Testing ± 1-Weight Halfspaces

Kevin Matulef ${ }^{1}$, Ryan O'Donnell ${ }^{2}$, Ronitt Rubinfeld ${ }^{3}$, and Rocco A. Servedio ${ }^{4}$
${ }^{1}$ MIT
matulef@mit.edu
${ }^{2}$ Carnegie Mellon University
odonnell@cs.cmu.edu
${ }^{3}$ Tel Aviv University and MIT
ronitt@theory.csail.mit.edu
${ }^{4}$ Columbia University
rocco@cs.columbia.edu

Abstract

We consider the problem of testing whether a Boolean function f : $\{-1,1\}^{n} \rightarrow\{-1,1\}$ is a ± 1-weight halfspace, i.e. a function of the form $f(x)=$ $\operatorname{sgn}\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}\right)$ where the weights w_{i} take values in $\{-1,1\}$. We show that the complexity of this problem is markedly different from the problem of testing whether f is a general halfspace with arbitrary weights. While the latter can be done with a number of queries that is independent of n [7], to distinguish whether f is a ± 1-weight halfspace versus ϵ-far from all such halfspaces we prove that nonadaptive algorithms must make $\Omega(\log n)$ queries. We complement this lower bound with a sublinear upper bound showing that $O\left(\sqrt{n} \cdot \operatorname{poly}\left(\frac{1}{\epsilon}\right)\right)$ queries suffice.

1 Introduction

dfgfghdfg this is the best i can get it asdf to do it doens't seem to make much difference as far as I can tell

This is the best I can get it to to do i I don't know how to change $\frac{3}{4} \cdot \sum_{i}^{n}$ of
A fundamental class in machine learning and complexity is the class of halfspaces, or functions of the form $f(x)=\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}-\theta\right)$. Halfspaces are a simple yet powerful class of functions, which for decades have played an important role in fields such as complexity theory, optimization, and machine learning (see e.g. $[5,12,1,9,8,11])$.

Recently [7] brought attention to the problem of testing halfspaces. Given query access to a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, the goal of an ϵ-testing algorithm is to output YES if f is a halfspace and NO if it is ϵ-far (with respect to the uniform distribution over inputs) from all halfspaces. Unlike a learning algorithm for halfspaces, a testing algorithm is not required to output an approximation to f when it is close to a halfspace. Thus, the testing problem can be viewed as a relaxation of the proper learning problem (this is made formal in [4]). Correspondingly, [7] found that halfspaces can be tested more efficiently than they can be learned. In particular, while $\Omega(n / \epsilon)$ queries are required to learn halfspaces to accuracy ϵ (this follows from e.g. [6]), [7] show that ϵ-testing halfspaces only requires poly $(1 / \epsilon)$ queries, independent of the dimension n.

In this work, we consider the problem of testing whether a function f belongs to a natural subclass of halfspaces, the class of ± 1-weight halfspaces. These are functions of the form $f(x)=\operatorname{sgn}\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}\right)$ where the weights w_{i} all take values in $\{-1,1\}$. Included in this class is the majority function on n variables, and all 2^{n} "reorientations" of majority, where some variables x_{i} are replaced by $-x_{i}$. Alternatively, this can be viewed as the subclass of halfspaces where all variables have the same amount of influence on the outcome of the function, but some variables get a "positive" vote while others get a "negative" vote.

For the problem of testing ± 1-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which distinguishes ± 1-weight halfspaces from functions that are ϵ-far from ± 1-weight halfspaces must make at least $\Omega(\log n)$ many queries. By a standard transformation (see e.g. [3]), this also implies an $\Omega(\log \log n)$ lower bound for adaptive algorithms. Taken together with [7], this shows that testing this natural subclass of halfspaces is more query-intensive then testing the general class of all halfspaces.
2. Upper Bound. We give a nonadaptive algorithm making $O(\sqrt{n} \cdot \operatorname{poly}(1 / \epsilon))$ many queries to f, which outputs (i) YES with probability at least $2 / 3$ if f is a ± 1-weight halfspace (ii) NO with probability at least $2 / 3$ if f is ϵ-far from any ± 1-weight halfspace.
We note that it follows from [6] that learning the class of ± 1-weight halfspaces requires $\Omega(n / \epsilon)$ queries. Thus, while some dependence on n is necessary for testing, our upper bound shows testing ± 1-weight halfspaces can still be done more efficiently than learning.

Although we prove our results specifically for the case of halfspaces with all weights ± 1, we remark that similar results can be obtained using our methods for other similar subclasses of halfspaces such as $\{-1,0,1\}$-weight halfspaces (± 1-weight halfspaces where some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved using Yao's method. We define two distributions $D_{Y E S}$ and $D_{N O}$ over functions, where a draw from $D_{Y E S}$ is a randomly chosen ± 1-weight halfspace and a draw from $D_{N O}$ is a halfspace whose coefficients are drawn uniformly from $\{+1,-1,+\sqrt{3},-\sqrt{3}\}$. We show that a random draw from $D_{N O}$ is with high probability $\Omega(1)$-far from every ± 1-weight halfspace, but that any set of $o(\log n)$ query strings cannot distinguish between a draw from $D_{Y E S}$ and a draw from $D_{N O}$.

Our upper bound is achieved by an algorithm which uniformly selects a small set of variables and checks, for each selected variable x_{i}, that the magnitude of the corresponding singleton Fourier coefficient $|\hat{f}(i)|$ is close to to the right value. We show that any function that passes this test with high probability must have its degree-1 Fourier coefficients very similar to those of some ± 1-weight halfspace, and that any function whose degree-1 Fourier coefficients have this property must be close to a ± 1-weight halfspace. At a high level this approach is similar to some of what is done in [7], but in the setting of the current paper this approach incurs a dependence on n because of the level of accuracy that is required to adequately estimate the Fourier coefficients.

2 Notation and Preliminaries

Throughout this paper, unless otherwise noted f will denote a Boolean function of the form $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. We say that two Boolean functions f and g are ϵ-far if $\operatorname{Pr}_{x}[f(x) \neq g(x)]>\epsilon$, where x is drawn from the uniform distribution on $\{-1,1\}^{n}$.

We say that a function f is unate if it is monotone increasing or monotone decreasing as a function of variable x_{i} for each i.

Fourier analysis. We will make use of standard Fourier analysis of Boolean functions. The set of functions from the Boolean cube $\{-1,1\}^{n}$ to \mathbf{R} forms a 2^{n}-dimensional inner product space with inner product given by $\langle f, g\rangle=\mathbf{E}_{x}[f(x) g(x)]$. The set of functions $\left(\chi_{S}\right)_{S \subseteq[n]}$ defined by $\chi_{S}(x)=\prod_{i \in S} x_{i}$ forms a complete orthonormal basis for this space. Given a function $f:\{-1,1\}^{n} \rightarrow \mathbf{R}$ we define its Fourier coefficients by $\hat{f}(S)=\mathbf{E}_{x}\left[f(x) x_{S}\right]$, and we have that $f(x)=\sum_{S} \hat{f}(S) x_{S}$. We will be particularly interested in f 's degree- 1 coefficients, i.e., $\hat{f}(S)$ for $|S|=1$; for brevity we will write these as $\hat{f}(i)$ rather than $\hat{f}(\{i\})$. Finally, we have Plancherel's identity $\langle f, g\rangle=\sum_{S} \hat{f}(S) \hat{g}(S)$, which has as a special case Parseval's identity, $\mathbf{E}_{x}\left[f(x)^{2}\right]=$ $\sum_{S} \hat{f}(S)^{2}$. It follows that for every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ we have $\sum_{S} \hat{f}(S)^{2}=1$.

Probability bounds. To prove our lower bound we will require the Berry-Esseen theorem, a version of the Central Limit Theorem with error bounds (see e.g. [2]):

Theorem 1. Let $\ell(x)=c_{1} x_{1}+\cdots+c_{n} x_{n}$ be a linear form over the random ± 1 bits x_{i}. Assume $\left|c_{i}\right| \leq \tau$ for all i and write $\sigma=\sqrt{\sum c_{i}^{2}}$. Write F for the $c . d . f$. of $\ell(x) / \sigma$; i.e., $F(t)=\operatorname{Pr}[\ell(x) / \sigma \leq t]$. Then for all $t \in \mathbf{R}$,

$$
|F(t)-\Phi(t)| \leq O(\tau / \sigma) \cdot \frac{1}{1+|t|^{3}}
$$

where Φ denotes the c.d.f. of X, a standard Gaussian random variable. In particular, if $A \subseteq \mathbf{R}$ is any interval then $|\operatorname{Pr}[\ell(x) / \sigma \in A]-\operatorname{Pr}[X \in A]| \leq O(\tau / \sigma)$.

A special case of this theorem, with a sharper constant, is also useful (the following can be found in [10]):

Theorem 2. Let $\ell(x)$ and τ be as defined in Theorem 1. Then for any $\lambda \geq \tau$ and any $\theta \in \mathbf{R}$ it holds that $\operatorname{Pr}[|\ell(x)-\theta| \leq \lambda] \leq 6 \lambda / \sigma$.

3 A $\Omega(\log n)$ Lower Bound for Testing ± 1-Weight Halfspaces

In this section we prove the following theorem:
Theorem 3. There is a fixed constant $\epsilon>0$ such that any nonadaptive ϵ-testing algorithm \mathcal{A} for the class of all ± 1-weight halfspaces must make at least $(1 / 26) \log n$ many queries.

To prove Theorem 3, we define two distributions $D_{Y E S}$ and $D_{N O}$ over functions. The "yes" distribution $D_{Y E S}$ is uniform over all $2^{n} \pm 1$-weight halfspaces, i.e., a function f drawn from $D_{Y E S}$ is $f(x)=\operatorname{sgn}\left(r_{1} x_{1}+\cdots r_{n} x_{n}\right)$ where each r_{i} is independently and uniformly chosen to be ± 1. The "no" distribution $D_{N O}$ is similarly a distribution over halfspaces of the form $f(x)=\operatorname{sgn}\left(s_{1} x_{1}+\cdots s_{n} x_{n}\right)$, but each s_{i} is independently chosen to be $\pm \sqrt{1 / 2}$ or $\pm \sqrt{3 / 2}$ each with probability $1 / 4$.

To show that this approach yields a lower bound we must prove two things. First, we must show that a function drawn from $D_{N O}$ is with high probability far from any ± 1-weight halfspace. This is formalized in the following lemma:

Lemma 1. Let f be a random function drawn from $D_{N O}$. With probability at least $1-o(1)$ we have that f is ϵ-far from any ± 1-weight halfspace, where $\epsilon>0$ is some fixed constant independent of n.

Next, we must show that no algorithm making $o(\log n)$ queries can distinguish $D_{Y E S}$ and $D_{N O}$. This is formalized in the following lemma:

Lemma 2. Fix any set x^{1}, \ldots, x^{q} of q query strings from $\{-1,1\}^{n}$. Let $\widetilde{D}_{Y E S}$ be the distribution over $\{-1,1\}^{q}$ obtained by drawing a random f from $D_{Y E S}$ and evaluating it on x^{1}, \ldots, x^{q}. Let $\widetilde{D}_{N O}$ be the distribution over $\{-1,1\}^{q}$ obtained by drawing a random f from $D_{N O}$ and evaluating it on x^{1}, \ldots, x^{q}. If $q=(1 / 26) \log n$ then $\left\|\widetilde{D}_{Y E S}-\widetilde{D}_{N O}\right\|_{1}=o(1)$.

We prove Lemmas 1 and 2 in subsections 3.1 and 3.2 respectively. A standard argument using Yao's method (see e.g. Section 8 of [3]) implies that the lemmas taken together prove Theorem 3.

3.1 Proof of Lemma 1.

Let f be drawn from $D_{N O}$, and let s_{1}, \ldots, s_{n} denote the coefficients thus obtained. Let T_{1} denote $\left\{i:\left|s_{i}\right|=\sqrt{1 / 2}\right\}$ and T_{2} denote $\left\{i:\left|s_{i}\right|=\sqrt{3 / 2}\right\}$. We may assume that both $\left|T_{1}\right|$ and $\left|T_{2}\right|$ lie in the range $[n / 2-\sqrt{n \log n}, n / 2+\sqrt{n \log n}]$ since the probability that this fails to hold is $1-o(1)$. It will be slightly more convenient for us to view f as $\operatorname{sgn}\left(\sqrt{2}\left(s_{1} x_{1}+\cdots+s_{n} x_{n}\right)\right)$, that is, such that all coefficients are of magnitude 1 or $\sqrt{3}$.

It is easy to see that the closest ± 1-weight halfspace to f must have the same sign pattern in its coefficients that f does. Thus we may assume without loss of generality that f 's coefficients are all +1 or $+\sqrt{3}$, and it suffices to show that f is far from the majority function $\operatorname{Maj}(x)=\operatorname{sgn}\left(x_{1}+\cdots+x_{n}\right)$.

Let Z be the set consisting of those $z \in\{-1,1\}^{T_{1}}$ (i.e. assignments to the variables in T_{1}) which satisfy $S_{T_{1}}=\sum_{i \in T_{1}} z_{i} \in[\sqrt{n / 2}, 2 \sqrt{n / 2}]$. Since we are assuming that $\left|T_{1}\right| \approx n / 2$, using Theorem 1 , we have that $|Z| / 2^{\left|T_{1}\right|}=C_{1} \pm o(1)$ for constant $C_{1}=\Phi(2)-\Phi(1)>0$.

Now fix any $z \in Z$, so $\sum_{i \in T_{1}} z_{i}$ is some value $V_{z} \cdot \sqrt{n / 2}$ where $V_{z} \in[1,2]$. There are $2^{n-\left|T_{1}\right|}$ extensions of z to a full input $z^{\prime} \in\{-1,1\}^{n}$. Let $C_{\text {Maj }}(z)$ be the fraction of those extensions which have $\operatorname{Maj}\left(z^{\prime}\right)=-1$; in other words, $C_{\mathrm{Maj}}(z)$ is the fraction of
strings in $\{-1,1\}^{T_{2}}$ which have $\sum_{i \in T_{2}} z_{i}<-V_{z} \sqrt{n / 2}$. By Theorem 1, this fraction is $\Phi\left(-V_{z}\right) \pm o(1)$. Let $C_{f}(z)$ be the fraction of the $2^{n-\left|T_{1}\right|}$ extensions of z which have $f\left(z^{\prime}\right)=-1$. Since the variables in T_{2} all have coefficient $\sqrt{3}, C_{f}(z)$ is the fraction of strings in $\{-1,1\}^{T_{2}}$ which have $\sum_{i \in T_{2}} z_{i}<-\left(V_{z} / \sqrt{3}\right) \sqrt{n / 2}$, which by Theorem 1 is $\Phi\left(-V_{z} / \sqrt{3}\right) \pm o(1)$.

There is some absolute constant $c>0$ such that for all $z \in Z,\left|C_{f}(z)-C_{\mathrm{Maj}}(z)\right| \geq$ c. Thus, for a constant fraction of all possible assignments to the variables in T_{1}, the functions Maj and f disagree on a constant fraction of all possible extensions of the assignment to all variables in $T_{1} \cup T_{2}$. Consequently, we have that Maj and f disagree on a constant fraction of all assignments, and the lemma is proved.

3.2 Proof of Lemma 2.

For $i=1, \ldots, n$ let $Y^{i} \in\{-1,1\}^{q}$ denote the vector of $\left(x_{i}^{1}, \ldots, x_{i}^{q}\right)$, that is, the vector containing the values of the $i^{\text {th }}$ bits of each of the queries. Alternatively, if we view the n-bit strings x^{1}, \ldots, x^{q} as the rows of a $q \times n$ matrix, the strings Y^{1}, \ldots, Y^{n} are the columns. If $f(x)=\operatorname{sgn}\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right)$ is a halfspace, we write $\operatorname{sgn}\left(\sum_{i=1}^{n} a_{i} Y^{i}\right)$ to denote $\left(f\left(x^{1}\right), \ldots, f\left(x^{q}\right)\right)$, the vector of outputs of f on x^{1}, \ldots, x^{q}; note that the value $\operatorname{sgn}\left(\sum_{i=1}^{n} a_{i} Y^{i}\right)$ is an element of $\{-1,1\}^{q}$.

Since the statistical distance between two distributions D_{1}, D_{2} on a domain \mathcal{D} of size N is bounded by $N \cdot \max _{x \in \mathcal{D}}\left|D_{1}(x)-D_{2}(x)\right|$, we have that the statistical distance $\left\|\widetilde{D}_{Y E S}-\widetilde{D}_{N O}\right\|_{1}$ is at most $2^{q} \cdot \max _{Q \in\{-1,1\}^{q}} \mid \operatorname{Pr}_{r}\left[\operatorname{sgn}\left(\sum_{i=1}^{n} r_{i} Y^{i}\right)=\right.$ $Q]-\operatorname{Pr}_{s}\left[\operatorname{sgn}\left(\sum_{i=1}^{n} s_{i} Y^{i}\right)=Q\right] \mid$. So let us fix an arbitrary $Q \in\{-1,1\}^{q}$; it suffices for us to bound

$$
\begin{equation*}
\left|\operatorname{Pr}_{r}\left[\operatorname{sgn}\left(\sum_{i=1}^{n} r_{i} Y^{i}\right)=Q\right]-\operatorname{Pr}_{s}\left[\operatorname{sgn}\left(\sum_{i=1}^{n} s_{i} Y^{i}\right)=Q\right]\right| . \tag{1}
\end{equation*}
$$

Let InQ denote the indicator random variable for the quadrant Q, i.e. given $x \in \mathbf{R}^{q}$ the value of $\operatorname{In} \mathrm{Q}(x)$ is 1 if x lies in the quadrant corresponding to Q and is 0 otherwise. We have

$$
\begin{equation*}
(1)=\left|\mathbf{E}_{r}\left[\operatorname{InQ}\left(\sum_{i=1}^{n} r_{i} Y^{i}\right)\right]-\mathbf{E}_{s}\left[\operatorname{InQ}\left(\sum_{i=1}^{n} s_{i} Y^{i}\right)\right]\right| \tag{2}
\end{equation*}
$$

We then note that since the Y^{i} vectors are of length q, there are at most 2^{q} possibilities in $\{-1,1\}^{q}$ for their values which we denote by $\widetilde{Y}^{1}, \ldots, \widetilde{Y}^{2^{q}}$. We lump together those vectors which are the same: for $i=1, \ldots, 2^{q}$ let c_{i} denote the number of times that \widetilde{Y}^{i} occurs in Y^{1}, \ldots, Y^{n}. We then have that $\sum_{i=1}^{n} r_{i} Y^{i}=\sum_{i=1}^{2^{q}} a_{i} \widetilde{Y}^{i}$ where each a_{i} is an independent random variable which is a sum of c_{i} independent ± 1 random variables (the r_{j} 's for those j that have $Y^{j}=\widetilde{Y}^{i}$). Similarly, we have $\sum_{i=1}^{n} s_{i} Y^{i}=\sum_{i=1}^{2^{q}} b_{i} \widetilde{Y}^{i}$ where each b_{i} is an independent random variable which is a sum of c_{i} independent variables distributed as the s_{j} 's (these are the s_{j} 's for those j that have $Y^{j}=\widetilde{Y}^{i}$). We thus can re-express (2) as

$$
\begin{equation*}
\left|\mathbf{E}_{a}\left[\operatorname{InQ}\left(\sum_{i=1}^{2^{q}} a_{i} \widetilde{Y}^{i}\right)\right]-\mathbf{E}_{b}\left[\operatorname{InQ}\left(\sum_{i=1}^{2^{q}} b_{i} \widetilde{Y}^{i}\right)\right]\right| \tag{3}
\end{equation*}
$$

Let us define a sequence of random variables that hybridize between $\sum_{i=1}^{2^{q}} a_{i} \widetilde{Y}^{i}$ and $\sum_{i=1}^{2^{q}} b_{i} \tilde{Y}^{i}$. For $1 \leq \ell \leq 2^{q}+1$ define

$$
\begin{equation*}
Z_{\ell}:=\sum_{i<\ell} b_{i} \tilde{Y}^{i}+\sum_{i \geq \ell} a_{i} \tilde{Y}^{i}, \quad \text { so } \quad Z_{1}=\sum_{i=1}^{2^{q}} a_{i} \tilde{Y}^{i} \quad \text { and } \quad Z_{2^{q}+1}=\sum_{i=1}^{2^{q}} b_{i} \tilde{Y}^{i} \tag{4}
\end{equation*}
$$

As is typical in hybrid arguments, by telescoping (3), we have that (3) equals

$$
\begin{align*}
\mid \mathbf{E}_{a, b}\left[\sum_{\ell=1}^{2^{q}} \operatorname{InQ}\left(Z_{\ell}\right)\right. & \left.-\operatorname{InQ}\left(Z_{\ell+1}\right)\right]\left|=\left|\sum_{\ell=1}^{2^{q}} \mathbf{E}_{a, b}\left[\operatorname{InQ}\left(Z_{\ell}\right)-\operatorname{InQ}\left(Z_{\ell+1}\right)\right]\right|\right. \\
& =\left|\sum_{\ell=1}^{2^{q}} \mathbf{E}_{a, b}\left[\operatorname{InQ}\left(W_{\ell}+a_{\ell} \tilde{Y}^{\ell}\right)-\operatorname{InQ}\left(W_{\ell}+b_{\ell} \tilde{Y}^{\ell}\right)\right]\right| \tag{5}
\end{align*}
$$

where $W_{\ell}:=\sum_{i<\ell} b_{i} \tilde{Y}^{i}+\sum_{i>\ell} a_{i} \tilde{Y}^{i}$. The RHS of (5) is at most

$$
2^{q} \cdot \max _{\ell=1, \ldots, 2^{q}}\left|\mathbf{E}_{a, b}\left[\operatorname{InQ}\left(W_{\ell}+a_{\ell} \widetilde{Y}^{\ell}\right)-\operatorname{InQ}\left(W_{\ell}+b_{\ell} \widetilde{Y}^{\ell}\right)\right]\right|
$$

So let us fix an arbitrary ℓ; we will bound

$$
\begin{equation*}
\left|\mathbf{E}_{a, b}\left[\operatorname{InQ}\left(W_{\ell}+a_{\ell} \widetilde{Y}^{\ell}\right)-\operatorname{InQ}\left(W_{\ell}+b_{\ell} \widetilde{Y}^{\ell}\right)\right]\right| \leq B \tag{6}
\end{equation*}
$$

(we will specify B later), and this gives that $\left\|\widetilde{D}_{Y E S}-\widetilde{D}_{N O}\right\|_{1} \leq 4^{q} B$ by the arguments above. Before continuing further, it is useful to note that W_{ℓ}, a_{ℓ}, and b_{ℓ} are all independent from each other.
Bounding (6). Let $N:=\left(n / 2^{q}\right)^{1 / 3}$. Without loss of generality, we may assume that the the c_{i} 's are in monotone increasing order, that is $c_{1} \leq c_{2} \leq \ldots \leq c_{2^{q}}$. We consider two cases depending on the value of c_{ℓ}. If $c_{\ell}>N$ then we say that c_{ℓ} is big, and otherwise we say that c_{ℓ} is small. Note that each c_{i} is a nonnegative integer and $c_{1}+\cdots+c_{2^{q}}=n$, so at least one c_{i} must be big; in fact, we know that the largest value $c_{2^{q}}$ is at least $n / 2^{q}$.

If c_{ℓ} is big, we argue that a_{ℓ} and b_{ℓ} are distributed quite similarly, and thus for any possible outcome of W_{ℓ} the LHS of (6) must be small. If c_{ℓ} is small, we consider some $k \neq \ell$ for which c_{k} is very big (we just saw that $k=2^{q}$ is such a k) and show that for any possible outcome of a_{ℓ}, b_{ℓ} and all the other contributors to W_{ℓ}, the contribution to W_{ℓ} from this c_{k} makes the LHS of (6) small (intuitively, the contribution of c_{k} is so large that it "swamps" the small difference that results from considering a_{ℓ} versus b_{ℓ}).

Case 1: Bounding (6) when c_{ℓ} is big, i.e. $c_{\ell}>N$. Fix any possible outcome for W_{ℓ} in (6). Note that the vector \widetilde{Y}^{ℓ} has all its coordinates ± 1 and thus it is "skew" to each of the axis-aligned hyperplanes defining quadrant Q. Since Q is convex, there is some interval A (possibly half-infinite) of the real line such that for all $t \in \mathbf{R}$ we have $\operatorname{InQ}\left(W_{\ell}+t \widetilde{Y}^{\ell}\right)=1$ if and only if $t \in A$. It follows that

$$
\begin{equation*}
\left|\operatorname{Pr}_{a_{\ell}}\left[\operatorname{InQ}\left(W_{\ell}+a_{\ell} \tilde{Y}^{\ell}\right)=1\right]-\underset{b_{\ell}}{\operatorname{Pr}}\left[\operatorname{InQ}\left(W_{\ell}+b_{\ell} \widetilde{Y}^{\ell}\right)=1\right]\right|=\left|\operatorname{Pr}\left[a_{\ell} \in A\right]-\operatorname{Pr}\left[b_{\ell} \in A\right]\right| . \tag{7}
\end{equation*}
$$

Now observe that as in Theorem $1, a_{\ell}$ and b_{ℓ} are each sums of c_{ℓ} many independent zero-mean random variables (the r_{j} 's and s_{j} 's respectively) with the same total variance $\sigma=\sqrt{c_{\ell}}$ and with each $\left|r_{j}\right|,\left|s_{j}\right| \leq O(1)$. Applying Theorem 1 to both a_{ℓ} and b_{ℓ}, we get that the RHS of (7) is at most $O\left(1 / \sqrt{c_{\ell}}\right)=O(1 / \sqrt{N})$. Averaging the LHS of (7) over the distribution of values for W_{ℓ}, it follows that if c_{ℓ} is big then the LHS of (6) is at most $O(1 / \sqrt{N})$.

Case 2: Bounding (6) when c_{ℓ} is small, i.e. $c_{\ell} \leq N$. We first note that every possible outcome for a_{ℓ}, b_{ℓ} results in $\left|a_{\ell}-b_{\ell}\right| \leq O(N)$. Let $k=2^{q}$ and recall that $c_{k} \geq n / 2^{q}$. Fix any possible outcome for a_{ℓ}, b_{ℓ} and for all other a_{j}, b_{j} such that $j \neq k$ (so the only "unfixed" randomess at this point is the choice of a_{k} and b_{k}). Let W_{ℓ}^{\prime} denote the contribution to W_{ℓ} from these $2^{q}-2$ fixed a_{j}, b_{j} values, so W_{ℓ} equals $W_{\ell}^{\prime}+a_{k} \widetilde{Y}^{k}$ (since $k>\ell$). (Note that under this supposition there is actually no dependence on b_{k} now; the only randomness left is the choice of a_{k}.)

We have

$$
\begin{align*}
& \left|\underset{a_{k}}{\operatorname{Pr}}\left[\operatorname{InQ}\left(W_{\ell}+a_{\ell} \widetilde{Y}^{\ell}\right)=1\right]-\underset{a_{k}}{\operatorname{Pr}}\left[\operatorname{InQ}\left(W_{\ell}+b_{\ell} \widetilde{Y}^{\ell}\right)=1\right]\right| \\
= & \left|\underset{a_{k}}{\operatorname{Pr}}\left[\operatorname{InQ}\left(W_{\ell}^{\prime}+a_{\ell} \widetilde{Y}^{\ell}+a_{k} \widetilde{Y}^{k}\right)=1\right]-\underset{a_{k}}{\operatorname{Pr}}\left[\operatorname{InQ}\left(W_{\ell}^{\prime}+b_{\ell} \widetilde{Y}^{\ell}+a_{k} \widetilde{Y}^{k}\right)=1\right]\right| \tag{8}
\end{align*}
$$

The RHS of (8) is at most
$\underset{a_{k}}{\operatorname{Pr}}\left[\right.$ the vector $W_{\ell}^{\prime}+a_{\ell} \widetilde{Y}^{\ell}+a_{k} \widetilde{Y}^{k}$ has any coordinate of magnitude at most $\left.\left|a_{\ell}-b_{\ell}\right|\right]$.
(If each coordinate of $W_{\ell}^{\prime}+a_{\ell} \tilde{Y}^{\ell}+a_{k} \tilde{Y}^{k}$ has magnitude greater than $\left|a_{\ell}-b_{\ell}\right|$, then each corresponding coordinate of $W_{\ell}^{\prime}+b_{\ell} \widetilde{Y}^{\ell}+a_{k} \widetilde{Y}^{k}$ must have the same sign, and so such an outcome affects each of the probabilities in (8) in the same way - either both points are in quadrant Q or both are not.) Since each coordinate of \widetilde{Y}^{k} is of magnitude 1 , by a union bound the probability (9) is at most q times

$$
\begin{equation*}
\max _{\text {all intervals } A \text { of width } 2\left|a_{\ell}-b_{\ell}\right|} \quad \underset{a_{k}}{\operatorname{Pr}}\left[a_{k} \in A\right] . \tag{10}
\end{equation*}
$$

Now using the fact that $\left|a_{\ell}-b_{\ell}\right|=O(N)$, the fact that a_{k} is a sum of $c_{k} \geq n / 2^{q}$ independent ± 1-valued variables, and Theorem 2 , we have that (10) is at most $O(N) / \sqrt{n / 2^{q}}$. So we have that (8) is at most $O\left(N q \sqrt{2^{q}}\right) / \sqrt{n}$. Averaging (8) over a suitable distribution of values for $a_{1}, b_{1}, \ldots, a_{k-1}, b_{k-1}, a_{k+1}, b_{k+1}, \ldots, a_{2^{q}}, b_{2^{q}}$, gives that the LHS of (6) is at most $O\left(N q \sqrt{2^{q}}\right) / \sqrt{n}$.

So we have seen that whether c_{ℓ} is big or small, the value of (6) is upper bounded by

$$
\max \left\{O(1 / \sqrt{N}), O\left(N q \sqrt{2^{q}}\right) / \sqrt{n}\right\}
$$

Recalling that $N=\left(n / 2^{q}\right)^{1 / 3}$, this equals $O\left(q\left(2^{q} / n\right)^{1 / 6}\right)$, and thus $\left\|\widetilde{D}_{Y E S}-\widetilde{D}_{N O}\right\|_{1} \leq$ $O\left(q 2^{13 q / 6} / n^{1 / 6}\right)$. Recalling that $q=(1 / 26) \log n$, this equals $O\left((\log n) / n^{1 / 12}\right)=$ $o(1)$, and Lemma 2 is proved.

4 A Sublinear Algorithm for Testing \pm 1-Weight Halfspaces

In this section we present the ± 1-Weight Halfspace-Test algorithm, and prove the following theorem:

Theorem 4. For any $36 / n<\epsilon<1 / 2$ and any function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$,

- if f is $a \pm 1$-weight halfspace, then ± 1-Weight Halfspace-Test (f, ϵ) passes with probability $\geq 2 / 3$,
- if f is ϵ-far from any ± 1-weight halfspace, then ± 1-Weight Halfspace-Test (f, ϵ) rejects with probability $\geq 2 / 3$.

The query complexity of $\pm \mathbf{1}$-Weight Halfspace-Test (f, ϵ) is $O\left(\sqrt{n} \frac{1}{\epsilon^{6}} \log \frac{1}{\epsilon}\right)$. The algorithm is nonadaptive and has two-sided error.

The main tool underlying our algorithm is the following theorem, which says that if most of f 's degree-1 Fourier coefficients are almost as large as those of the majority function, then f must be close to the majority function. Here we adopt the shorthand Maj_{n} to denote the majority function on n variables, and $\hat{\mathrm{M}}_{n}$ to denote the value of the degree-1 Fourier coefficients of Maj_{n}.

Theorem 5. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be any Boolean function and let $\epsilon>36 / n$. Suppose that there is a subset of $m \geq(1-\epsilon) n$ variables i each of which satisfies $\hat{f}(i) \geq(1-\epsilon) \hat{\mathrm{M}}_{n}$. Then $\operatorname{Pr}\left[f(x) \neq \operatorname{Maj}_{n}(x)\right] \leq 32 \sqrt{\epsilon}$.

In the following subsections we prove Theorem 5 and then present our testing algorithm.

4.1 Proof of Theorem 5.

Recall the following well-known lemma, whose proof serves as a warmup for Theorem 5:

Lemma 3. Every $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ satisfies $\sum_{i=1}^{n}|\hat{f}(i)| \leq n \hat{\mathrm{M}}_{n}$.
Proof. Let $G(x)=\operatorname{sgn}(\hat{f}(1)) x_{1}+\cdots+\operatorname{sgn}(\hat{f}(n)) x_{n}$ and let $g(x)$ be the ± 1-weight halfspace $g(x)=\operatorname{sgn}(G(x))$. We have

$$
\sum_{i=1}^{n}|\hat{f}(i)|=\mathbf{E}[f G] \leq \mathbf{E}[|G|]=\mathbf{E}[G(x) g(x)]=\sum_{i=1}^{n} \hat{\mathbf{M}}_{n}
$$

where the first equality is Plancherel (using the fact that G is linear), the inequality is because f is a ± 1-valued function, the second equality is by definition of g and the third equality is Plancherel again, observing that each $\hat{g}(i)$ has magnitude $\hat{\mathrm{M}}_{n}$ and sign $\operatorname{sgn}(\hat{f}(i))$.

Proof of Theorem 5. For notational convenience, we assume that the variables whose Fourier coefficients are "almost right" are $x_{1}, x_{2}, \ldots, x_{m}$. Now define $G(x)=x_{1}+$
$x_{2}+\cdots x_{n}$, so that $\operatorname{Maj}_{n}=\operatorname{sgn}(G)$. We are interested in the difference between the following two quantities:

$$
\begin{gathered}
\mathbf{E}[|G(x)|]=\mathbf{E}\left[G(x) \operatorname{Maj}_{n}(x)\right]=\sum_{S} \hat{G}(S) \operatorname{Maj}_{n}(S)=\sum_{i=1}^{n} \operatorname{Maj}_{n}(i)=n \hat{\mathrm{M}}_{n} \\
\mathbf{E}[G(x) f(x)]=\sum_{S} \hat{G}(S) \hat{f}(S)=\sum_{i=1}^{n} \hat{f}(i)=\sum_{i=1}^{m} \hat{f}(i)+\sum_{i=m+1}^{n} \hat{f}(i) .
\end{gathered}
$$

The bottom quantity is broken into two summations. We can lower bound the first summation by $(1-\epsilon)^{2} n \hat{\mathrm{M}}_{n} \geq(1-2 \epsilon) n \hat{\mathrm{M}}_{n}$. This is because the first summation contains at least $(1-\epsilon) n$ terms, each of which is at least $(1-\epsilon) \hat{\mathrm{M}}_{n}$. Given this, Lemma 3 implies that the second summation is at least $-2 \epsilon n \hat{\mathrm{M}}_{n}$. Thus we have

$$
\mathbf{E}[G(x) f(x)] \geq(1-4 \epsilon) n \hat{\mathbf{M}}_{n}
$$

and hence

$$
\begin{equation*}
\mathbf{E}[|G|-G f] \leq 4 \epsilon n \hat{\mathrm{M}}_{n} \leq 4 \epsilon \sqrt{n} \tag{11}
\end{equation*}
$$

where we used the fact (easily verified from Parseval's equality) that $\hat{\mathrm{M}}_{n} \leq \frac{1}{\sqrt{n}}$.
Let p denote the fraction of points such that $f \neq \operatorname{sgn}(G)$, i.e. $f \neq \mathrm{Maj}_{n}$. If $p \leq$ $32 \sqrt{\epsilon}$ then we are done, so we assume $p>32 \sqrt{\epsilon}$ and obtain a contradiction. Since $\epsilon \geq 36 / n$, we have $p \geq 192 / \sqrt{n}$. Let k be such that $\sqrt{\epsilon}=(4 k+2) / \sqrt{n}$, so in particular $k \geq 1$. It is well known (by Stirling's approximation) that each "layer" $\left\{x \in\{-1,1\}^{n}\right.$: $\left.x_{1}+\cdots+x_{n}=\ell\right\}$ of the Boolean cube contains at most a $\frac{1}{\sqrt{n}}$ fraction of $\{-1,1\}^{n}$, and consequently at most a $\frac{2 k+1}{\sqrt{n}}$ fraction of points have $|G(x)| \leq 2 k$. It follows that at least a $p / 2$ fraction of points satisfy both $|G(x)|>2 k$ and $f(x) \neq \operatorname{Maj}_{n}(x)$. Since $|G(x)|-G(x) f(x)$ is at least $4 k$ on each such point and $|G(x)|-G(x) f(x)$ is never negative, this implies that the LHS of (11) is at least

$$
\frac{p}{2} \cdot 4 k>(16 \sqrt{\epsilon}) \cdot(4 k) \geq(16 \sqrt{\epsilon})(2 k+1)=(16 \sqrt{\epsilon}) \cdot \frac{\sqrt{\epsilon n}}{2}=8 \epsilon \sqrt{n}
$$

but this contradicts (11). This proves the theorem.

4.2 A Tester for \pm 1-Weight Halfspaces.

Intuitively, our algorithm works by choosing a handful of random indices $i \in[n]$, estimating the corresponding $|\hat{f}(i)|$ values (while checking unateness in these variables), and checking that each estimate is almost as large as $\hat{\mathrm{M}}_{n}$. The correctness of the algorithm is based on the fact that if f is unate and most $|\hat{f}(i)|$ are large, then some reorientation of f (that is, a replacement of some x_{i} by $-x_{i}$) will make most $\hat{f}(i)$ large. A simple application of Theorem 5 then implies that the reorientation is close to Maj_{n}, and therefore that f is close to a ± 1-weight halfspace.

We start with some preliminary lemmas which will assist us in estimating $|\hat{f}(i)|$ for functions that we expect to be unate.

Lemma 4.

$$
\hat{f}(i)=\operatorname{Pr}_{x}\left[f\left(x^{i-}\right)<f\left(x^{i+}\right)\right]-\operatorname{Pr}_{x}\left[f\left(x^{i-}\right)>f\left(x^{i+}\right)\right]
$$

where x^{i-} and x^{i+} denote the bit-string x with the $i^{\text {th }}$ bit set to -1 or 1 respectively.
We refer to the first probability above as the positive influence of variable i and the second probability as the negative influence of i. Each variable in a monotone function has only positive influence. Each variable in a unate function has only positive influence or negative influence, but not both.

Proof.(of Lemma 4) First note that $\hat{f}(i)=\mathbf{E}_{x}\left[f(x) x_{i}\right]$, then

$$
\begin{aligned}
\mathbf{E}_{x}\left[f(x) x_{i}\right]= & \operatorname{Pr}_{x}\left[f(x)=1, x_{i}=1\right]+\operatorname{Pr}_{x}\left[f(x)=-1, x_{i}=-1\right] \\
& -\operatorname{Pr}_{x}\left[f(x)=-1, x_{i}=1\right]-\operatorname{Pr}_{x}\left[f(x)=1, x_{i}=-1\right] .
\end{aligned}
$$

Now group all x 's into pairs $\left(x^{i-}, x^{i+}\right)$ that differ in the $i^{t h}$ bit. If the value of f is the same on both elements of a pair, then the total contribution of that pair to the expectation is zero. On the other hand, if $f\left(x^{i-}\right)<f\left(x^{i+}\right)$, then x^{i-} and x^{i+} each add $\frac{1}{2^{n}}$ to the expectation, and if $f\left(x^{i-}\right)>f\left(x^{i+}\right)$, then x^{i-} and x^{i+} each subtract $\frac{1}{2^{n}}$. This yields the desired result.

Lemma 5. Let f be any Boolean function, $i \in[n]$, and let $|\hat{f}(i)|=p$. By drawing $m=$ $\frac{3}{p \epsilon^{2}} \cdot \log \frac{2}{\delta}$ uniform random strings $x \in\{-1,1\}^{n}$, and querying f on the values $f\left(x^{i+}\right)$ and $f\left(x^{i-}\right)$, with probability $1-\delta$ we either obtain an estimate of $|\hat{f}(i)|$ accurate to within a multiplicative factor of $(1 \pm \epsilon)$, or discover that f is not unate.

The idea of the proof is that if neither the positive influence nor the negative influence is small, random sampling will discover that f is not unate. Otherwise, $|\hat{f}(i)|$ is well approximated by either the positive or negative influence, and a standard multiplicative form of the Chernoff bound shows that m samples suffice.

Proof.(of Lemma 5) Suppose first that both the positive influence and negative influence are at least $\frac{\epsilon p}{2}$. Then the probability that we do not observe any pair with positive influence is $\leq\left(1-\frac{\epsilon p}{2}\right)^{m} \leq e^{-\epsilon p m / 2}=e^{-(3 / 2 \epsilon) \log (2 / \delta)}<\frac{\delta}{2}$, and similarly for the negative influence. Therefore, the probability that we observe at least some positive influence and some negative influence (and therefore discover that f is not unate) is at least $1-2 \frac{\delta}{2}=1-\delta$.

Now consider the case when either the positive influence or the negative influence is less than $\frac{\epsilon p}{2}$. Without loss of generality, assume that the negative influence is less than $\frac{\epsilon p}{2}$. Then the positive influence is a good estimate of $|\hat{f}(i)|$. In particular, the probability that the estimate of the positive influence is not within $\left(1 \pm \frac{\epsilon}{2}\right) p$ of the true value (and therefore the estimate of $|\hat{f}(i)|$ is not within $(1 \pm \epsilon) p)$, is at most $<2 e^{-m p \epsilon^{2} / 3}=$ $2 e^{-\log \frac{2}{\delta}}=\delta$ by the multiplicative Chernoff bound. So in this case, the probability that the estimate we receive is accurate to within a multiplicative factor of $(1 \pm \epsilon)$ is at least $1-\delta$. This concludes the proof.

Now we are ready to present the algorithm and prove its correctness.
\pm 1-Weight Halfspace-Test (inputs are $\epsilon>0$ and black-box access to f : $\left.\{-1,1\}^{n} \rightarrow\{-1,1\}\right)$

1. Let $\epsilon^{\prime}=\left(\frac{\epsilon}{32}\right)^{2}$.
2. Choose $k=\frac{1}{\epsilon^{\prime}} \ln 6=O\left(\frac{1}{\epsilon^{\prime}}\right)$ many random indices $i \in\{1, \ldots, n\}$.
3. For each i, estimate $|\hat{f}(i)|$. Do this as in Lemma 5 by drawing $m=\frac{24 \log 12 k}{\hat{\mathrm{M}}_{n} \epsilon^{\prime 2}}=$ $O\left(\frac{\sqrt{n}}{\epsilon^{\prime 2}} \log \frac{1}{\epsilon^{\prime}}\right)$ random x 's and querying $f\left(x^{i+}\right)$ and $f\left(x^{i-}\right)$. If a violation of unateness is found, reject.
4. Pass if and only if each estimate is larger than $\left(1-\frac{\epsilon^{\prime}}{2}\right) \hat{\mathrm{M}}_{n}$.

Proof. (of Theorem 4) To prove that the test is correct, we need to show two things: first that it passes functions which are ± 1-weight halfspaces, and second that anything it passes with high probability must be ϵ-close to a ± 1-weight halfspace. To prove the first, note that if f is a ± 1-weight halfspace, the only possibility for rejection is if any of the estimates of $|\hat{f}(i)|$ is less than $\left(1-\frac{\epsilon^{\prime}}{2}\right) \hat{\mathrm{M}}_{n}$. But applying lemma 5 (with $p=\hat{\mathrm{M}}_{n}$, $\epsilon=\frac{\epsilon^{\prime}}{2}, \delta=\frac{1}{6 k}$), the probability that a particular estimate is wrong is $<\frac{1}{6 k}$, and therefore the probability that any estimate is wrong is $<\frac{1}{6}$. Thus the probability of success is $\geq \frac{5}{6}$.

The more difficult part is showing that any function which passes the test whp must be close to $\mathrm{a} \pm 1$-weight halfspace. To do this, note that if f passes the test whp then it must be the case that for all but an ϵ^{\prime} fraction of variables, $|\hat{f}(i)|>\left(1-\epsilon^{\prime}\right) \hat{\mathrm{M}}_{n}$. If this is not the case, then Step 2 will choose a "bad" variable - one for which $|\hat{f}(i)| \leq$ $\left(1-\epsilon^{\prime}\right) \hat{\mathrm{M}}_{n}$ - with probability at least $\frac{5}{6}$. Now we would like to show that for any bad variable i, the estimate of $|\hat{f}(i)|$ is likely to be less than $\left(1-\frac{\epsilon^{\prime}}{2}\right) \hat{M}_{n}$. Without loss of generality, assume that $|\hat{f}(i)|=\left(1-\epsilon^{\prime}\right) \hat{\mathrm{M}}_{n}$ (if $|\hat{f}(i)|$ is less than that, then variable i will be even less likely to pass step 3). Then note that it suffices to estimate $|\hat{f}(i)|$ to within a multiplicative factor of $\left(1+\frac{\epsilon}{2}\right)$ (since $\left.\left(1+\frac{\epsilon^{\prime}}{2}\right)\left(1-\epsilon^{\prime}\right) \hat{\mathrm{M}}_{n}<\left(1-\frac{\epsilon^{\prime}}{2}\right) \hat{\mathrm{M}}_{n}\right)$. Again using Lemma 5 (this time with $p=\left(1-\epsilon^{\prime}\right) \hat{\mathrm{M}}_{n}, \epsilon=\frac{\epsilon^{\prime}}{2}, \delta=\frac{1}{6 k}$), we see that $\frac{12}{\tilde{\mathrm{M}} \epsilon^{\prime 2}\left(1-\epsilon^{\prime}\right)} \log 12 k<\frac{24}{\tilde{M} \epsilon^{\prime 2}} \log 12 k$ samples suffice to achieve discover the variable is bad with probability $1-\frac{1}{6 k}$. The total probability of failure (the probability that we fail to choose a bad variable, or that we mis-estimate one when we do) is thus $<\frac{1}{6}+\frac{1}{6 k}<\frac{1}{3}$.

The query complexity of the algorithm is $O(k m)=O\left(\sqrt{n} \frac{1}{\epsilon^{\prime 3}} \log \frac{1}{\epsilon^{\prime}}\right)=O(\sqrt{n}$. $\left.\frac{1}{\epsilon^{6}} \log \frac{1}{\epsilon}\right)$.

5 Conclusion

We have proven a lower bound showing that the complexity of testing ± 1-weight halfspaces is is at least $\Omega(\log n)$ and an upper bound showing that it is at most $O(\sqrt{n}$. poly $\left.\left(\frac{1}{\epsilon}\right)\right)$. An open question is to close the gap between these bounds and determine the exact dependence on n. One goal is to use some type of binary search to get a poly $\log (n)$-query adaptive testing algorithm; another is to improve our lower bound to $n^{\Omega(1)}$ for nonadaptive algorithms.

References

[1] H. Block. The Perceptron: a model for brain functioning. Reviews of Modern Physics, 34:123-135, 1962.
[2] W. Feller. An introduction to probability theory and its applications. John Wiley \& Sons, 1968.
[3] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for Theoretical Computer Science, 75:97-126, 2001.
[4] O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the ACM, 45:653-750, 1998.
[5] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded depth. Journal of Computer and System Sciences, 46:129-154, 1993.
[6] S. Kulkarni, S. Mitter, and J. Tsitsiklis. Active learning using arbitrary binary valued queries. Machine Learning, 11:23-35, 1993.
[7] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. In Proc. 20th Annual Symposium on Discrete Algorithms (SODA), 2009.
[8] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT Press, Cambridge, MA, 1968.
[9] A. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata, volume XII, pages 615-622, 1962.
[10] V. V. Petrov. Limit theorems of probability theory. Oxford Science Publications, Oxford, England, 1995.
[11] J. Shawe-Taylor and N. Cristianini. An introduction to support vector machines. Cambridge University Press, 2000.
[12] A. Yao. On ACC and threshold circuits. In Proceedings of the Thirty-First Annual Symposium on Foundations of Computer Science, pages 619-627, 1990.

