
Testing ±1-Weight Halfspaces

Kevin Matulef1, Ryan O’Donnell2, Ronitt Rubinfeld3, and Rocco A. Servedio4

1 MIT
matulef@mit.edu

2 Carnegie Mellon University
odonnell@cs.cmu.edu

3 Tel Aviv University and MIT
ronitt@theory.csail.mit.edu

4 Columbia University
rocco@cs.columbia.edu

Abstract. We consider the problem of testing whether a Boolean function f :
{−1, 1}n → {−1, 1} is a±1-weight halfspace, i.e. a function of the form f(x) =
sgn(w1x1+w2x2+· · ·+wnxn) where the weightswi take values in {−1, 1}. We
show that the complexity of this problem is markedly different from the problem
of testing whether f is a general halfspace with arbitrary weights. While the latter
can be done with a number of queries that is independent of n [7], to distinguish
whether f is a ±1-weight halfspace versus ε-far from all such halfspaces we
prove that nonadaptive algorithms must make Ω(logn) queries. We complement
this lower bound with a sublinear upper bound showing that O(

√
n·poly(1

ε
))

queries suffice.

1 Introduction

dfgfghdfg this is the best i can get it asdf to do it doens’t seem to make much difference
as far as I can tell

This is the best I can get it to to do i I don’t know how to change 3
4 ·

n∑
i

of

A fundamental class in machine learning and complexity is the class of halfspaces,
or functions of the form f(x) = (w1x1 + w2x2 + · · · + wnxn − θ). Halfspaces are
a simple yet powerful class of functions, which for decades have played an important
role in fields such as complexity theory, optimization, and machine learning (see e.g.
[5, 12, 1, 9, 8, 11]).

Recently [7] brought attention to the problem of testing halfspaces. Given query
access to a function f : {−1, 1}n → {−1, 1}, the goal of an ε-testing algorithm is
to output YES if f is a halfspace and NO if it is ε-far (with respect to the uniform
distribution over inputs) from all halfspaces. Unlike a learning algorithm for halfspaces,
a testing algorithm is not required to output an approximation to f when it is close to a
halfspace. Thus, the testing problem can be viewed as a relaxation of the proper learning
problem (this is made formal in [4]). Correspondingly, [7] found that halfspaces can be
tested more efficiently than they can be learned. In particular, while Ω(n/ε) queries
are required to learn halfspaces to accuracy ε (this follows from e.g. [6]), [7] show that
ε-testing halfspaces only requires poly(1/ε) queries, independent of the dimension n.

In this work, we consider the problem of testing whether a function f belongs to a
natural subclass of halfspaces, the class of ±1-weight halfspaces. These are functions
of the form f(x) = sgn(w1x1 + w2x2 + · · · + wnxn) where the weights wi all take
values in {−1, 1}. Included in this class is the majority function on n variables, and
all 2n “reorientations” of majority, where some variables xi are replaced by −xi. Al-
ternatively, this can be viewed as the subclass of halfspaces where all variables have
the same amount of influence on the outcome of the function, but some variables get a
“positive” vote while others get a “negative” vote.

For the problem of testing ±1-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which distinguishes
±1-weight halfspaces from functions that are ε-far from±1-weight halfspaces must
make at least Ω(log n) many queries. By a standard transformation (see e.g. [3]),
this also implies an Ω(log log n) lower bound for adaptive algorithms. Taken to-
gether with [7], this shows that testing this natural subclass of halfspaces is more
query-intensive then testing the general class of all halfspaces.

2. Upper Bound. We give a nonadaptive algorithm making O(
√
n · poly(1/ε)) many

queries to f , which outputs (i) YES with probability at least 2/3 if f is a±1-weight
halfspace (ii) NO with probability at least 2/3 if f is ε-far from any ±1-weight
halfspace.
We note that it follows from [6] that learning the class of ±1-weight halfspaces
requires Ω(n/ε) queries. Thus, while some dependence on n is necessary for test-
ing, our upper bound shows testing ±1-weight halfspaces can still be done more
efficiently than learning.

Although we prove our results specifically for the case of halfspaces with all weights
±1, we remark that similar results can be obtained using our methods for other similar
subclasses of halfspaces such as {−1, 0, 1}-weight halfspaces (±1-weight halfspaces
where some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved using Yao’s
method. We define two distributions DY ES and DNO over functions, where a draw
from DY ES is a randomly chosen ±1-weight halfspace and a draw from DNO is a
halfspace whose coefficients are drawn uniformly from {+1,−1,+

√
3,−
√

3}. We
show that a random draw from DNO is with high probability Ω(1)-far from every
±1-weight halfspace, but that any set of o(log n) query strings cannot distinguish be-
tween a draw from DY ES and a draw from DNO.

Our upper bound is achieved by an algorithm which uniformly selects a small set
of variables and checks, for each selected variable xi, that the magnitude of the corre-
sponding singleton Fourier coefficient |f̂(i)| is close to to the right value. We show
that any function that passes this test with high probability must have its degree-1
Fourier coefficients very similar to those of some ±1-weight halfspace, and that any
function whose degree-1 Fourier coefficients have this property must be close to a
±1-weight halfspace. At a high level this approach is similar to some of what is done
in [7], but in the setting of the current paper this approach incurs a dependence on
n because of the level of accuracy that is required to adequately estimate the Fourier
coefficients.

2 Notation and Preliminaries

Throughout this paper, unless otherwise noted f will denote a Boolean function of the
form f : {−1, 1}n → {−1, 1}. We say that two Boolean functions f and g are ε-far if
Prx[f(x) 6= g(x)] > ε, where x is drawn from the uniform distribution on {−1, 1}n.

We say that a function f is unate if it is monotone increasing or monotone decreas-
ing as a function of variable xi for each i.

Fourier analysis. We will make use of standard Fourier analysis of Boolean functions.
The set of functions from the Boolean cube {−1, 1}n to R forms a 2n-dimensional
inner product space with inner product given by 〈f, g〉 = Ex[f(x)g(x)]. The set of
functions (χS)S⊆[n] defined by χS(x) =

∏
i∈S xi forms a complete orthonormal ba-

sis for this space. Given a function f : {−1, 1}n → R we define its Fourier coef-
ficients by f̂(S) = Ex[f(x)xS], and we have that f(x) =

∑
S f̂(S)xS . We will be

particularly interested in f ’s degree-1 coefficients, i.e., f̂(S) for |S| = 1; for brevity
we will write these as f̂(i) rather than f̂({i}). Finally, we have Plancherel’s identity
〈f, g〉 =

∑
S f̂(S)ĝ(S), which has as a special case Parseval’s identity, Ex[f(x)2] =∑

S f̂(S)2. It follows that for every f : {−1, 1}n → {−1, 1} we have
∑
S f̂(S)2 = 1.

Probability bounds. To prove our lower bound we will require the Berry-Esseen theo-
rem, a version of the Central Limit Theorem with error bounds (see e.g. [2]):

Theorem 1. Let `(x) = c1x1 + · · · + cnxn be a linear form over the random ±1 bits
xi. Assume |ci| ≤ τ for all i and write σ =

√∑
c2i . Write F for the c.d.f. of `(x)/σ;

i.e., F (t) = Pr[`(x)/σ ≤ t]. Then for all t ∈ R,

|F (t)− Φ(t)| ≤ O(τ/σ) · 1
1 + |t|3

,

where Φ denotes the c.d.f. of X , a standard Gaussian random variable. In particular, if
A ⊆ R is any interval then |Pr[`(x)/σ ∈ A]− Pr[X ∈ A]| ≤ O(τ/σ).

A special case of this theorem, with a sharper constant, is also useful (the following
can be found in [10]):

Theorem 2. Let `(x) and τ be as defined in Theorem 1. Then for any λ ≥ τ and any
θ ∈ R it holds that Pr[|`(x)− θ| ≤ λ] ≤ 6λ/σ.

3 AΩ(logn) Lower Bound for Testing ±1-Weight Halfspaces

In this section we prove the following theorem:

Theorem 3. There is a fixed constant ε > 0 such that any nonadaptive ε-testing algo-
rithmA for the class of all±1-weight halfspaces must make at least (1/26) log n many
queries.

To prove Theorem 3, we define two distributions DY ES and DNO over functions.
The “yes” distribution DY ES is uniform over all 2n ±1-weight halfspaces, i.e., a func-
tion f drawn from DY ES is f(x) = sgn(r1x1 + · · · rnxn) where each ri is inde-
pendently and uniformly chosen to be ±1. The “no” distribution DNO is similarly a
distribution over halfspaces of the form f(x) = sgn(s1x1 + · · · snxn), but each si is
independently chosen to be ±

√
1/2 or ±

√
3/2 each with probability 1/4.

To show that this approach yields a lower bound we must prove two things. First,
we must show that a function drawn from DNO is with high probability far from any
±1-weight halfspace. This is formalized in the following lemma:

Lemma 1. Let f be a random function drawn from DNO. With probability at least
1 − o(1) we have that f is ε-far from any ±1-weight halfspace, where ε > 0 is some
fixed constant independent of n.

Next, we must show that no algorithm making o(log n) queries can distinguish
DY ES and DNO. This is formalized in the following lemma:

Lemma 2. Fix any set x1, . . . , xq of q query strings from {−1, 1}n. Let D̃Y ES be the
distribution over {−1, 1}q obtained by drawing a random f from DY ES and evalu-
ating it on x1, . . . , xq . Let D̃NO be the distribution over {−1, 1}q obtained by draw-
ing a random f from DNO and evaluating it on x1, . . . , xq . If q = (1/26) log n then
‖D̃Y ES − D̃NO‖1 = o(1).

We prove Lemmas 1 and 2 in subsections 3.1 and 3.2 respectively. A standard ar-
gument using Yao’s method (see e.g. Section 8 of [3]) implies that the lemmas taken
together prove Theorem 3.

3.1 Proof of Lemma 1.

Let f be drawn from DNO, and let s1, . . . , sn denote the coefficients thus obtained. Let
T1 denote {i : |si| =

√
1/2} and T2 denote {i : |si| =

√
3/2}. We may assume that

both |T1| and |T2| lie in the range [n/2−
√
n log n, n/2+

√
n log n] since the probability

that this fails to hold is 1 − o(1). It will be slightly more convenient for us to view f
as sgn(

√
2(s1x1 + · · ·+ snxn)), that is, such that all coefficients are of magnitude 1 or√

3.
It is easy to see that the closest ±1-weight halfspace to f must have the same sign

pattern in its coefficients that f does. Thus we may assume without loss of generality
that f ’s coefficients are all +1 or +

√
3, and it suffices to show that f is far from the

majority function Maj(x) = sgn(x1 + · · ·+ xn).
Let Z be the set consisting of those z ∈ {−1, 1}T1 (i.e. assignments to the variables

in T1) which satisfy ST1 =
∑
i∈T1

zi ∈ [
√
n/2, 2

√
n/2]. Since we are assuming

that |T1| ≈ n/2, using Theorem 1, we have that |Z|/2|T1| = C1 ± o(1) for constant
C1 = Φ(2)− Φ(1) > 0.

Now fix any z ∈ Z, so
∑
i∈T1

zi is some value Vz ·
√
n/2 where Vz ∈ [1, 2]. There

are 2n−|T1| extensions of z to a full input z′ ∈ {−1, 1}n. Let CMaj(z) be the fraction of
those extensions which have Maj(z′) = −1; in other words, CMaj(z) is the fraction of

strings in {−1, 1}T2 which have
∑
i∈T2

zi < −Vz
√
n/2. By Theorem 1, this fraction

is Φ(−Vz)± o(1). Let Cf (z) be the fraction of the 2n−|T1| extensions of z which have
f(z′) = −1. Since the variables in T2 all have coefficient

√
3, Cf (z) is the fraction of

strings in {−1, 1}T2 which have
∑
i∈T2

zi < −(Vz/
√

3)
√
n/2, which by Theorem 1

is Φ(−Vz/
√

3)± o(1).
There is some absolute constant c > 0 such that for all z ∈ Z, |Cf (z)−CMaj(z)| ≥

c. Thus, for a constant fraction of all possible assignments to the variables in T1, the
functions Maj and f disagree on a constant fraction of all possible extensions of the
assignment to all variables in T1 ∪ T2. Consequently, we have that Maj and f disagree
on a constant fraction of all assignments, and the lemma is proved. ut

3.2 Proof of Lemma 2.

For i = 1, . . . , n let Y i ∈ {−1, 1}q denote the vector of (x1
i , . . . , x

q
i), that is, the vector

containing the values of the ith bits of each of the queries. Alternatively, if we view the
n-bit strings x1, . . . , xq as the rows of a q × n matrix, the strings Y 1, . . . , Y n are the
columns. If f(x) = sgn(a1x1 + · · ·+ anxn) is a halfspace, we write sgn(

∑n
i=1 aiY

i)
to denote (f(x1), . . . , f(xq)), the vector of outputs of f on x1, . . . , xq; note that the
value sgn(

∑n
i=1 aiY

i) is an element of {−1, 1}q.
Since the statistical distance between two distributions D1, D2 on a domain D

of size N is bounded by N · maxx∈D |D1(x) − D2(x)|, we have that the statistical
distance ‖D̃Y ES − D̃NO‖1 is at most 2q · maxQ∈{−1,1}q |Prr[sgn(

∑n
i=1 riY

i) =
Q] − Prs[sgn(

∑n
i=1 siY

i) = Q]|. So let us fix an arbitrary Q ∈ {−1, 1}q; it suffices
for us to bound ∣∣∣∣Pr

r
[sgn(

n∑
i=1

riY
i) = Q]− Pr

s
[sgn(

n∑
i=1

siY
i) = Q]

∣∣∣∣ . (1)

Let InQ denote the indicator random variable for the quadrant Q, i.e. given x ∈ Rq the
value of InQ(x) is 1 if x lies in the quadrant corresponding to Q and is 0 otherwise. We
have

(1) =
∣∣∣∣Er[InQ(

n∑
i=1

riY
i)]−Es[InQ(

n∑
i=1

siY
i)]
∣∣∣∣ (2)

We then note that since the Y i vectors are of length q, there are at most 2q possibilities
in {−1, 1}q for their values which we denote by Ỹ 1, . . . , Ỹ 2q . We lump together those
vectors which are the same: for i = 1, . . . , 2q let ci denote the number of times that Ỹ i

occurs in Y 1, . . . , Y n. We then have that
∑n
i=1 riY

i =
∑2q

i=1 aiỸ
i where each ai is

an independent random variable which is a sum of ci independent±1 random variables
(the rj’s for those j that have Y j = Ỹ i). Similarly, we have

∑n
i=1 siY

i =
∑2q

i=1 biỸ
i

where each bi is an independent random variable which is a sum of ci independent
variables distributed as the sj’s (these are the sj’s for those j that have Y j = Ỹ i). We
thus can re-express (2) as∣∣∣∣Ea[InQ(

2q∑
i=1

aiỸ
i)]−Eb[InQ(

2q∑
i=1

biỸ
i)]
∣∣∣∣ . (3)

Let us define a sequence of random variables that hybridize between
∑2q

i=1 aiỸ
i

and
∑2q

i=1 biỸ
i. For 1 ≤ ` ≤ 2q + 1 define

Z` :=
∑
i<`

biỸ
i +

∑
i≥`

aiỸ
i, so Z1 =

2q∑
i=1

aiỸ
i and Z2q+1 =

2q∑
i=1

biỸ
i.

(4)
As is typical in hybrid arguments, by telescoping (3), we have that (3) equals∣∣∣∣Ea,b[2q∑̀

=1

InQ(Z`) − InQ(Z`+1)]| =
∣∣∣∣ 2q∑̀

=1

Ea,b[InQ(Z`)− InQ(Z`+1)]
∣∣∣∣

=
∣∣∣∣ 2q∑̀

=1

Ea,b[InQ(W` + a`Ỹ
`)− InQ(W` + b`Ỹ

`)]
∣∣∣∣ (5)

where W` :=
∑
i<` biỸ

i +
∑
i>` aiỸ

i. The RHS of (5) is at most

2q · max
`=1,...,2q

|Ea,b[InQ(W` + a`Ỹ
`)− InQ(W` + b`Ỹ

`)]|.

So let us fix an arbitrary `; we will bound∣∣∣Ea,b[InQ(W` + a`Ỹ
`)− InQ(W` + b`Ỹ

`)]
∣∣∣ ≤ B (6)

(we will specify B later), and this gives that ‖D̃Y ES − D̃NO‖1 ≤ 4qB by the argu-
ments above. Before continuing further, it is useful to note that W`, a`, and b` are all
independent from each other.

Bounding (6). LetN := (n/2q)1/3.Without loss of generality, we may assume that the
the ci’s are in monotone increasing order, that is c1 ≤ c2 ≤ . . . ≤ c2q . We consider two
cases depending on the value of c`. If c` > N then we say that c` is big, and otherwise
we say that c` is small. Note that each ci is a nonnegative integer and c1+ · · ·+c2q = n,
so at least one ci must be big; in fact, we know that the largest value c2q is at least n/2q .

If c` is big, we argue that a` and b` are distributed quite similarly, and thus for any
possible outcome of W` the LHS of (6) must be small. If c` is small, we consider some
k 6= ` for which ck is very big (we just saw that k = 2q is such a k) and show that
for any possible outcome of a`, b` and all the other contributors to W`, the contribution
to W` from this ck makes the LHS of (6) small (intuitively, the contribution of ck is so
large that it “swamps” the small difference that results from considering a` versus b`).

Case 1: Bounding (6) when c` is big, i.e. c` > N. Fix any possible outcome for
W` in (6). Note that the vector Ỹ ` has all its coordinates ±1 and thus it is “skew” to
each of the axis-aligned hyperplanes defining quadrant Q. Since Q is convex, there is
some interval A (possibly half-infinite) of the real line such that for all t ∈ R we have
InQ(W` + tỸ `) = 1 if and only if t ∈ A. It follows that

|Pr
a`

[InQ(W`+a`Ỹ
`) = 1]−Pr

b`
[InQ(W`+b`Ỹ

`) = 1]| = |Pr[a` ∈ A]−Pr[b` ∈ A]|.
(7)

Now observe that as in Theorem 1, a` and b` are each sums of c` many independent
zero-mean random variables (the rj’s and sj’s respectively) with the same total variance
σ =

√
c` and with each |rj |, |sj | ≤ O(1). Applying Theorem 1 to both a` and b`, we

get that the RHS of (7) is at most O(1/
√
c`) = O(1/

√
N). Averaging the LHS of (7)

over the distribution of values for W`, it follows that if c` is big then the LHS of (6) is
at most O(1/

√
N).

Case 2: Bounding (6) when c` is small, i.e. c` ≤ N. We first note that every possible
outcome for a`, b` results in |a` − b`| ≤ O(N). Let k = 2q and recall that ck ≥ n/2q .
Fix any possible outcome for a`, b` and for all other aj , bj such that j 6= k (so the
only “unfixed” randomess at this point is the choice of ak and bk). Let W ′` denote the
contribution to W` from these 2q − 2 fixed aj , bj values, so W` equals W ′` + akỸ

k

(since k > `). (Note that under this supposition there is actually no dependence on bk
now; the only randomness left is the choice of ak.)

We have

|Pr
ak

[InQ(W` + a`Ỹ
`) = 1]− Pr

ak
[InQ(W` + b`Ỹ

`) = 1]|

= |Pr
ak

[InQ(W ′` + a`Ỹ
` + akỸ

k) = 1]− Pr
ak

[InQ(W ′` + b`Ỹ
` + akỸ

k) = 1]| (8)

The RHS of (8) is at most

Pr
ak

[the vector W ′` + a`Ỹ
` + akỸ

k has any coordinate of magnitude at most |a` − b`|].
(9)

(If each coordinate of W ′` + a`Ỹ
` + akỸ

k has magnitude greater than |a` − b`|, then
each corresponding coordinate of W ′` + b`Ỹ

` + akỸ
k must have the same sign, and so

such an outcome affects each of the probabilities in (8) in the same way – either both
points are in quadrant Q or both are not.) Since each coordinate of Ỹ k is of magnitude
1, by a union bound the probability (9) is at most q times

max
all intervalsA of width 2|a`−b`|

Pr
ak

[ak ∈ A]. (10)

Now using the fact that |a` − b`| = O(N), the fact that ak is a sum of ck ≥ n/2q inde-
pendent±1-valued variables, and Theorem 2, we have that (10) is at mostO(N)/

√
n/2q.

So we have that (8) is at most O(Nq
√

2q)/
√
n. Averaging (8) over a suitable distribu-

tion of values for a1, b1, . . . , ak−1, bk−1, ak+1, bk+1, . . . , a2q , b2q , gives that the LHS
of (6) is at most O(Nq

√
2q)/
√
n.

So we have seen that whether c` is big or small, the value of (6) is upper bounded
by

max{O(1/
√
N), O(Nq

√
2q)/
√
n}.

Recalling thatN = (n/2q)1/3, this equalsO(q(2q/n)1/6), and thus ‖D̃Y ES−D̃NO‖1 ≤
O(q213q/6/n1/6). Recalling that q = (1/26) log n, this equals O((log n)/n1/12) =
o(1), and Lemma 2 is proved.

4 A Sublinear Algorithm for Testing ±1-Weight Halfspaces

In this section we present the ±1-Weight Halfspace-Test algorithm, and prove the
following theorem:

Theorem 4. For any 36/n < ε < 1/2 and any function f : {−1, 1}n → {−1, 1},

– if f is a ±1-weight halfspace, then ±1-Weight Halfspace-Test(f, ε) passes with
probability ≥ 2/3,

– if f is ε-far from any ±1-weight halfspace, then ±1-Weight Halfspace-Test(f, ε)
rejects with probability ≥ 2/3.

The query complexity of ±1-Weight Halfspace-Test(f, ε) is O(
√
n 1
ε6 log 1

ε). The al-
gorithm is nonadaptive and has two-sided error.

The main tool underlying our algorithm is the following theorem, which says that
if most of f ’s degree-1 Fourier coefficients are almost as large as those of the majority
function, then f must be close to the majority function. Here we adopt the shorthand
Majn to denote the majority function on n variables, and M̂n to denote the value of the
degree-1 Fourier coefficients of Majn.

Theorem 5. Let f : {−1, 1}n → {−1, 1} be any Boolean function and let ε > 36/n.
Suppose that there is a subset of m ≥ (1 − ε)n variables i each of which satisfies
f̂(i) ≥ (1− ε)M̂n. Then Pr[f(x) 6= Majn(x)] ≤ 32

√
ε.

In the following subsections we prove Theorem 5 and then present our testing algo-
rithm.

4.1 Proof of Theorem 5.

Recall the following well-known lemma, whose proof serves as a warmup for Theo-
rem 5:

Lemma 3. Every f : {−1, 1}n → {−1, 1} satisfies
∑n
i=1 |f̂(i)| ≤ nM̂n.

Proof. Let G(x) = sgn(f̂(1))x1 + · · · + sgn(f̂(n))xn and let g(x) be the ±1-weight
halfspace g(x) = sgn(G(x)). We have

n∑
i=1

|f̂(i)| = E[fG] ≤ E[|G|] = E[G(x)g(x)] =
n∑
i=1

M̂n,

where the first equality is Plancherel (using the fact that G is linear), the inequality is
because f is a ±1-valued function, the second equality is by definition of g and the
third equality is Plancherel again, observing that each ĝ(i) has magnitude M̂n and sign
sgn(f̂(i)). ut

Proof of Theorem 5. For notational convenience, we assume that the variables whose
Fourier coefficients are “almost right” are x1, x2, ..., xm. Now define G(x) = x1 +

x2 + · · ·xn, so that Majn = sgn(G). We are interested in the difference between the
following two quantities:

E[|G(x)|] = E[G(x)Majn(x)] =
∑
S

Ĝ(S) ˆMajn(S) =
n∑
i=1

ˆMajn(i) = nM̂n,

E[G(x)f(x)] =
∑
S

Ĝ(S)f̂(S) =
n∑
i=1

f̂(i) =
m∑
i=1

f̂(i) +
n∑

i=m+1

f̂(i).

The bottom quantity is broken into two summations. We can lower bound the first
summation by (1 − ε)2nM̂n ≥ (1 − 2ε)nM̂n. This is because the first summation
contains at least (1−ε)n terms, each of which is at least (1−ε)M̂n. Given this, Lemma 3
implies that the second summation is at least −2εnM̂n. Thus we have

E[G(x)f(x)] ≥ (1− 4ε)nM̂n

and hence
E[|G| −Gf] ≤ 4εnM̂n ≤ 4ε

√
n (11)

where we used the fact (easily verified from Parseval’s equality) that M̂n ≤ 1√
n
.

Let p denote the fraction of points such that f 6= sgn(G), i.e. f 6= Majn. If p ≤
32
√
ε then we are done, so we assume p > 32

√
ε and obtain a contradiction. Since

ε ≥ 36/n, we have p ≥ 192/
√
n. Let k be such that

√
ε = (4k+2)/

√
n, so in particular

k ≥ 1. It is well known (by Stirling’s approximation) that each “layer” {x ∈ {−1, 1}n :
x1 + · · · + xn = `} of the Boolean cube contains at most a 1√

n
fraction of {−1, 1}n,

and consequently at most a 2k+1√
n

fraction of points have |G(x)| ≤ 2k. It follows that
at least a p/2 fraction of points satisfy both |G(x)| > 2k and f(x) 6= Majn(x). Since
|G(x)| − G(x)f(x) is at least 4k on each such point and |G(x)| − G(x)f(x) is never
negative, this implies that the LHS of (11) is at least

p

2
· 4k > (16

√
ε) · (4k) ≥ (16

√
ε)(2k + 1) = (16

√
ε) ·
√
εn

2
= 8ε
√
n,

but this contradicts (11). This proves the theorem. ut

4.2 A Tester for ±1-Weight Halfspaces.

Intuitively, our algorithm works by choosing a handful of random indices i ∈ [n], es-
timating the corresponding |f̂(i)| values (while checking unateness in these variables),
and checking that each estimate is almost as large as M̂n. The correctness of the al-
gorithm is based on the fact that if f is unate and most |f̂(i)| are large, then some
reorientation of f (that is, a replacement of some xi by −xi) will make most f̂(i)
large. A simple application of Theorem 5 then implies that the reorientation is close to
Majn, and therefore that f is close to a ±1-weight halfspace.

We start with some preliminary lemmas which will assist us in estimating |f̂(i)| for
functions that we expect to be unate.

Lemma 4.

f̂(i) = Pr
x

[f(xi−) < f(xi+)]− Pr
x

[f(xi−) > f(xi+)]

where xi− and xi+ denote the bit-string x with the ith bit set to −1 or 1 respectively.

We refer to the first probability above as the positive influence of variable i and the
second probability as the negative influence of i. Each variable in a monotone function
has only positive influence. Each variable in a unate function has only positive influence
or negative influence, but not both.

Proof.(of Lemma 4) First note that f̂(i) = Ex[f(x)xi], then

Ex[f(x)xi] = Pr
x

[f(x) = 1, xi = 1] + Pr
x

[f(x) = −1, xi = −1]

−Pr
x

[f(x) = −1, xi = 1]− Pr
x

[f(x) = 1, xi = −1].

Now group all x’s into pairs (xi−, xi+) that differ in the ith bit. If the value of f is the
same on both elements of a pair, then the total contribution of that pair to the expectation
is zero. On the other hand, if f(xi−) < f(xi+), then xi− and xi+ each add 1

2n to the
expectation, and if f(xi−) > f(xi+), then xi− and xi+ each subtract 1

2n . This yields
the desired result. ut

Lemma 5. Let f be any Boolean function, i ∈ [n], and let |f̂(i)| = p. By drawingm =
3
pε2 · log 2

δ uniform random strings x ∈ {−1, 1}n, and querying f on the values f(xi+)

and f(xi−), with probability 1 − δ we either obtain an estimate of |f̂(i)| accurate to
within a multiplicative factor of (1± ε), or discover that f is not unate.

The idea of the proof is that if neither the positive influence nor the negative influ-
ence is small, random sampling will discover that f is not unate. Otherwise, |f̂(i)| is
well approximated by either the positive or negative influence, and a standard multi-
plicative form of the Chernoff bound shows that m samples suffice.

Proof.(of Lemma 5) Suppose first that both the positive influence and negative influ-
ence are at least εp2 . Then the probability that we do not observe any pair with positive
influence is ≤ (1 − εp

2)m ≤ e−εpm/2 = e−(3/2ε) log(2/δ) < δ
2 , and similarly for the

negative influence. Therefore, the probability that we observe at least some positive in-
fluence and some negative influence (and therefore discover that f is not unate) is at
least 1− 2 δ2 = 1− δ.

Now consider the case when either the positive influence or the negative influence
is less than εp

2 . Without loss of generality, assume that the negative influence is less than
εp
2 . Then the positive influence is a good estimate of |f̂(i)|. In particular, the probability

that the estimate of the positive influence is not within (1 ± ε
2)p of the true value (and

therefore the estimate of |f̂(i)| is not within (1 ± ε)p), is at most < 2e−mpε
2/3 =

2e− log 2
δ = δ by the multiplicative Chernoff bound. So in this case, the probability that

the estimate we receive is accurate to within a multiplicative factor of (1± ε) is at least
1− δ. This concludes the proof. ut

Now we are ready to present the algorithm and prove its correctness.

±1-Weight Halfspace-Test (inputs are ε > 0 and black-box access to f :
{−1, 1}n → {−1, 1})

1. Let ε′ = (ε32)2.
2. Choose k = 1

ε′ ln 6 = O(1
ε′) many random indices i ∈ {1, ..., n}.

3. For each i, estimate |f̂(i)|. Do this as in Lemma 5 by drawing m = 24 log 12k

M̂nε′2
=

O(
√
n

ε′2 log 1
ε′) random x’s and querying f(xi+) and f(xi−). If a violation of

unateness is found, reject.
4. Pass if and only if each estimate is larger than (1− ε′

2)M̂n.

Proof. (of Theorem 4) To prove that the test is correct, we need to show two things:
first that it passes functions which are ±1-weight halfspaces, and second that anything
it passes with high probability must be ε-close to a ±1-weight halfspace. To prove the
first, note that if f is a ±1-weight halfspace, the only possibility for rejection is if any
of the estimates of |f̂(i)| is less than (1− ε′

2)M̂n. But applying lemma 5 (with p = M̂n,
ε = ε′

2 , δ = 1
6k), the probability that a particular estimate is wrong is < 1

6k , and
therefore the probability that any estimate is wrong is < 1

6 . Thus the probability of
success is ≥ 5

6 .
The more difficult part is showing that any function which passes the test whp must

be close to a ±1-weight halfspace. To do this, note that if f passes the test whp then
it must be the case that for all but an ε′ fraction of variables, |f̂(i)| > (1 − ε′)M̂n. If
this is not the case, then Step 2 will choose a “bad” variable – one for which |f̂(i)| ≤
(1 − ε′)M̂n – with probability at least 5

6 . Now we would like to show that for any bad
variable i, the estimate of |f̂(i)| is likely to be less than (1 − ε′

2)M̂n. Without loss of
generality, assume that |f̂(i)| = (1 − ε′)M̂n (if |f̂(i)| is less than that, then variable i
will be even less likely to pass step 3). Then note that it suffices to estimate |f̂(i)| to
within a multiplicative factor of (1 + ε

2) (since (1 + ε′

2)(1 − ε′)M̂n < (1 − ε′

2)M̂n).
Again using Lemma 5 (this time with p = (1 − ε′)M̂n, ε = ε′

2 , δ = 1
6k), we see that

12
M̂ε′2(1−ε′)

log 12k < 24
M̂ε′2

log 12k samples suffice to achieve discover the variable is

bad with probability 1− 1
6k . The total probability of failure (the probability that we fail

to choose a bad variable, or that we mis-estimate one when we do) is thus< 1
6+ 1

6k <
1
3 .

The query complexity of the algorithm is O(km) = O(
√
n 1
ε′3 log 1

ε′) = O(
√
n ·

1
ε6 log 1

ε). ut

5 Conclusion

We have proven a lower bound showing that the complexity of testing ±1-weight half-
spaces is is at least Ω(log n) and an upper bound showing that it is at most O(

√
n ·

poly(1
ε)). An open question is to close the gap between these bounds and determine

the exact dependence on n. One goal is to use some type of binary search to get a
poly log(n)-query adaptive testing algorithm; another is to improve our lower bound to
nΩ(1) for nonadaptive algorithms.

References

[1] H. Block. The Perceptron: a model for brain functioning. Reviews of Modern Physics,
34:123–135, 1962.

[2] W. Feller. An introduction to probability theory and its applications. John Wiley & Sons,
1968.

[3] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the
European Association for Theoretical Computer Science, 75:97–126, 2001.

[4] O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45:653–750, 1998.

[5] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded
depth. Journal of Computer and System Sciences, 46:129–154, 1993.

[6] S. Kulkarni, S. Mitter, and J. Tsitsiklis. Active learning using arbitrary binary valued
queries. Machine Learning, 11:23–35, 1993.

[7] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. In Proc.
20th Annual Symposium on Discrete Algorithms (SODA), 2009.

[8] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT
Press, Cambridge, MA, 1968.

[9] A. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on
Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

[10] V. V. Petrov. Limit theorems of probability theory. Oxford Science Publications, Oxford,
England, 1995.

[11] J. Shawe-Taylor and N. Cristianini. An introduction to support vector machines. Cambridge
University Press, 2000.

[12] A. Yao. On ACC and threshold circuits. In Proceedings of the Thirty-First Annual Sympo-
sium on Foundations of Computer Science, pages 619–627, 1990.

