in partiular it holds for A

p

. Hene

by Corollary 8

X

row L2A

p

sum(L) = sum(A

p

) � sum(B

p

) (7)

and so Item (3) holds as well.

Furthermore, if Items (1){(3) hold at the start of iteration p, then Proedure 1 an be applied

suessfully. Thus Item (4) neessarily holds by de�nition of Proedure 1. The �rst part of Item (5),

onerning the non-negativity of A

0

and A

00

, follows from Lemma 7 very similarly to the way
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Corollary 8 follows from this lemma. The seond part of Item (5) follows from Item (2') holding

for A

p

and the fat that

P

s

`=1

x

`

= sum(B

p

) (sine Proedure 1 ompleted suessfully). Hene,

X

row L

`

2A

p

(sum(L

`

)� x

`

) = sum(A

p

)� sum(B

p

) = sum(A

0

) + sum(A

00

) (8)

as required.

Hene, it remains to prove that Item (2') holds at the start of every iteration p. We do so

by indution on p. Consider the base ase, p = 1, so that R

p

= R

1

= R. By the initialization

of Proedure 2, for every maximal sub-row L of R, sum(L) = sum(L). By Lemma 6 (applied to

the maximal legal sub-rows that partition L), we know that sum(L) � 0. Furthermore, for every

sub-matrix A of R having height of at least s

p�1

= s

0

= 1 and whose rows are maximal sub-rows

of R,

X

row L2A

sum(L) =

X

row L2A

sum(L) = sum(A) (9)

as required.

Assuming that the indution laim holds for p� 1, we prove it for p. Consider any sub-matrix

A having height at least s

p�1

, whose olumns are legal sub-olumns and whose rows are maximal

sub-rows with respet to R

p

. If A also onsisted of maximal sub-rows with respet to R

p�1

, then

we are done by the indution hypothesis.

Otherwise, the blok B

p�1

of height s

p�1

that was removed from R

p�1

, bordered A on one of

its sides. Let A

1

; : : : ; A

q

be the disjoint sub-matries of height s

p�1

suh that A = [

q

h=1

A

h

. That

is, A

1

; : : : ; A

q

are loated one on top of the other (for an illustration, see Figure 8). In this ase,

all but at most one of these sub-matries, say A

q

, onsisted of maximal sub-rows with respet to

R

p�1

, and B

p�1

bordered A

q

.

For eah of the sub-matries A

1

; : : : ; A

q�1

we an apply the indution hypothesis (Item (2')).

We get that for eah suh A

h

: (a) For every row L inA

h

, sum(L) � 0; and (b)

P

row L2A

h

sum(L) =

sum(A

h

).

As for A

q

, assume without loss of generality that B

p�1

bordered A

q

from the right of A

q

. Let

A

0

be the sub-matrix that bordered B

p�1

from the right of B

p�1

(A

0

may be empty). This means

that A

p�1

is of the form A

p�1

= A

q

[ B

p�1

[ A

0

(see Figure 8). But then, by de�nition of the

updating rule and sine it sueeded by the indution hypothesis (Items (4) and (5)), we have that

for every row L in A

q

, sum(L) � 0 and

P

row L2A

q

sum(L) = sum(A

q

).

It follows that for every row L in A we have sum(L) � 0 and

X

row L2A

sum(L) =

q

X

h=1

X

rowL2A

h

sum(L) =

q

X

h=1

sum(A

h

) = sum(A) : (10)

The indution step is proven.

5.4.3 Proving that Property 1 holds at the end of Proedure 2

Finally, we have to show that when Proedure 2 terminates and R is re�lled with non-negative

values, then Property 1 holds. This will omplete the proof of Theorem 3.

Let

~

C

V

= f~

i;j

g be the matrix resulting from the appliation of Proedure 2 to the matrix

C

V

= f

i;j

g. For any sub-matrix T of C

V

(and in partiular of R), we let gsum(T ) denote the sum

of elements of T in

~

C

V

. By de�nition of the proedure, gsum(K) = sum(K) for every maximal legal

sub-olumn K of R. Hene this holds also for every maximal sub-olumn of R. We next prove a

related laim onerning rows.
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Figure 8: An illustration for the indution step in the proof of Lemma 9 (where q = 4).

Lemma 10 For every sub-row L in R, suh that L is assigned sum(L) as a designated sum at

some iteration of Proedure 2, we have that gsum(L) = sum(L).

Observe that by ombining Lemma 10 with Lemma 6 we get that for every maximal sub-row L

of R, gsum(L) = sum(L) = sum(L).

Proof: Let L the the set of sub-rows L of R, suh that L is assigned sum(L) as a designated

sum at some iteration of Proedure 2. Observe that the set L onsists exatly of those rows that

are maximal sub-rows for some R

p

. We prove the lemma by indution on the length of L 2 L.

For the base of the indution, onsider any sub-row L 2 L that is shortest among all sub-rows in

L. Sine L is shortest, it must be ompletely �lled in a single iteration as part of a blok B (or

otherwise there would be a shorter L

0

� L with a designated sum sum(L

0

)). But by de�nition of

the proedure, we get that gsum(L) = sum(L) as required.

Assume that the laim holds for every L of length less than `, we prove it for L having length

`. Consider the �rst iteration after whih L beame a maximal sub-row (and so reeived the

designated sum sum(L)) in whih part of L is �lled. If all of L is �lled, then the indution laim

follows as in the base ase. Otherwise, let x be the sum of elements that was �lled in the part

P � L. Let L

0

and L

00

be what remains of L to the left and right of P respetively. Then the

proedure sets sum(L

0

) + sum(L

00

) = sum(L) � x. But L

0

and L

00

are stritly shorter than L,

and therefore by the indution hypothesis gsum(L

0

) = sum(L

0

) and gsum(L

00

) = sum(L

00

). Thus

gsum(L) = gsum(L

0

) + gsum(L

00

) + x = sum(L

0

) + sum(L

00

) + x = sum(L) as required.

De�nition 16 (Boundary) We say that a point (i; j) is on the boundary of R if (i; j) 2 R, but

either (i+ 1; j) =2 R, or (i; j + 1) =2 R, or (i+ 1; j + 1) =2 R. We denote the set of boundary points

by B.

De�nition 17 For a point (i; j), 1 � i; j � n let R

�

(i; j) denote the subset of points (i

0

; j

0

) 2

R; i

0

� i; j

0

� j, and let sum

R

(i; j) =

P

(i

0

;j

0

)2R

�

(i;j)



i

0

;j

0

and gsum

R

(i; j) =

P

(i

0

;j

0

)2R

�

(i;j)

~

i

0

;j

0

.

Property 1 and therefore Theorem 3 will follow diretly from the next two lemmas.

Lemma 11 For every point (i; j) 2 B, gsum

R

(i; j) = sum

R

(i; j).

Proof: Consider any point (i; j) 2 B and let U = R

�

(i; j). Let C(U) = fB

1

; : : : ; B

q

g be the

minimal set of (maximal) bloks whose union ontains U . For eah B

h

2 C(U) we know that
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B1
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B2
B5
B6

B7

B9

B10

B11

B8

(i,j)

Figure 9: An illustration for the proof of Lemma 11. The solid line denotes the outline of U = R

�

(i; j),

where point (i; j) is in the top-right orner. Bloks B

1

{B

6

are fully ontained in U and therefore belong to

C

1

(U). Bloks B

7

and B

8

belong to C

2

(U) and bloks B

9

{B

11

belong to C

3

(U). Blok B

10

is twie the height

of B

9

and B

11

and so \extends out of the �gure".

gsum(B

h

) = sum(B

h

). In partiular this is true for every B

h

� U . Let C

1

(U) = fB

h

2 C(U) : B

h

�

Ug. Hene we have that

X

B

h

2C

1

(U)

gsum(B

h

\ U) =

X

B

h

2C

1

(U)

gsum(B

h

) =

X

B

h

2C

1

(U)

sum(B

h

) : (11)

If every B

h

2 C(U) is fully ontained in U then C

1

(U) = C(U) and we are done.

Otherwise, onsider the remaining B

h

's in C(U)nC

1

(U) (i.e., bloks that are not fully ontained

in U but rather interset it). Eah of them either ontains a olumn that is a sub-olumn of olumn

j + 1, or a row that is a sub-row of row i+ 1 (reall that U = R

�

(i; j)). Let the former subset be

denoted C

2

(U) and the latter C

3

(U). Thus C

2

(U) ontains bloks that \interset U from the right",

and C

3

(U) ontain bloks that \interset U from the top". See for example Figure 9.

It is important to note that C

2

(U) \ C

3

(U) = ;: If there existed a blok B

h

2 C

2

(U) \ C

2

(U),

it would neessarily ontain both (i; j), and the three neighboring points, (i + 1; j), (i; j + 1) and

(i+ 1; j + 1). But this ontradits the fat that (i; j) is a boundary point.

For eah B

h

2 C

2

(U), B

h

\U is a subset of maximal legal sub-olumns with respet to R (sine

eah B

h

2 C

2

(U) annot extend beyond row i). Let K

2

(U) denote the set of all maximal legal

sub-olumns that belong to

S

B

h

2C

2

(U)

(B

h

\ U). Sine for every maximal legal sub-olumn K, it

holds that gsum(K) = sum(K), we have that

X

B

h

2C

2

(U)

gsum(B

h

\ U) =

X

K2K

2

(U)

gsum(K) =

X

K2K

2

(U)

sum(K): (12)

Next onsider the bloks B

h

2 C

3

(U). Let L

3

(U) be the set of sub-rows in U that are maximal

sub-rows with respet to

S

B

h

2C

3

(U)

(B

h

\ U). Thus,

S

B

h

2C

3

(U)

(B

h

\ U) =

S

L2L

3

L. We next
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observe that for every B

h

2 C

3

(U), all bloks that border B

h

and belong either to C

1

(U) or to

C

2

(U), must be stritly shorter than B

h

. This follows from the de�nition of legal sub-olumns.

Hene, the bloks in C

1

(U) and C

2

(U) are all removed before the bloks in C

3

(U).

For eah sub-row in L

3

(U) there exists the �rst iteration p in whih it beomes a maximal

sub-row with respet to R

p

(following the removal of some blok in C

1

(U)[C

2

(U) from R

p�1

). We

partition the rows in L

3

(U) aordingly. Let L

p

3

(U) denote all sub-rows in L

3

(U), that are maximal

sub-rows with respet to R

p

but were not maximal sub-rows with respet to R

p�1

. Observe that in

partiular, L

1

3

(U) is the set of sub-rows in L

3

(U) that were already maximal sub-rows with respet

to R. By this de�nition the sub-rows in L

p

3

(U) onstitute a sub-matrix of height s

p�1

. By the

seond part of Lemma 9,

P

L2L

p

3

(U)

sum(L) =

P

L2L

p

3

(U)

sum(L), and by applying Lemma 10 we

get that

P

L2L

3

(U)

gsum(L) =

P

L2L

3

(U)

sum(L). Therefore,

X

B

h

2C

3

(U)

gsum(B

h

\ U) =

X

L2L

3

(U)

gsum(L) =

X

L2L

3

(U)

sum(L): (13)

By ombining Equations (11){(13) we get

gsum(U) =

X

B

h

2C(U)

gsum(B

h

\ U)

=

3

X

q=1

X

B

h

2C

q

(U)

gsum(B

h

\ U)

=

X

B

h

2C

1

(U)

sum(B

h

) +

X

K2K

2

(U)

sum(K) +

X

L2L

3

(U)

sum(L)

= sum(U)

L1

R(i’,j’)
<=

L2 L3
L4

L5 L6

(i’,j’)

(i,j)

Figure 10: An illustration for the proof of Lemma 12. The point (i

0

; j

0

) is as de�ned in the proof, and the

rows L

1

; : : : ; L

6

are all maximal sub-rows of R that belong to rows i

0

+ 1; : : : ; i and end by olumn j (that

is, the set L(i; i

0

; j)).
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Lemma 12 Let (i; j) be any point suh that (i; j) =2 R. Then gsum

R

(i; j) = sum

R

(i; j).

Proof: Let (i

0

; j

0

) 2 R, i

0

< i, j

0

� j, be the point for whih j

0

is maximized, and if there are

several suh points, let it be the one amongst them for whih i

0

is maximized. Thus, (i

0

; j

0

) is

maximal in the sense that for every (i

00

; j

00

), i

00

< i, j

00

� j suh that (i

00

; j

00

) > (i

0

; j

0

) it holds that

(i

00

; j

00

) =2 R. Furthermore, among all suh maximal points it is the right-most one (i.e., it belongs to

the olumn with the highest index). By de�nition, (i

0

; j

0

) belongs to B, sine (i

0

+ 1; j

0

) neessarily

does not belong to R. Let L(i; i

0

; j) be the subset of all maximal sub-rows of R that belong to

rows i

0

+ 1; : : : ; i, and end by olumn j. Then gsum

R

(i; j) = gsum

R

(i

0

; j

0

) +

P

L2L(i;i

0

;j)

gsum(L). By

applying Lemma 11 and Lemma 10, we get that gsum

R

(i; j) = sum

R

(i; j).

5.5 Distribution Matries

As noted in the introdution, a sub-family of inverse Monge matries that is of partiular interest

is the lass of distribution matries. A matrix V = fv

i;j

g is said to be a distribution matrix, if

there exists a non-negative density matrix D = fd

i;j

g, suh that every entry v

i;j

in V is of the form

v

i;j

=

P

k�i

P

`�j

d

k;`

. In partiular, if V is a distribution matrix then the orresponding density

matrix D is simply the matrix C

0

V

(as de�ned in Setion 3). Hene, in order to test that V is a

distribution matrix, we simply run our algorithm for inverse Monge matrix on C

0

V

instead of C

V

.
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