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Abstract

Suppose someone gives us an extremely fast program P that we can call as a black box

to compute a function f . Rather than trust that P works correctly, a self-testing/correcting

pair for f allows us to: (1) estimate the probability that P (x) 6= f(x) when x is randomly

chosen; (2) on any input x, compute f(x) correctly as long as P is not too faulty on aver-

age. Furthermore, both (1) and (2) require only a small multiplicative overhead (usually

constant) over the running time of P . A program result checker for f (as introduced by

Manuel Blum) allows us to check that on particular input x, P (x) = f(x).

We present general techniques for constructing simple to program self-testing/correcting

pairs for a variety of numerical functions. The self-testing/correcting pairs introduced for

many of the problems are based on the property that the solution to a particular instance

of the problem can be expressed as the solution to a few random instances of the same

size. An important idea is to design self-testing/correcting pairs for an entire library of

functions rather than for each function individually. We extend these notions and some

of the general techniques to check programs for some speci�c functions which are only

intended to give good approximations to f(x).

We extend the above models and techniques of program result checking and self-

testing/correcting to the case where the behavior of the program is modelled as being

adaptive, i.e. the program may not always give the same answer on a particular input.

These stronger checkers provide multi-prover interactive proofs for these problems.

The theory of checking is also extended to parallel programs [Rubinfeld]. We construct

parallel checkers for many basic problems in parallel computation.

We show that for some problems, result checkers which are much more e�cient can be

constructed if the answers are checked in batches, i.e. many answers are checked at the

same time. For these problems, the multiplicative overhead of checking the result can be

made arbitrarily small.

This research was supported by NSF grant CCR 88-13632, by the International Com-

puter Science Institute and by an IBM Graduate Fellowship.
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Chapter 1

Introduction

In his book, Memoirs of a Computer Pioneer [65], Maurice Wilkes writes :

By June 1949 people had begun to realize that it was not so easy to get

a program right as had at one time appeared. I well remember when this

realization �rst came on me with full force. The EDSAC was on the top oor

of the building and the tape-punching and editing equipment one oor below

on a gallery that ran round the room in which the di�erential analyser was

installed. I was trying to get working my �rst non-trivial program, which was

one for the numerical integration of Airy's di�erential equation. It was on one

of my journeys between the EDSAC room and the punching equipment that

\hesitating at the angles of stairs" the realization came over me with full force

that a good part of the remainder of my life was going to be spent in �nding

errors in my own programs. Turing had evidently realized this too, for he

spoke at the conference on \checking a large routine".

His prediction that software faults would be one of the most crucial issues for programmers

proved correct, and the issue of software reliability has been plaguing computer program-

mers since the earliest days of the �eld. In many cases, these bugs can have serious

implications.

1

More is known now than in 1949 about programming and ways to minimize errors in

programs, yet the problem still ourishes because programs are being developed to solve

1

Examples from recent history range from severe ooding to millions of dollars of losses for major phone

companies: In 1983, severe ooding along the Colorado River that killed six persons was attributed to a

\monumental mistake" in federal computer projections of snow-melt runo�. The underestimation of the

runo� caused o�cials to dam up too much water before the spring thaw. On January 15,1990, a bug in

the newly installed software at AT&T temporarily shut down half of the telephone system with hundreds

of thousands of callers being unable to call or receive their long distance phone calls.
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more complicated problems, and need to be clever in order to maximize e�ciency and to

take advantage of more complicated computer architectures.

Traditional Approaches to Software Reliability The problem of software reliability

has been explored in the past with several classical approaches. As each of these approaches

has its own strengths and weaknesses, they should be viewed as supplementary, rather than

competing approaches. We describe two approaches of interest.

The �rst method, program veri�cation, involves a formal proof of correctness of the

program code which is done only once, and before the program is ever used. Thus, using

it does not a�ect the running time of using the program. Though programs for many

problems have been formally veri�ed, these programs are usually quite simple and often

much less e�cient than other programs for the same problem. Relatively simple data

structure routines are very di�cult to verify. Even when a program is proven correct,

the proof is often much longer and more complicated than the program itself, and thus

is at least as susceptible to errors. Since veri�cation is too tedious of a task to do by

hand, e�orts have been aimed at automating or semi-automating the process. Such e�orts

have met with limited success. Additional complexity is introduced when programming on

parallel processors and distributed computing environments. These are among the reasons

that [27, De Millo Lipton Perlis] use to argue that program veri�cation should not be the

only way of approaching the problem of software reliability. Furthermore, the proof of

correctness only makes a statement about the program as it is written on paper, not as

it is typed into the �le, nor the compiled code generated from the �le, nor the physical

representation of the code loaded into the hardware where the program is to be executed.

The second method, traditional program testing, involves testing the program's cor-

rectness on some inputs. Traditional testing consists of generating random instances or

special instances of the problem and determining whether the program is correct on those

instances. Testing overcomes some of the problems of program veri�cation, e.g. the test-

ing is of the actual physical representation of the code loaded into the hardware. Testing

is also normally done in a preprocessing stage, and does not a�ect the run time of the

program. Since it is unreasonable to test the program on each input, the programmer is

never certain that the program is correct on the particular inputs for which the correct

result is needed. In addition, proper testing raises the following issues which must be

addressed:

1. Which input distribution should the program be tested on? In many cases, the input

distribution that will occur in practice is unknown and is not static.

2. What constitutes an acceptable test? Typically, either (1) the instances checked

are generated so that they are small enough or special enough to be checked by

hand, which is insu�cient to test the general behavior of the program, or (2) an

\independent" program is used to calculate the answer. The \independent" program
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is often a previous version of the same program that is being replaced, or one that

is written by di�erent people (who are likely to make the same types of errors) and

thus is not independent at all.

Program Result Checking Recently, Manuel Blum in [15, Blum] has proposed a

promising new framework, Program Result Checking, for allowing progammers to build

result checkers into their programs. People realize the importance of checking their own

hand calculations, and have developed ad-hoc methods for doing so: for example, when

solving a system of equations, people are taught to plug the solution back into the equations

to verify the correctness of the result. In fact, many programmers put checks into their

programs to verify that the results being computed are correct or are at least feasible

solutions. Program Result Checking involves writing a result checker program, to be run

in conjunction with the original program, that checks the work of the program, i.e. it

obtains a proof of correctness of the result of the program on the speci�c input that the

program was run on. The result checker does not then verify whether or not the program

is correct, and in fact is not allowed to look at the program code: it simply veri�es whether

the program gives the correct answer on the inputs on which it is called.

As in algorithm design, where a di�erent algorithm is designed for each function, the

result checker is written speci�cally for the function that it is supposed to check. However,

in algorithm design, several techniques have been developed which can be used to write

algorithms for large classes of problems. Similarly, one of the partially ful�lled goals of

the area of result checking is to �nd techniques which can be used to write result checkers

for large classes of problems.

This approach allows one to use programs written by other people without having

to trust them: since the result checker for a function is usually easier to write than the

program for the function, it is easier to use the untrusted program in conjunction with

the result checker than to write a new program for the function. Moreover, one can use

programs that are based on unproven heuristics for the problem. For example, many good

heuristics exist for the graph isomorphism problem. If a heuristic program is used, then

the result checker either �nds a mistake in the heuristic or else it is very likely that the

heuristic has output the correct answer on the given input.

This framework is meant to address computational problems that have well-de�ned

input/output speci�cations, rather than problems where the di�culty comes in deciding

on the correct speci�cations. The result checker is written speci�cally for the function

which it checks, but must work for all programs that purport to compute that function.

The result checker may call the program on other inputs, but it may only access the

program as a black box, and may not look at the program code. Thus, result checking is

inherently di�erent than program veri�cation. Result checking is also of a di�erent nature

than verifying that the program is following an algorithm's steps correctly. However, we

will see (Chapter 6) that some result checkers are in some sense using the program to
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reconstruct the steps of a very simple algorithm for the problem, to be used as a proof

of the correctness of the result. If this can be done e�ciently, then it becomes worthwile

to use the faster but more complicated algorithm rather than the very simple but slow

algorithm. We de�ne a program result checker more formally in Chapter 2.

The �rst program result checkers for a number of important problems are given in [15,

Blum], [17, Blum Kannan], [23, Blum Raghavan] [39, Kannan]. Program Result Check-

ing has been successfully applied to a wide range of problems, including sorting, matrix

rank, linear programming, graph isomorphism, matrix multiplication, greatest common

divisor [2, Adleman Huang Kompella], [15, Blum], [17, Blum Kannan], [18, Blum Kan-

nan Rubinfeld], [20, Blum Luby Rubinfeld 2], [23, Blum Raghavan], [34, Freivalds],[39,

Kannan].

The question remains of how to verify that the result checker program meets its speci�-

cations. Although there is no �nal answer to this question, there are some partial answers.

First, it has been our experience that the code for the result checkers that have been de-

signed is often much simpler than reasonably fast programs for computing f directly, and

is therefore more likely to be correct on these grounds alone. Moreover, a lot of time can

be spent in the design of a result checker to try and ensure that it is correct, because a

result checker can be used on all revisions in the future to the currently used program for

computing the function. Rather than trading the assumption that the program is correct

for the assumption that the result checker is correct, [15, Blum] suggests that the result

checker should be in some quanti�able way \di�erent" than any program that correctly

computes the function directly, because then it is unlikely that the result checker makes

mistakes of the same type as those made by the program: speci�cally, [15, Blum] suggests

the requirement that the running time of the result checker (not including the running

time of the program on any of the calls that the result checker makes to it) be strictly

faster than the fastest program for computing the function. Thus, the result checker must

do something other than compute the function directly.

Since result checking is done at run time, care must be taken so that it does not

signi�cantly add to the total computation done. For many functions, the result checking

task is signi�cantly easier than the task of computing the function value. We say that

a result checker is e�cient if the total running time of the result checker, including the

running time of the calls to the program, is linear in the running time of the program. We

would like the result checkers to be e�cient, or as close to e�cient as possible.

The result checking is done with respect to the program being executed in the hardware.

If the hardware is assumed to be non-faulty, no further assumptions are needed. If the

hardware is assumed to be possibly faulty, then we assume that the simple result checker

is loaded into a smaller non-faulty portion of hardware (similar to what is done with the

operating system kernel). In this case, the result checker can even be used to �nd faults

in the program due to hardware errors that develop over time.

An advantage of the approach of [15, Blum] is illustrated by the following example.

4



Suppose we have a correct program which we want to run as fast as possible. We have two

kinds of hardware, non-faulty hardware and faster but possibly faulty hardware. There

are two possibilities: (1) run the program alone on the non-faulty hardware; (2) run the

result checker on the non-faulty hardware in conjunction with the program on the faster

hardware. Because the result checking time is much smaller than the running time of the

program when run on equal speed hardware, the bottleneck in running time in (2) is still

the program. Thus, (2) can yield an overall gain in processing speed over (1) without

compromising con�dence in the correctness of the output.

Self-Testing/Correcting Programs We introduce the notion of self-testing/correcting

programs (Chapter 3), which is an extension of the theory of program result checkers:

Although a result checker can be used to verify whether the program is correct on

a particular input, it does not give a method for computing the correct answer in the

case that the program is found to be faulty. We show that for many functions, faulty

programs which are nevertheless correct on a substantial fraction of the inputs from a

conveniently chosen distribution (determined by the function), can be self-corrected, i.e.

turned into programs that are always correct. For example, we show how to convert a

program for integer multiplication that errs on up to 1=8 of the pairs of n-bit inputs, into a

probabilistic program that is correct on every input with high probability. Self-correcting

has implications for program design: It may be easier to write programs that are allowed

to err infrequently, because special cases can be ignored. As with result checking, we

ask that the self-correctors be quanti�ably di�erent than any program that computes the

function.

We discuss a property of functions which allows them to be self-corrected, and give

a general technique for constructing self-correcting programs for all functions which have

this property. Examples of functions which have this property include integer multiplica-

tion, integer division, the mod function, matrix multiplication, polynomial multiplication,

modular multiplication, modular exponentiation and the evaluation of any function which

is a multinomial.

In order to ascertain that the programs are usually right on the distribution chosen

for the self-corrector, we introduce the notion of self-testing programs. The design of the

self-corrector dictates which input distribution must be tested. We ask that the self-testers

be be quanti�ably di�erent than any program that computes the function, which does not

allow the tester rely on the existence of a \correct" program for the function in order to test

the program. The theory of result checking gives one way of satisfying this requirement:

one calls the program on the test input, and then uses the result checker to verify that the

program gives the correct answer. The assertion is true because of the restriction that the

result checker is quanti�ably di�erent than any program for the function, and therefore

does not check the result by running another program for the problem to see if it gets

the same answer. We give other techniques which can be used to construct very simple
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and e�cient self-testers, without the use of a result checker for the function, for all of the

functions mentioned above.

A self-testing/correcting pair is a powerful tool. A user can take any program that

purportedly computes the function and self-test it. If the program passes the self-test

then, on any input, the user can call the self-corrector, which in turn makes calls to the

program, to correctly compute the function. Even a program that computes the function

incorrectly for a small but signi�cant fraction of the inputs can be used with con�dence to

correctly compute the function for any input. Furthermore, since either a fault is found in

the program during the testing phase, or the correct value of the function is computed, the

self-testing/correcting pair can be used to construct a result checker for the same function.

It is clear that self-correctors must be e�cient (as was de�ned for result checkers),

because they are used at runtime. We will see that in many cases, testing must also be

done at runtime rather than in preprocessing, and therefore, the e�ciency of the testing

program is important.

If in the future somebody designs a faster program for computing the function then

the same pair can be used to self-test/correct the new program without any further mod-

i�cations. Thus, it makes sense to spend a reasonable amount of time designing self-

testing/correcting pairs for functions commonly used in practice and for which a lot of

e�ort is spent writing super-fast programs.

The theory of self-testing leads to interesting mathematical questions about properties

that characterize a function. It is shown that certain properties that characterize a function

which hold everywhere can be replaced by the same property which only holds almost

everywhere. For example, suppose f is a function that maps a group G to a group H . We

say that f is linear if it has the property that for all x; y, f(x+

G

y) = f(x)+

H

f(y) (where

+

G

;+

H

are the group operations over the domain and range respectively). The results in

Chapter 3 relax the condition required for linearity in the following sense: they show that

if for most x; y, f(x+

G

y) = f(x)+

H

f(y), then there is a linear function g such that f(x)

is equal to g(x) for most x. Thus f is still essentially a linear function. A similar property

and relaxation is shown to hold for polynomials. Since it is computationally much easier

to determine whether a property is satis�ed most of the time than to determine whether

it is always satis�ed, this relaxation is important for self-testing.

Programs that Approximate In the notions of a result checker and self-testing/cor-

recting pair considered so far, a result of a program is considered incorrect if it is not exactly

equal to the function value. In Chapter 4, we extend the notions to approximate result

checkers and approximate self-tester/correctors which check whether or not the program

gives a good approximation (de�ned in terms of absolute error) to the exact value of

the function. We give techniques which can be used to construct approximate result

checkers/self-testers/correctors for programs that approximate the integer multiplication

and integer division functions. The techniques also give approximate result checkers/self-
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testers/correctors for the quotient function, for which no exact self-tester/corrector or

result checker is known.

Libraries Often programs for related problems are grouped in packages; common ex-

amples include packages that solve statistics problems or packages that do matrix manip-

ulations. It is reasonable therefore to use programs in these packages to help test and

correct each other. In Chapter 5, we extend the theory proposed in [15, Blum] to allow

the use of several programs, or a library, to aid in result checking, testing and correcting.

We show that this allows one to construct result checkers and self-testing/correcting pairs

for functions which did not previously have e�cient result checkers, self-testing programs

or self-correcting programs. The result checker and self-testing/correcting pair is given a

collection of programs, all of which are possibly faulty, and may call any one of them in

order to test or correct a particular program. Working with a library of programs rather

than with just a single program is a key idea: enormous di�culties arise in attempts to

check a determinant program in the absence of programs for matrix multiplication and

inverse. As an example of self-testing/correcting pairs written for a library of programs,

we show how to self-test/correct a library of possibly fallible programs for matrix multi-

plication, matrix inverse, determinant and rank. A library of self-testing/correcting pairs

based on similar principles can be constructed for the following functions: integer mod,

modular multiplication, modular exponentiation, and multiplicative inverse mod R.

Result Checkers for Parallel Programs A user is unlikely to be willing to use a

sequential result checker to verify the correctness of a result produced by a fast parallel

algorithm. In Chapter 6, we extend the program result checking framework to the setting

of checking parallel programs and �nd general techniques for designing such result checkers.

For example, we �nd techniques for result checking programs which compute certain types

of functions that have the property that they can be computed be computed \indirectly",

by calling the program on another, related input. We also present a techniques based on

quickly reconstructing the computation of a simple sequential algorithm, on duality and

on constant depth reducibility among problems. We �nd result checkers for many basic

problems in parallel computation and show that for many problems, checking the parallel

program's answer does not increase the parallel computation time and total work done by

much.

Adaptive Checking and Interactive Proofs In the theory of program result checking

introduced in [15, Blum], the program is always assumed to be a �xed program, whose

output on any particular input is always the same. This is not always the case, as there

are programs whose behavior changes as they run, even though the functions that they

supposedly compute remain �xed. For example, hardware errors may evolve over time

depending on the previous inputs that the program has been run on, or, the software may
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be written such that running the program on certain inputs may have unintended side

e�ects on the program's future behavior. We show how to replace this assumption by the

assumption that there are two copies of the program which do not a�ect each other in

Chapter 7. In [15, Blum] [17, Blum Kannan], the relationship between result checkers and

interactive proofs [37, Goldwasser Micali Racko�] is studied. We discuss the relationship

between result checkers and the multi-prover interactive proofs of [13, Ben-Or Goldwasser

Kilian Wigderson].

Batch Result Checking Though many programmers are willing to spend some time

overhead in order to verify that their programs give correct answers, for some applications,

where e�ciency is crucial, even a constant multiplicative time overhead makes result check-

ing undesirable. In Chapter 8, we de�ne a variant model of result checking, called batch

result checking: Often greater e�ciency can be achieved if the user does not need to know

immediately whether the program gives the correct result. In this case, the result checker

can wait until the program has been called on several inputs and check that the program

is correct on all of the inputs at once. Batch result checking can allow greater e�ciency,

and we give examples of functions for which batch result checking allows one to reduce

the overhead of the result checking process to the point where it is arbitrarily small.
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Chapter 2

Program Result Checking

In this chapter, we describe the program result checking model proposed in [15, Blum].

We discuss several aspects of the model, and then we give examples of program result

checkers.

2.1 The Model

Definition 2.1.1 (probabilistic oracle program and running time) A probabilistic program

M is an oracle program if it makes calls to another program that is speci�ed at run time.

We let M

A

denote M making calls to program A. The incremental time of M

A

is the

maximum over all inputs x of length n of the running time of M

A

(x), not counting the

time for calls to A. The total time of M

A

is the maximum over all inputs x of length n

of the running time of M

A

(x), counting the time for calls to A.

Definition 2.1.2 (probabilistic program result checker) A probabilistic program result

checker for f is a probabilistic oracle program R

f

which is used to verify, for any program

P that supposedly evaluates f , that P outputs the correct answer on a given input in the

following sense. On a given input x and con�dence parameter �, R

P

f

has the following

properties:

1. If P (x) 6= f(x) then R

p

f

outputs \FAIL" (with probability � 1� �).

2. If P is a correct program for every input then R

p

f

outputs \PASS" (with probability

� 1� �).

Some remarks about the model are in order:

� R

P

f

is written speci�cally for the function f .
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� The probabilities are with respect to a source of truly random independent bits

available to the result checker, and not with respect to any assumptions about the

input distribution. Thus, if P (x) 6= f(x), the result checker catches that P is not

correct with probability at least 1� � for any x.

� R

f

is only allowed to access P as a black-box oracle. Therefore, this model by nature

forces the checker to do something inherently di�erent than program veri�cation.

� If P (x) = f(x) but P is faulty on other inputs then R

f

is allowed to output ei-

ther \FAIL" or \PASS", because the stronger requirement, that R

f

always outputs

\PASS" when P (x) = f(x), is too strong in general. This is because these properties

are supposed to hold for any program P that supposedly evaluates f . Consider the

case when the range of f is f0; 1g, i.e. f is a decision function, and P is the trivial

program that outputs 1 for all inputs. To satisfy the stronger requirement in this

case would require R

f

to be a correct program for f when making no calls to P ,

because P provides no information about f . Thus it would be impossible for R

f

to

be simpler than any correct program to evaluate f .

� Most result checkers satisfy a stronger condition than that in 1: If P has no bugs,

then the result checker will always output \PASS". However, there are at least two

known examples of result checkers where the weaker condition is needed. These

are the matrix rank checker in [17, Blum Kannan],[39, Kannan], and the quadratic

residuocity checker in [45, Kompella].

� We do not assume that the programs being checked are deterministic, we only require

that their speci�cations require them to always be correct, i.e. often a probabilistic

program may err with small probability and still be a correct program. See [39,

Kannan] for a discussion of checking probabilistic programs.

� The model of computation typically used in this work will be a RAM bit cost model

of computation as de�ned in [3, Aho Hopcroft Ullman].

A very important idea is to allow the result checker to call the program on other inputs

while checking it on a given input. A priori, it would seem that the additional power to

call the program does not help much, but due to recent advances in complexity theory

and new notions of a mathematical proof ([15, Babai],[37, Goldwasser Micali Racko�], [13,

Ben-Or Goldwasser Kilian Wigderson], this often simpli�es the checking process, and in

some cases (for example the permanent problem) it is the only way that we know how to

do polynomial time checking at all. Two reasons why allowing the result checker to call

the program reduces the complexity of (sequential) checking are: Many decision problems

are self-reducible, and a correct program can aid in solving the search problem, giving

a proof of correctness. Secondly, it is noted in [15, Blum] [17, Blum Kannan], that the

result checker can be thought of as a restricted version of an interactive proof as de�ned

10



in [37, Goldwasser Micali Racko�]. Intuitively, the program is proving to the user that

the program has computed the result correctly.

2.1.1 Correctness of Result Checker

The problem remains of determining the correctness of the result checker. One of the

primary reasons that the theory of checking was introduced is to make it possible to gain

evidence that a program correctly computes a function f on given instances without trying

to prove that the program correctly computes f on all inputs. However, the following

question remains: \How do we know that a result checker for f is correct?" Blum does

not propose to use program veri�cation in the classical sense to prove that result checker

is correct (although this may be possible for very simple result checkers, and of course for

all the result checkers we develop we do give a proof of correctness that is supposed to

convince the reader).

One possibility is to ask that the result checker be simpler than any correct program

for computing f . This approach is attractive because intuitively if the result checker is

simpler than any program for f it is also more likely to be correct, both in its speci�cation,

compilation into software, and in its hardware implementation. Moreover, since the same

result checker can be used with respect to any program for f , it makes sense to spend

a lot of energy writing a correct result checker, which can still be used even if a new

(possibly faster) version of the program is implemented. This approach is similar to what

is done when designing an operating system, where a tremendous amount of e�ort is spent

building a simple and correct kernel.

The generally accepted notion of simplicity is the aesthetic simplicity of the result

checker versus that of the fastest correct program. This notion of simplicity is often

easily discernible by people but unfortunately is fairly unquanti�able. Although this is

not quanti�able, intuitively the result checkers developed in this and other papers are

much simpler in terms of the program code than the corresponding fastest program for

the problem. For example, the integer multiplication checker presented here seems much

simpler than multiplication programs based on Fast Fourier transforms, and the matrix

multiplication checker seems much simpler than matrix multiplication programs based on

the methods in [63, Strassen], [26, Coppersmith Winograd].

Blum suggests that we force the checker to be quanti�ably di�erent than any program

for f . Then instead of relying on the correctness of the checker, we can rely on the hope

that bugs in the checker are \independent" from bugs in the program and are unlikely

to interact in such a way that bugs in the program will not be caught. We consider

two quanti�able notions of programs begin di�erent. These notions are based on limiting

some resource of the result checker to enforce it to do something quanti�ably di�erent than

the program. Thus far, most of the result checkers found which satisfy these quanti�able

notions seem to be simpler than any program for the function as well. [15, Blum] introduces
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a notion of quanti�ably di�erent based on the running time requirements of the result

checker versus that of the fastest correct program for f .

Definition 2.1.3 (di�erent) We say that the result checker R

f

is quanti�ably di�erent

if, for all programs P , the incremental time of R

P

f

is smaller than the running time of the

fastest known program for computing f directly.

1

In the de�nition of di�erent, we ignore the running time dependence on the con�dence

parameter �, which is typically a multiplicative factor of O(ln(1=�)).

2

Another quanti�able notion of di�erence that we consider is with respect to the al-

gebraic model of computation (this notion is also considered in [66, Yao]). (Similar de�-

nitions can be made with respect to other structured models of computation.) Consider

the problem of integer multiplication. Natural primitives to consider in writing a program

for this this task are addition, the shift operation and comparisons. Intuitively, these

primitives are simpler and easier to implement reliably individually than integer multi-

plication. Suppose we design a result checker for integer multiplication which only uses

these primitives (and random bits), and makes calls to the purported program for integer

multiplication. Of course, an integer multiplication program can also be designed using

these same primitives. The incremental operation count of R

f

on input x is the maximum

over all P (including correct and faulty P ) of the number of primitive operations used

by R

f

plus the number of calls to P . R

f

is quanti�ably di�erent in the algebraic sense if

the incremental operation count of R

f

is asymptotically smaller than the smallest known

number of primitive operations needed to implement integer multiplication. (We could

also measure the algebraic complexity of R

f

more carefully, keeping a count of each type

of primitive operation instead of a lump sum.)

2.1.2 E�ciency

In the most straightforward applications of checking, whenever the program is executed

the result checker is also executed. Thus, it is critical that the overhead cost of running

the result checker doesn't neutralize the bene�t from knowing that the output is correct

(or the knowledge that the program is faulty).

Definition 2.1.4 (e�cient) We say that result checker R

f

is e�cient if, for all programs

P , the total time of R

P

f

is linear in the running time of P and the input size.

1

Ideally, we would like the stronger requirement that the incremental time of R

f

is asymptotically

smaller than the running time of any correct program for f . However, for many interesting problems there

is no known non-trivial lower bound on the running time of a correct program. Thus, as in [15, Blum], we

adopt this more pragmatic de�nition of quanti�ably di�erent.

2

In this paper, ln� denote the natural log of �. In some cases, ln� is to be thought of as an integer,

in which case it is the least integer greater than or equal to ln �.
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Definition 2.1.5 (�(n)-e�cient) We say that result checker R

f

is �(n)-e�cient if, for

all programs P , the total time of R

P

f

is at most �(n) times the running time of P and the

input size.

In the de�nition of e�cient, we ignore the running time dependence on the con�dence

parameter �. We ask that the result checker be e�cient, but failing that, we would like

the result checker to be as e�cient as possible.

2.2 Examples

Many result checkers have been found for various types of problems such as graph iso-

morphism, matrix rank, quadratic residuocity, linear programming, maximum matching,

greatest common divisor, permanent and even PSPACE-complete problems [15, Blum],

[23, Blum Raghavan], [17, Blum Kannan], [18, Blum Kannan Rubinfeld], [2, Adleman

Huang Kompella] [50, Fortnow Karlo� Lund Nisan] [62, Shamir]. We give two examples

of result checkers: we show a result checker for integer sorting, and the result checker for

matrix multiplication from [34, Freivalds].

2.2.1 Sorting

Consider the problem of sorting integers with the following speci�cations:

Input: A set of integers X = fx

1

; x

2

; :::; x

n

g (not necessarily distinct).

Output: The elements of X in sorted order: i.e. a list y

1

� y

2

� ::: � y

n

such that

Y = fy

1

; :::; y

n

g is equal to X .

The best known algorithms for sorting require O(n logn) time. The result checker

must verify that the output is in sorted order, and that the set of elements in the input

list is the same as the set of elements in the output list. The �rst task is quite easy, but

the second task is nontrivial, and on the algebraic decision tree model, is as di�cult a

task as sorting. In [15, Blum], [17, Blum Kannan] there are randomized algorithms for

verifying thatX = Y which use hashing and run in O(n) time. We present a deterministic

algorithm which checks sorting in O(n) time.

Checker Algorithm: (For simplicity, assume that n is a power of 2.)

Y  P (X)

Do for 1 � i � n

append logn bits to the binary representation of the i

th

input

indicating its location in the input list, i.e. x

0

i

 (x

i

)� n+ i.

(Note that this does not a�ect the ordering of the elements.)

Let X

0

= fx

0

1

; : : : ; x

0

n

g.
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Y

0

 P (X

0

)

Let j be the last logn bits of y

0

i

, i.e. j  y

0

i

mod n.

Verify that x

0

j

= y

0

i

.

Verify that x

0

j

has not been checked o� yet and check o� x

0

j

.

Let Y

00

= fy

0

1

divn; : : : ; y

0

n

divng.

Verify that Y is in sorted order, jY j = n and that Y = Y

00

.

If any veri�cation fails, output \FAIL", else output \PASS".

2.2.2 Matrix Multiplication

Input: Integer n; n � n matrices A;B; �

Output: C = A �B

The result checker presented here is due to Freivalds [34, Freivalds].

Speci�cations: On input A;B;C; �, if C 6= A �B then output \FAIL" with probability at

least 1� �. If C = A �B then output \PASS". The running time is O(n

2

dlog(1=�)e).

Checker Algorithm:

For j = 1; : : : ; dlog(1=�)e do

r random (n� 1) 0=1 vector

If C � r 6= A � (B � r) then output \FAIL" and RETURN

Output \PASS"

If C �R 6= A � (B �R) then output \FAIL" and RETURN

Proof: [of correctness] If A �B = C, the result checker always outputs \PASS". Suppose

A �B 6= C. Let R be the set of (n � 1) 0=1 vectors. Let i; j be such that (A �B)

ij

6= C

ij

.

Let G = frjr 2 R;A �B � r 6= C � rg and

�

G = R�G. We show a 1� 1 mapping from

�

G to

G, showing that jGj � j

�

Gj, and thus Pr

r

[A �B � r 6= C � r] � 1=2. For r = r

1

r

2

: : : r

n

2

�

G,

P

k

(

P

j

a

ij

b

jl

)r

k

=

P

k

c

ik

r

k

and

P

j

a

ij

b

jl

6=

P

k

c

ik

. Then for �r = r

1

r

2

: : :r

l�1

�r

l

r

l+1

: : : r

n

2

G. The mapping from r to �r is 1�1. After dlog(1=�)e iterations, the result checker outputs

\FAIL" with probability at least 1� �.
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Chapter 3

Self-Testing/Correcting Programs

In this chapter we introduce the notion of self-testing/correcting, which is an extension of

the theory of program checkers. The work in this chapter was done in collaboration with

Mike Luby and Manuel Blum [20, Blum Luby Rubinfeld 2], [21, Blum Luby Rubinfeld

3], with the exception of the results in Section 3.5 which was done in collaboration with

Madhu Sudan [56, Rubinfeld Sudan].

Consider any program P whose task is to evaluate a function f . A self-tester for f

is a program that estimates the fraction of x for which P (x) 6= f(x). We say that P is

a \good heuristic" for f if this fraction is su�ciently large (a constant su�ces for most

purposes). For any input x, A self-correcting algorithm for f is a (probabilistic) algorithm

that computes f correctly on every input (with high probability) when given access to any

good heuristic for f . Thus, a self-corrector can be used to compute f(x) correctly making

calls to P , even in the case when P (x) 6= f(x), as long as P is veri�ed to be correct for

most inputs using the self-tester.

In slightly more detail, a probabilistic program T

f

is a self-tester for f if, for any

program P that supposedly computes f , T

f

can make calls to P to estimate the probability

that P (x) 6= f(x) for a random input x. We call this probability the error probability of

P . As with result checkers, we insist that T

f

be di�erent than any correct program for

computing f . This ensures that T

f

must be doing something quanti�ably di�erent than

computing f directly, because there is not enough time for this. A self-testing program

is in this sense an \independent" veri�cation step for a program P supposedly computing

f . In addition, although it is hard to quantify, the self-testers we develop also have the

property that the resulting code is aesthetically simple. We would like T

f

to be e�cient,

in the sense that the running time of T

f

, counting the time for calls to P , is within a

constant multiplicative factor of the running time of P . This ensures that the advantages

we gain by using T

f

to self-test P are not overwhelmed by an inordinate running time

slowdown.
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A probabilistic program C

f

is a self-corrector for f if, for any program P such that

the error probability of P is su�ciently low, for any input x, C

f

can make calls to P to

compute f(x) correctly. As for self-testing programs and for the same reasons, we want

C

f

to be both di�erent and e�cient.

A self-testing/correcting pair (T

f

; C

f

) for a function f is a powerful tool. A user

can take any program P that purportedly computes f and self-test it with T

f

. If P

passes the self-test then, on any input x, the user can call C

f

, which in turn makes calls

to P , to correctly compute f(x). Even a program P that computes f incorrectly for

a small but signi�cant fraction of the inputs can be used with con�dence to correctly

compute f(x) for any input x. In addition, if in the future somebody designs a faster

program P

0

for computing f then the same pair (T

f

; C

f

) can be used to self-test/correct

P

0

without any further modi�cations. Thus, it makes sense to spend a reasonable amount

of time designing self-testing/correcting pairs for functions commonly used in practice

and for which a lot of e�ort is spent writing super-fast programs. For example, integer

multiplication and matrix multiplication are commonly used functions for which fast but

complicated programs have been written and implemented ([26, Coppersmith Winograd],

[63, Strassen], [60, Schonhage]). Thus, the self-testing/correcting pairs we develop for

integer and matrix multiplication may be useful in practice.

We develop general techniques for constructing simple to program self-testing/cor-

recting pairs for a variety of numerical functions. We show how our techniques apply to

integer multiplication, the mod function, modular multiplication, integer division, poly-

nomial multiplication, modular exponentiation, matrix multiplication and the evaluation

of any �xed polynomial. Recently, [25, Cleve Luby] have shown how to apply these tech-

niques to get self-testing/correcting pairs for the sine and cosine functions. It is not known

how to solve any of these problems in linear time. The following table summarizes the

running time behavior of our self-testing/correcting pairs as a function of the input size

n. The second column is the incremental running time and the third column is the total

running time, where M(n) is the running time of P on inputs of size n. These times ex-

clude a constant multiplicative factor and they also exclude the running time dependence

on the con�dence parameter �, which is typically O(ln(1=�)).

1

1

In this thesis, ln � denotes the natural log of �. In some cases, ln � is to be thought of as an integer,

in which case it is the least integer greater than or equal to ln �.
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Problem Incremental Total

Integer Mult. n M(n)

Mod n M(n)

Mod Mult. n M(n)

Integer Div. n M(n)

Poly. Mult. n M(n)

Mod Exp., � n M(n)

Mod Exp., no � n ln

4

n M(n) ln

3

n

Matrix Mult. n M(n)

Deg. d Poly. nd

5

M(n)d

5

Say that f is close to g if f(x) = g(x) for most inputs. The theory of self-testing leads

to interesting mathematical questions about properties that characterize functions which

are close to a particular function. Suppose property Q characterizes the function f . We

show that there is a property Q

0

which characterizes any function g which is close to f .

For example, suppose f is a function that maps a group G to a group H . We say that f is

linear if, for all x and y in G, f(x+

G

y) = f(x)+

H

f(y) (where +

G

and +

H

are the group

operations over G and H , respectively). The results in Section 3.4 show that if, for a large

fraction of x; y, f(x+

G

y) = f(x)+

H

f(y), then there is a linear function g such that f(x)

is equal to g(x) for most x. Thus f is still essentially a linear function. Section 3.5 shows

similar results for functions which are close to functions that compute polynomials. Since

it is computationally much easier to determine whether a property is satis�ed most of the

time than it is to determine whether it is always satis�ed, this relaxation is important for

self-testing.

3.1 Related Work

[22, Blum Micali] construct a pseudo-random generator, where a crucial ingredient of the

construction can be thought of as a self-correcting program for the discrete log function.

[57, Rubinfeld] introduces checking for parallel programs, and uses self-testing to design a

constant depth circuit to check the majority function (see section 6.3.1). We will see that a

self-testing/correcting pair for a function f implies a program result checker for f . We will

also see that a program result checker for f implies a self-tester for f , but it is not known

whether a program result checker also implies a self-corrector. Previous to our work,

[38, Kaminski] gives program result checkers for integer and polynomial multiplication.

Independently of our work, [2, Adleman Huang Kompella] give program result checkers

for integer multiplication and modular exponentiation. Both of these papers use very

di�erent techniques than ours. Previous to our work, [34, Freivalds] introduces a program

result checker for matrix multiplication over a �nite �eld.

[48, Lipton], independently of our work, discusses the concept of self-correcting pro-

grams and gives self-correctors for several functions. To highlight the importance of being
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able to self-test, consider the mod function. To self-correct on input x and modulus R,

the assumption in [48, Lipton] and here is that the program is correct for most inputs x

with respect to the particular modulus R. This requires a di�erent assumption for each

distinct modulus R. Our self-testing algorithm for the mod function on input R can be

used to e�ciently either validate or refute this assumption.

The techniques in this chapter have been applied to the theory of interactive proofs (see

[37, Goldwasser Micali Racko�], [15, Babai] and [13, Ben-Or Goldwasser Kilian Wigderson]

for the discussion of interactive proofs). [53, Nisan] noted that the self-testing/correcting

technique based on bootstrapping discussed in Section 3.6 can be combined with the ob-

servation about the permanent problem in [48, Lipton] (based on [9, Beaver Feigenbaum])

to construct a two-prover interactive proof system for the permanent problem. This led

to the eventual discovery that IP = PSPACE ([50, Fortnow Karlo� Lund Nisan], [62,

Shamir], [7, Babai]).

The results in this chapter are related to those in [8, Babai Fortnow Lund]. In order

to show that the multi-prover version of IP is equal to NEXPTIME, they give a test for

verifying that a given program P , which depends on n input variables, computes a function

which is usually equal to some multi-linear function f of the n variables. The incremental

running time of their test, not counting the time for calls to P , runs in time polynomial

in n and is independent of the number of terms in f . Combining the ideas in [8, Babai

Fortnow Lund] with those in this chapter yields a self-tester for this same task which is

much simpler, using only additions, comparisons and calls to P . A simple self-test is not

a major issue with respect to the result in [8, Babai Fortnow Lund], where polynomial

time is the major issue, but it is an important issue with respect to designing e�cient

self-testing/correcting pairs.

3.2 The Basics

For expository purposes, we restrict ourselves to the case when f is a function of one input

from some universe I. Let I

1

; I

2

; : : : be a sequence of subsets of I such that I = [

n2N

I

n

.

The subscript n indicates the \size" of the input to the function. Let D = fD

n

jn 2 Ng

be an ensemble of probability distributions such that D

n

is a distribution on I

n

. Let P

be a program that supposedly computes f . Let error(f; P;D

n

) be the probability that

P (x) 6= f(x) when x is randomly chosen in I

n

according to D

n

. Let � > 0 be a con�dence

parameter.

Definition 3.2.1 (probabilistic oracle program) A probabilistic program M is an oracle

program if it makes calls to another program that is speci�ed at run time. We let M

A

denote M making calls to program A.

Definition 3.2.2 (self-testing program) Let 0 � �

1

< �

2

� 1. An (�

1

; �

2

)-self-testing

program for f with respect to D is a probabilistic oracle program T

f

that has the following
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properties for any program P on input n and �.

1. If error(f; P;D

n

) � �

1

then T

P

f

outputs \PASS" with probability at least 1� �.

2. If error(f; P;D

n

) � �

2

then T

P

f

outputs \FAIL" with probability at least 1� �.

�

1

= 0 is su�cient for assuring that either f will be computed correctly, or a fault in P

will be detected. However, the value of �

1

should be as close as possible to �

2

to allow as

faulty as possible heuristics P to pass test T

P

f

and still have the self-corrector C

P

f

work

correctly.

Definition 3.2.3 (self-correcting program) Let 0 � � < 1. An �-self-correcting program

for f with respect to D is a probabilistic oracle program C

f

that has the following property

on input n, x 2 I

n

and �. If error(f; P;D

n

) � � then C

P

f

(x) = f(x) with probability at

least 1� �.

As with result checkers, we would like T

f

and C

f

to be both di�erent and e�cient,

although sometimes we are forced to relax the e�ciency requirement somewhat. In the def-

initions of di�erent and e�cient, we ignore the running time dependence on the con�dence

parameter �, which is typically a multiplicative factor of O(ln(1=�)).

Definition 3.2.4 (self-testing/correcting pair) A self-testing/correcting pair for f is a

pair of probabilistic programs (T

f

; C

f

) such that there are constants 0 � �

1

< �

2

� � < 1

and an ensemble of distributions D such that T

f

is an (�

1

; �

2

)-self-testing program for f

with respect to D and C

f

is an �-self-correcting program for f with respect to D.

Because self-testers must be di�erent, the algorithm used by T

P

f

cannot be the naive

technique of choosing x 2 I

n

according to D

n

and seeing if P (x) = f(x), because the value

of f(x) is not independently available, and P may be of no use in helping to compute it.

Similarly, C

P

f

cannot simply call P on input x and hope that P (x) = f(x), because P is

allowed to be faulty on a fraction of the inputs, and in particular it might be faulty on

input x.

One can generate random instances of f according to D, and use the program result

checker to verify that P is correct on those instances. Thus a program result checker for

f also gives a self-tester for f . On the other hand, if one has a self-testing correcting pair

for f , one can create a result checker for f on input x in the following manner: First use

the self-tester to test P . If P fails, output \FAULTY". Otherwise, use the self-corrector to

correctly compute f(x) and compare the result with P (x). If they agree, output \PASS",

otherwise output \FAULTY".

In many of the self-testers and self-correctors we design, we exploit the ability to

compute f(x) indirectly by computing f on random inputs. This property is explained in

the following de�nition.
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Definition 3.2.5 (random self-reducibility property) Let x 2 I

n

. Let c > 1 be an integer.

We say that f is c�random self-reducible if f(x) can be expressed as an easily computable

function F

random

of x, a

1

; : : : ; a

c

and f(a

1

); : : : ; f(a

c

), where a

1

; : : : ; a

c

are easily com-

putable given x and each a

i

is randomly distributed in I

n

according to D

n

.

2

Informally,

by easily, we mean that the worst case computation time of the random self-reduction (ex-

cluding the time for computing f(a

1

); : : : ; f(a

c

)) is smaller than that of computing f on

inputs from I

n

.

One of the strengths of this property is that it can be used to transform a program

that is correct on a large enough fraction of the inputs into a program that computes f(x)

correctly with high probability for any input x.

Many of the functions we consider are on the integers or on initial intervals of the

integers. We often use the following notation.

Definition 3.2.6 (arithmetic notation) For any positive integer R, let Z

R

denote the set

of integers f0; : : : ; R� 1g, let +

R

denote integer addition mod R and let �

R

denote integer

multiplication mod R. Let Z

�

R

= fx 2 Z

R

: gcd(x;R) = 1g.

For simplicity, in the description of all of our self-correcting/testing programs we omit

the following simple but crucial piece of the code.

Definition 3.2.7 (range-check code) Whenever the self-corrector or self-tester makes a

call to P , it veri�es that the answer returned by P is in the proper range, e.g. for f(x;R) =

x mod R the proper range is Z

R

. If the answer is not in the proper range, then the program

resets the answer to a default value in the range, e.g. for f(x;R) = x mod R, the default

value could be 0.

The range-check code in e�ect modi�es the original P into a modi�ed P . However,

the modi�ed P is at least as correct for computing f as the original P . For correctness, it

is crucial that the self-tester and the self-corrector both use the same default value in the

range-check code. This is because we want the self-corrector and self-tester to be calling

the same P as an oracle. In most cases, the range-check code is straightforward, and we

discuss it in those cases where it is not.

We often consider uniform probability distributions on sets. Thus, we introduce the

following notation.

Definition 3.2.8 (uniform probability distribution) For any set X, let U

X

denote the

uniform probability distribution on X. For example, U

Z

2

n

is the uniform distribution

on Z

2

n
, whereas U

f0g

is the probability distribution such that zero has probability one. We

let x 2

U

X denote that x is randomly and uniformly distributed in X.

2

However, no independence between these random variables is needed, e.g. given the value of a

1

it is

not necessary that a

2

be randomly distributed in I

n

according to D

n

.
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3.3 Self-Correcting

In this section, we describe self-correctors for a variety of numerical functions. We start

with self-correcting because the self-correctors for our applications are much more intuitive

than the corresponding self-testers, and in addition the self-correctors are substantially

easier to prove correct.

In the following subsections, we show the speci�c details of the self-correcting programs

for the mod function. We then give the generic self-correcting program that works for any

random self-reducible function, and upon which all of the other self-correcting programs are

based. For completeness, we then give the speci�c details of the self-correcting programs for

integer multiplication, modular multiplication, modular exponentiation, integer division,

matrix multiplication and polynomial multiplication. We also describe the result in [48,

Lipton] which uses the same basic outline to develop a self-correcting program for any

multivariate polynomial function over a �nite �eld.

3.3.1 The Mod Function

We consider computing an integer modR for a positive number R. In this case, f(x;R) =

x mod R. Assume that we have a program P such that error(f; P;U

Z

R2

n

� U

fRg

) � 1=8.

The following program is a 1=8-self-correcting program for f making oracle calls to P with

respect to U

Z

R2

n

� U

fRg

. The input to the program is n, R, x 2 Z

R2

n

and the con�dence

parameter �.

Program Mod Function Self-Correct(n;R; x; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Call Random Split(R2

n

; x; x

1

; x

2

; c)

answer

m

 P (x

1

; R) +

R

P (x

2

; R)

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Function Random Split (M; z; z

1

; z

2

; e)

Choose z

1

2

U

Z

M

If z

1

� z then e 0 else e 1

z

2

 eM + z � z

1

We need the following proposition in the proof of correctness of this and many subse-

quent programs.
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Proposition 1 Let x

1

; : : : ; x

m

be independent 0/1 valued random variables such that for

each i = 1; : : : ; m, Pr[x

i

= 1] � 3=4. Then,

Pr

"

m

X

i=1

x

i

> m=2

#

� 1� e

�m=12

:

Proof: Use standard Cherno� bounds.

Lemma 2 The above program is a 1=8-self-correcting program for the mod function.

Proof: For i 2 f1; 2g, x

i

2

U

Z

R2

n
. Thus, by the properties of P , P (x

i

; R) 6= x

i

mod R

with probability at most 1=8, and consequently both calls to P in a single loop return the

correct answer with probability at least 3=4. Because x = x

1

+ x

2

� cR2

n

, x mod R =

x

1

mod R +

R

x

2

mod R. Thus, if both calls to P are correct, answer

m

= x mod R. The

lemma follows from Proposition 1.

The mod function self-correcting program is very simple to code, the only operations

used are integer additions, comparisons and calls to the program P . This is true because

in the computation of answer

m

because of the implicit range-check code (see page 20),

both P (x

1

; R) and P (x

2

; R) are in Z

R

. Thus, to compute P (x

1

; R) +

R

P (x

2

; R) consists

of one integer addition, one comparison and possibly one subtraction. Note that the self-

correcting program is di�erent, because the running time, not counting calls to P , is linear

in n, and it is also e�cient, because the total running time, counting time for calls to P ,

is within a constant multiplicative factor of the running time of P .

3.3.2 Generic Self-Correcting Program

Let c be a positive integer and let f be any c�random self-reducible function (see page 20

for the de�nition). Assume that we have a program P such that error(f; P;D

n

) �

1

4c

.

The following program is a

1

4c

-self-correcting program for f making oracle calls to P with

respect to D

n

. The input to the program is n, x 2 I

n

and a con�dence parameter �.

Program Generic Self-Correct(n; x; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Randomly generate a

1

; : : : ; a

c

based on x

For i = 1; : : : ; c, �

i

 P (a

i

)

answer

m

 F (x; a

1

; : : : ; a

c

; �

1

; : : : ; �

c

)

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Lemma 3 The above program is a

1

4c

-self-correcting program for f .
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Proof: Because error(f; P;D

n

) �

1

4c

and because, for each k = 1; : : : ; c, a

k

is randomly

distributed in I

n

according to D

n

, all c outputs of P are correct with probability at least

3=4 each time through the loop. If all c outputs of P are correct, then by the random

self-reducibility property, answer

m

= f(x). The lemma follows from Proposition 1.

3.3.3 Integer Multiplication

For integer multiplication, f(x; y) = x � y. Suppose that both x and y are in the range Z

2

n

for some positive integer n. Assume that we have a program P such that error(f; P;U

Z

2

n

�

U

Z

2

n

) � 1=16. The following program is a 1=16-self-correcting program for f making oracle

calls to P with respect to U

Z

2

n

� U

Z

2

n

. The input to the program is n (the length of the

inputs), x; y 2 Z

2

n

(the numbers to be multiplied together) and the con�dence parameter

�.

Program Integer Multiplication Self-Correct(n; x; y; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Call Random Split(2

n

; x; x

1

; x

2

; c)

Call Random Split(2

n

; y; y

1

; y

2

; d)

answer

m

 P (x

1

; y

1

)+P (x

1

; y

2

)+P (x

2

; y

1

)+P (x

2

; y

2

)�cy2

n

�dx2

n

�cd2

2n

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Lemma 4 The above program is a 1=16-self-correcting program for integer multiplication.

Proof: For i; j 2 f1; 2g, the pair (x

i

; y

j

) 2

U

Z

2

n

� Z

2

n

. Thus, by the properties of P ,

P (x

i

; y

j

) 6= x

i

� y

j

with probability at most 1=16, and consequently all four calls to P in a

single loop return the correct answer with probability at least 3=4. Because x = x

1

+x

2

�

c2

n

and y = y

1

+y

2

�d2

n

, x �y = x

1

�y

1

+x

1

�y

2

+x

2

�y

1

+x

2

�y

2

�cy2

n

�dx2

n

�cd2

2n

. Thus,

if all four calls to P are correct, answer

m

= x � y. The lemma follows from Proposition 1.

The integer multiplication self-correcting program is very simple to code, the only opera-

tions used are integer additions, shifts, comparisons and calls to the program P .

3.3.4 Modular Multiplication

We now consider multiplication of integers modR for a positive number R. In this case,

f(x; y; R) = x �

R

y. Suppose that both x and y are in the range Z

R2

n

for some positive

integer n. Assume that we have a program P such that error(f; P;U

Z

R2

n

� U

Z

R2

n

� U

fRg

)

� 1=16. The following program is a 1=16-self-correcting program for f making oracle calls
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to P with respect to U

Z

R2

n

� U

Z

R2

n

� U

fRg

. The input to the program is R, x; y 2 Z

R2

n

and the con�dence parameter �.

Program Modular Multiplication Self-Correct(R; x; y; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Call Random Split(R2

n

; x; x

1

; x

2

; c)

Call Random Split(R2

n

; y; y

1

; y

2

; d)

answer

m

 P (x

1

; y

1

; R) +

R

P (x

2

; y

1

; R) +

R

P (x

1

; y

2

; R) +

R

P (x

2

; y

2

; R)

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Lemma 5 The above program is a 1=16-self-correcting program for modular multiplica-

tion.

Proof: For i; j 2 f1; 2g, the pair (x

i

; y

j

) 2

U

Z

R2

n
� Z

R2

n
. Thus, by the properties of

P , P (x

i

; y

j

) 6= x

i

� y

j

with probability at most 1=16, and consequently all four calls to

P in a single loop return the correct answer with probability at least 3=4. Because x =

x

1

+x

2

�cR2

n

and y = y

1

+y

2

�dR2

n

, x�

R

y = (x

1

�

R

y

1

)+

R

(x

1

�

R

y

2

)+

R

(x

2

�

R

y

1

)+

R

(x

2

�

R

y

2

).

Thus, if all four calls to P are correct, answer

m

= x �

R

y. The lemma follows from

Proposition 1.

3.3.5 Modular Exponentiation

We now consider exponentiation of integers modR for a positive number R. In this case,

f(a; x; R) = a

x

mod R. We restrict attention to the case when gcd(a;R) = 1 and when

we know the factorization of R, and thus we can easily compute �(R), where � is Euler's

function. Suppose that x is in the range Z

�(R)2

n
. Assume that we have a program P

such that error(f; P;U

fag

� U

Z

�(R)2

n

� U

fRg

) � 1=8. The following program is a 1=8-self-

correcting program for f making oracle calls to P with respect to U

fag

� U

Z

�(R)2

n

� U

fRg

.

The input to the program is R, a, x 2 Z

�(R)2

n

and the con�dence parameter �.

Program Modular Exponentiation Self-Correct (R; a; x; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Call Random Split(�(R)2

n

; x; x

1

; x

2

; c)

answer

m

 P (a; x

1

; R) �

R

P (a; x

2

; R))

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Lemma 6 The above program is a 1=8-self-correcting program for modular exponentia-

tion.
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Proof: For i 2 f1; 2g, x

i

2

U

Z

�(R)2

n
. Thus, by the properties of P , P (a; x

i

; R) 6=

a

x

i

mod R with probability at most 1=8, and consequently both calls to P in a single loop

return the correct answer with probability at least 3=4. Because x = x

1

+ x

2

� c�(R)2

n

,

and because gcd(a;R) = 1 implies that a

�(R)

= 1 mod R, a

x

mod R = a

x

1

mod R +

R

a

x

2

mod R. Thus, if both calls to P are correct, answer

m

= a

x

mod R. The lemma

follows from Proposition 1.

The modular exponentiation self-correcting program is very simple to code. The hard-

est operation to perform is the modular multiplication P (a; x

1

; R) �

R

P (a; x

2

; R). The

self-correcting program can compute this multiplication directly, but another alternative

is to use the library approach described informally here and in more detail in Chapter 5.

Let f be the modular exponentiation function and let f

0

be the modular multiplication

function. Let P be a program that supposedly computes f and let P

0

be a program that

supposedly computes f

0

. Let S

0

be the modular multiplication self-correcting program

described in a previous subsection and let S be the modular exponentiation self-correcting

program just described. If error(f; P;U

fag

�U

Z

�(R)2

n

�U

fRg

) � 1=8 and if error(f

0

; P

0

;U

R

�

U

R

� U

fRg

) � 1=16 then we can use S, making calls to P and making calls to S

0

, which

in turn makes to P

0

, to self-correct f . Using this approach, the only operations computed

by either S or S

0

are integer additions, comparisons and calls to the programs P and P

0

.

The self-correcting program is di�erent, because the running time, not counting calls to

P or P

0

, is linear in n, and it is also e�cient, because the total running time, counting

time for calls to P and P

0

, is within a constant multiplicative factor of the running time

of P assuming that P

0

runs at least as quickly as P . A third alternative is to use the

library approach described above, but to use P to compute f

0

as follows: P

0

(a; b; R) =

(P (a+ b; 2; R)� P (a; 2; R)� P (b; 2; R))=2.

3.3.6 Integer Division

We now consider division of integers by R for a positive number R. In this case, f(x;R) =

(x div R; x mod R). Suppose that x is in the range Z

R2

n
. Assume that we have a program

P such that error(f; P;U

Z

R2

n

�U

fRg

) � 1=8. The following program is a 1=8-self-correcting

program for f making oracle calls to P with respect to U

Z

R2

n

� U

fRg

. The input to the

program is R, x 2 Z

R2

n

and the con�dence parameter �.

We refer to the output of P as P (x;R) = (P

div

(x;R); P

mod

(x;R)).

Program Integer Division Self-Correct(R; x; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Call Random Split(R2

n

; x; x

1

; x

2

; c)

Divans

m

 (P

div

(x

1

; R)+P

div

(x

2

; R))+(P

mod

(x

1

; R)+P

mod

(x

2

; R)) div R�

c � 2

n
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Modans

m

 P

mod

(x

1

; R) +

R

P

mod

(x

2

; R)

Output the most common answer in f(Divans

m

;Modans

m

) :m = 1; : : : ; Ng

Lemma 7 The above program is a 1=8-self-correcting program for integer division.

Proof: Follows the outline of the proof of Lemma 3.

As in the self-corrector for the mod function, both the mod and div computed by the

self-corrector are easy to code. This is true because in the computation of Modans

m

,

the range-check code (see page 20) ensures that both P

mod

(x

1

; R) and P

mod

(x

2

; R) are in

Z

R

. Thus, to compute P

mod

(x

1

; R) +

R

P

mod

(x

2

; R) consists of one integer addition, one

comparison and possibly one subtraction. In the computation of Divans

m

, computing

(P

mod

(x

1

; R) + P

mod

(x

2

; R)) div R consists of one integer addition and one comparison.

3.3.7 Matrix Multiplication

We consider multiplication of matrices over a �nite �eld. Let M

n�n

[F ] be the set of n� n

matrices over the �nite �eld F . Then, for all A;B 2 M

n�n

[F ], f(A;B) = A �B. Assume

that we have a program P such that error(f; P;U

M

n�n

[F ]

) � 1=16. The following program

is a 1=16-self-correcting program for f making calls to oracle P with respect to U

M

n�n

[F ]

.

The input to the program is A;B 2M

n�n

[F ] and the con�dence parameter �.

Program Matrix Multiplication Self-Correct(A;B; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Choose A

1

; B

1

2

U

M

n�n

[F ]

A

2

 A� A

1

B

2

 B � B

1

answer

m

 P (A

1

; B

1

) + P (A

2

; B

1

) + P (A

1

; B

2

) + P (A

2

; B

2

)

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Lemma 8 The above program is a 1=16-self-correcting program for matrix multiplication.

Proof: Follows the outline of the proof of Lemma 3.

3.3.8 Polynomial Multiplication

We consider multiplication of polynomials over a ring. Let P

d[R]

denote the set of polyno-

mials of degree d with coe�cients from some ring R, and let U

P

d[R]

�P

d[R]

be the uniform

distribution on P

d[R]

� P

d[R]

. In this case, f(p(x); q(x)) = p(x) � q(x), where p; q 2 P

d[R]

.
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Assume that we have a program P such that error(f; P;U

P

d[R]

�P

d[R]

) � 1=16. The following

program is a 1=16-self-correcting program for f making oracle calls to P with respect to

U

P

d[R]

�P

d[R]

. The input to the program is p; q 2 P

d[R]

and the con�dence parameter �.

Program Polynomial Multiplication Self-Correct(p; q; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Choose p

1

2

U

P

d[R]

Choose q

1

2

U

P

d[R]

p

2

 p� p

1

q

2

 q � q

1

answer

m

 P (p

1

; q

1

) + P (p

2

; q

1

) + P (p

1

; q

2

) + P (p

2

; q

2

)

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Lemma 9 The above program is a 1=16-self-correcting program for polynomial multipli-

cation.

Proof: Follows the outline of the proof of Lemma 3.

3.3.9 Multivariate Polynomial Function

We consider the problem of computing any multivariate polynomial function over a �nite

�eld. In [48, Lipton], Lipton has shown a self-corrector for this problem based on the tech-

niques of [9, Beaver Feigenbaum] which uses scalar multiplications and some preprocessing.

We describe a similar self-corrector suggested by Mike Luby and Steven Omohundro that

uses only additions and no preprocessing, and works for �elds of prime cardinality. In this

case, f(x

1

; : : : ; x

m

; p) = q(x

1

; : : : ; x

m

) mod p, for a prime p, multivariate polynomial q of

degree d, and x

1

; : : : ; x

m

in Z

p

.

In [48, Lipton], it is shown that in any �nite �eld of size p, there are weights �

1

; : : : ; �

d+1

,

such that for any polynomial q(X) of degree d < p, and any x; t in the �eld,

d+1

X

i=0

�

i

� f(x+ i � t) = 0:

Lipton shows how to compute the �

i

's by solving a system of linear equations. Since the

�

i

's are the same for every polynomial of degree d, this is something that can be done

once in preprocessing. The self-corrector will need to perform multiplications by these

�

i

's. However, if p is prime, then using the method of di�erences described in [64, Van

Der Waerden] (pg. 89),

P

l

i=k

�

i

� f(x + i � t) can be computed using only O((l � k)

2

)

additions at runtime. In this case, the �

i

's turn out to be �

i

= (�1)

i

 

d+ 1

i

!

.
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Assume that we have a program P such that error(P; f;U

Z

p2

n

m

� U

fpg

) �

1

4(d+1)

. The

following program is a

1

4(d+1)

-self-correcting program for f making oracle calls to P with

respect to U

Z

p2

n

m

� U

fpg

. The input to the program is n, p, x

1

; : : : ; x

m

2 Z

p2

n
and the

con�dence parameter �.

Program Multivariate Polynomial Function Self-Correct (n; p; x

1

; : : : ; x

m

; �)

Do for j = 1; : : : ; 12 ln(1=�)

Randomly choose t

1

; : : : ; t

m

independently according to U

Z

p2

n

answer

j

 �

d+1

i=1

� �

i

� P (x

1

+

p2

n

i � t

1

; : : :x

m

+

p2

n

i � t

m

) mod p

Output the most common answer in fanswer

j

: j = 1; : : : ; 12 ln(1=�)g

Lemma 10 The above program is a

1

4(d+1)

-self-correcting program for any polynomial

function of degree d.

Proof: Follows the outline of the proof of Lemma 3. For i 2 f1; : : : ; d+1g, x

j

+

p2

n
i � t

j

is distributed according to U

Z

p2

n

.

The incremental time is O(d

2

(n + p)) and the total time is O(d

2

(n + p) + dT (n; p))

where T (n; p) is the running time of the program.

3.4 Linearity and Self-Testing

To highlight the importance of being able to self-test e�ciently at runtime, consider the

mod function. To self-correct on input x and modulus R, the assumption in [48, Lipton]

and here is that the program is correct for most inputs x with respect to the particular

modulus R. This requires a di�erent assumption for each distinct modulus R. Our self-

testing algorithm for the mod function on input R can be used to e�ciently either validate

or refute this assumption.

Although the most interesting of our self-testing methods leads to self-testers that are

almost as simple to code as the self-correctors described above, the proofs that they meet

their speci�cations are more di�cult, interesting and involve some probability theory on

groups that may have other applications. This method applies to integer multiplication,

the mod function, modular multiplication, modular exponentiation when the � function of

the modulus is known, and integer division. The resulting self-testers are simple to code,

and are both di�erent and e�cient.

To give some idea of how the method works, we concentrate on the mod function. We

then de�ne the linearity property, and give a generic tester that works for any function

with this property. We then show the speci�c testers that result from applying this

generic tester to integer multiplication, modular multiplication, modular exponentiation

and integer division.
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3.4.1 Mod Function

For positive integers x and R, let f(x;R) = x mod R. Because the self-correcting program

for the mod function relies on a program that is correct for most inputs with respect

to a particular modulos R, the self-testing program for the mod function is designed to

self-test with respect to a �xed modulus R. This is an important motivation for construct-

ing e�cient self-testing programs, because the self-testing program is executed each time

a new modulus is used. Similar remarks hold for modular multiplication and modular

exponentiation.

For �xed R, we view f as a function of one input x. There are two critical tests

performed by the self-tester. Let x

1

2

U

Z

R2

n

and x

2

2

U

Z

R2

n

be independently chosen,

and set x  x

1

+

R2

n
x

2

. Note that f(x;R) = f(x

1

; R) +

R

f(x

2

; R), i.e. f is a (modular)

linear function of its �rst input. The linear consistency test is

\Does P (x;R) = P (x

1

; R) +

R

P (x

2

; R)?",

and the linear consistency error is the probability that the answer to the linear consistency

test is \no". Let z 2

U

Z

R2

n
, and set z

0

 z+

R2

n
1. Note that f(z

0

; R) = f(z; R)+

R

1, i.e.

in addition to being linear in its �rst input, f also has (modular) slope one as a function

of its �rst input. The neighbor consistency test is

\Does P (z

0

; R) = P (z; R) +

R

1?",

and the neighbor consistency error is the probability that the answer to the neighbor

consistency test is \no".

Our main theorem with respect to the self-tester for f is that there are constants

0 <  < 1 and  

0

> 1 such that error(f; P;U

Z

R2

n

�U

fRg

) is at least  times the minimum of

the linear consistency error and the neighbor consistency error, and that error(f; P;U

Z

R2

n

�

U

fRg

) is at most  

0

times the maximum of the linear consistency error and the neighbor

consistency error. Thus, we can indirectly approximate error(f; P;U

Z

R2

n

�U

fRg

) by instead

estimating the linear and neighbor consistency errors.

The proof of the theorem shows that any function which satis�es the linearity property

for most random tests is essentially a linear function, in the sense that there is some linear

function which is equal to the original function on most of the domain.

Program Mod Function Self-Test(n;R; �)

N = 864 ln(4=�)

t 0

Do for m = 1; : : : ; N

Call Mod Linear Test (n;R; answer)
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t t+ answer

If t=N > 1=72 then output \FAIL"

N

0

= 32 ln(4=�)

t

0

 0

Do for m = 1; : : : ; N

0

Call Mod Neighbor Test (n;R; answer)

t

0

 t

0

+ answer

If t

0

=N

0

> 1=4 then output \FAIL" else output \PASS"

Mod Linear Test (n;R; answer)

Choose x

1

2

U

Z

R2

n

Choose x

2

2

U

Z

R2

n

x x

1

+

R2

n
x

2

If P (x

1

; R) +

R

P (x

2

; R) = P (x;R) then answer  0 else answer  1

Mod Neighbor Test (n;R; answer):

Choose z 2

U

Z

R2

n

z

0

 z +

R2

n

1

If P (z; R) +

R

1 = P (z

0

; R) then answer  0 else answer  1

Theorem 1 The above program is an (1=432; 1=8)-self-testing program for the mod func-

tion with any modulus R.

Proof: This is a corollary of Theorem 5 from the next subsection.

The only non-trivial lines of code in the self-testing program are generation of random

numbers, calls to the program P , integer additions and integer comparisons.

3.4.2 Generic Linear Self-Testing

In this section, we describe a generalization of the mod function self-tester to functions

f mapping a group G into another group G

0

. In addition to the mod function, we will

show how to apply this generic self-tester to integer multiplication, modular multiplication

and modular exponentiation. In all cases, the resulting self-testing program is extremely

simple to code, di�erent and e�cient.

For simplicity, we assume that all groups are abelian; these results can be generalized to

non-abelian groups as well [12, Ben-Or Coppersmith Luby Rubinfeld], but our applications
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are to abelian groups. Let G be a �nite group with group operation � and with c generators

g

1

; : : : ; g

c

and identity element 0. For y 2 G, let y

�1

denote the inverse of y. Let G

0

be a

(�nite or countable) group with group operation �

0

and identity element 0

0

. For � 2 G

0

,

let �

�1

denote the inverse of �. Let f : G ! G

0

be a function. Intuitively, f is hard to

compute compared to either � or �

0

.

We say that f has the linearity property if:

(1) It is easy to choose x 2

U

G.

(2) F

linear

is an easily computable function with the property that, for any pair x

1

; x

2

2 G,

F

linear

(x

1

; x

2

) 2 G

0

and furthermore f(x

1

� x

2

) = f(x

1

) �

0

f(x

2

) �

0

F

linear

(x

1

; x

2

): We

call this property linear consistency. In all of our applications except for integer

multiplication, F

linear

(x

1

; x

2

) = 0

0

for all inputs x

1

; x

2

, in which case f is a group

homomorphism.

(3) For each generator g

i

2 G, F

i

neighbor

is an easily computable function with the property

that, for any z 2 G, F

i

neighbor

(z) 2 G

0

and furthermore f(z � g

i

) = f(z) �

0

F

i

neighbor

(z).

We call this property neighbor consistency. This property is not needed for integer

multiplication. For all of the other applications, both G and G

0

are generated by a

single element denoted 1 and 1

0

, respectively, (i.e. they are both cyclic groups), and

for all z 2 G, f(z � 1) = f(z) �

0

1

0

.

The linearity property is a special case of 2-random self-reducibility. This can be seen as

follows: Given x, choose x

1

2

U

G and let x

2

 x�x

�1

1

. Then, f(x) = F

random

(x; x

1

; x

2

; f(x

1

); f(x

2

)),

where F

random

(x; x

1

; x

2

; f(x

1

); f(x

2

)) is de�ned to be f(x

1

) �

0

f(x

2

) �

0

F

linear

(x

1

; x

2

).

Let P be a program that supposedly computes f such that, for all y 2 G, P (y) 2

G

0

. Generic Self-Test 1 is an (�=54; �)-self-tester for f with respect to U

G

when G

0

is an in�nite group that has no �nite subgroups except f0

0

g. The self-tester for integer

multiplication is based on Generic Self-Test 1, where G = Z

2

n
with +

2

n
as the group

operation, and G

0

= Z with + as the group operation. The integer division self-tester

is also based on Generic Self-Test 1. Generic Self-Test 2 is an (�=54; �)-self-testing

program for f with respect to U

G

for all other G

0

. The self-tester for the mod function

described in Subsection 3.4.1, for modular multiplication and for modular exponentiation

are all based on Generic Self-Test 2.

Program Generic Self-Test 1(�; �)

N  

72

�

ln(2=�)

t 0

Do for m = 1; : : : ; N

Call Generic Linear Test(answer)

t t + answer
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If t=N > �=9 then output \FAIL" else output \PASS"

Program Generic Self-Test 2(�; �)

N  

72

�

ln(4=�)

t 0

Do for m = 1; : : : ; N

Call Generic Linear Test(answer)

t t+ answer

If t=N > �=9 then output \FAIL"

N

0

 32 ln(4c=�)

t

0

 0

Do for m = 1; : : : ; N

0

answer  0

For i = 1; : : : ; c, call Generic Neighbor Test(i; answer)

t

0

 t

0

+ answer

If t

0

=N

0

> 1=4 then output \FAIL" else output \PASS"

Generic Linear Test (answer)

Choose x

1

2

U

G.

Choose x

2

2

U

G.

If P (x

1

�x

2

) = P (x

1

)�

0

P (x

2

)�

0

F

linear

(x

1

; x

2

) then answer  0 else answer  1

Generic Neighbor Test (i; answer)

Choose z 2

U

G.

If P (z � g

i

) 6= P (z) �

0

F

i

neighbor

(z) then answer 1

Before giving proofs, we �rst introduce some notation and provide motivation for why the

self-testers work. For each y 2 G, de�ne the discrepancy of y to be

disc(y) = f(y) �

0

P (y)

�1

:

Note that P computes f correctly for all inputs if and only if the discrepancy function

de�nes a homomorphism from G into f0

0

g.

Because of the linearity property, part (2), and because the self-testing program com-

putes F

linear

(x

1

; x

2

) correctly on its own, P (x

1

�x

2

) = P (x

1

)�

0

P (x

2

)�

0

F

linear

(x

1

; x

2

) if and

only if

disc(x

1

� x

2

) = disc(x

1

) �

0

disc(x

2

):
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If this equality holds for all x

1

; x

2

2 G then the discrepancy function de�nes a homomor-

phism h from G into G

0

. Intuitively, Generic Linear Test veri�es that the discrepancy

function is \close" to some homomorphism h. If G

0

is in�nite with no non-trivial �nite

subgroups then, because G is �nite, h is the trivial mapping from G to f0

0

g.

Now suppose G

0

has a �nite subgroup not equal to f0

0

g. Because of the linearity

property, part (3), and because the self-testing program computes F

i

neighbor

(z) correctly on

its own, P (z � g

i

) = P (z) �

0

F

i

neighbor

(z) if and only if

disc(z � g

i

) = disc(z):

If, for all z 2 G and for all i = 1; : : : ; c, disc(z � g

i

) = disc(z) then h is the trivial mapping

from G to f0

0

g, and Generic Neighbor Test is used to verify this.

The following notation is used throughout the rest of this section.

Notation:

� � = Pr[disc(x

1

� x

2

) 6= disc(x

1

) �

0

disc(x

2

)] when x

1

2

U

G and x

2

2

U

G are indepen-

dently chosen.

� For all i = 1; : : : ; c, �

i

= Pr[disc(z) 6= disc(z � g

i

)] when z 2

U

G.

�  = Pr[disc(y) 6= 0

0

] when y 2

U

G.

Theorems 2 and 3 are the heart of the proof that programs Generic Self-Test 1 and

Generic Self-Test 2 meet their speci�cations, respectively.

Theorem 2 Let G

0

be an in�nite countable group with no �nite subgroups except for the

trivial subgroup f0

0

g. Then, � � 2 =9.

Theorem 3 Let G

0

be any (�nite or countable) group. If, for all i = 1; � � � ; c, �

i

< 1=2,

then � � 2 =9.

The speci�c proofs we give of Theorems 2 and 3, due largely to Don Coppersmith,

are simpler than our original proofs. A full exposition of some related general probabil-

ity results will appear in [12, Ben-Or Coppersmith Luby Rubinfeld]. We now introduce

some more notation and prove some intermediate lemmas that are used in the proofs of

Theorems 2 and 3.

Uncapitalized letters from the end of the alphabet denote elements chosen randomly

from G according to U

G

, e.g. x, y and z, whereas uncapitalized letters from the beginning

of the alphabet denote �xed elements of G, e.g. a, b, c. For Lemmas 11, 12, 13 and 14, we

assume that � < 2=9. Let �

0

be de�ned as the smaller solution to the equality �

0

(1��

0

) = �.

Because � < 2=9, �

0

< 1=3.

33



Lemma 11 8a 2 G, 9a

0

2 G

0

such that Pr[disc(x � a) = disc(x) �

0

a

0

] � 1� �

0

.

Proof: By the de�nition of � and because x � a is distributed in G according to U

G

and

a � y is distributed in G according to U

G

,

Pr[disc(x � a) �

0

disc(y) = disc(x � a � y)

= disc(x) �

0

disc(a � y)] � 1� 2�:

So

Pr[disc(x � a) �

0

disc(x)

�1

= disc(y � a) �

0

disc(y)

�1

]

� 1� 2�:

This is the sum, over all a

0

2 G

0

, of the square of the probability

Pr[disc(x � a) �

0

disc(x)

�1

= a

0

]:

Since � < 2=9, this sum exceeds 5=9 and thus there must be one value a

0

with

Pr[disc(x � a) �

0

disc(x)

�1

= a

0

] � 1� �

0

where (1� �

0

)

2

+ �

02

= 1� 2� and �

0

< 1=2. This leads to �

0

(1� �

0

) = �.

Lemma 11 leads to the de�nition of the function h from G to G

0

de�ned as follows:

For all a 2 G, let h(a) = a

0

, where a

0

is the element of G

0

described in Lemma 11.

Lemma 12 The function h is a group homomorphism from G to G

0

, i.e. for all a; b 2 G,

h(a � b) = h(a) �

0

h(b).

Proof: Using Lemma 11 three times, for all a; b 2 G,

Pr[disc(x) �

0

h(a) �

0

h(b) = disc(x � a) �

0

h(b) =

disc(x � a � b) = disc(x) �

0

h(a � b)] � 1� 3�

0

:

This probability is strictly greater than zero because �

0

< 1=3, and thus h(a � b) = h(a) �

0

h(b).

Lemma 13

(1) If G

0

is an in�nite countable group with no �nite subgroups except for the trivial

subgroup f0

0

g then for all a 2 G, h(a) = 0

0

.

(2) If G

0

is any (�nite or countable) group and, for all i = 1; � � � ; c, �

i

< 1=2, then for all

a 2 G, h(a) = 0

0

.
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Proof: By Lemma 12, h is a group homomorphism and thus the image of h is a �nite

subgroup of G

0

. In case (1), the only �nite subgroup of G

0

is f0

0

g. In case (2), consider

a �xed i 2 f1; : : : ; cg. Because 1 � �

i

> 1=2 and using Lemma 11 and the fact that

1� �

0

> 2=3,

Pr[disc(x) = disc(x � g

i

) = disc(x) �

0

h(g

i

)] > 1=6;

and thus there is some x 2 G such that disc(x) = disc(x) �

0

h(g

i

) which implies that

h(g

i

) = 0

0

. Thus, for all i = 1; : : : ; c, h(g

i

) = 0

0

. Because g

1

; : : : ; g

c

are generators for G it

follows that for all a 2 G, h(a) = 0

0

.

Lemma 14 Under the same conditions as (1) and (2) in Lemma 13, Pr[disc(x) = disc(x�

y)] � 1� �

0

.

Proof: By Lemma 13, h(a) = 0

0

for all a 2 G. On the other hand, Lemma 11 says that

Pr[disc(x � a) = disc(x) �

0

h(a)] � 1� �

0

for every a 2 G, and thus certainly this is true when a is replaced with a random y. Thus,

Pr[disc(x � y) = disc(x)] � 1� �

0

.

Proof: [of Theorem 2] Assume �rst that � < 2=9. By de�nition of � and using Lemma 14,

Pr[disc(x) = disc(x�y) = disc(x)�

0

disc(y)] � 1��

0

��, and thus Pr[disc(y) = 0

0

] � 1��

0

��

which implies that  � �+�

0

. Because �

0

< 1=3, 1��

0

> 2=3 which implies that �

0

� 3�=2.

This implies that � � 2 =5. On the other hand, if � � 2=9, then because  � 1 it follows

that � � 2 =9.

Proof: [of Theorem 3] Analogous to the proof of Theorem 2.

Theorems 2 and 3 provide the upper bounds on  in terms of � and �

1

; : : : ; �

c

. We now

develop the easier to prove lower bounds on  .

Lemma 15 Let G

0

be any (�nite or countable) group. Then, 3 � �.

Proof: Because 1�  = Pr[disc(y) = 0

0

], Pr[disc(x

1

� x

2

) = disc(x

1

) = disc(x

2

) = 0

0

] �

1� 3 , and consequently � = Pr[disc(x

1

� x

2

) 6= disc(x

1

) �

0

disc(x

2

)] � 3 .

Lemma 16 Let G

0

be any (�nite or countable) group. Then, for all i = 1; : : : ; c,  � �

i

=2.

Proof: For all i = 1; : : : ; c, if disc(z � g

i

) 6= disc(z) then either disc(z � g

i

) 6= 0

0

or

disc(z) 6= 0

0

. Thus,  � �

i

=2.

The following proposition is used to quantify the number of random samples needed

to guarantee good estimates of � and �

1

; : : : ; �

c

with high probability. This proposition

can be proved using standard techniques from an inequality due to Bernstein cited in [55,

R�enyi]. For a proof of this proposition, see for example [41, Karp Luby Madras].
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Proposition 17 Let Y

1

; Y

2

; : : : be independent identically distributed 0/1-valued random

variables with mean �. Let � � 2. If N =

1

�

�

4 ln(2=�)

�

2

then Pr[(1� �)� �

~

Y � (1 + �)�] �

1� �, where

~

Y =

P

N

i=1

Y

i

=N .

Corollary 18 Let Y

1

; Y

2

; : : : be independently distributed 0/1-valued random variables

with means �

1

; �

2

; : : : , respectively.

(1) If, for all i, �

i

� � and N =

1

�

� 16 ln(2=�) then Pr[

~

Y � �=2] � �, where

~

Y =

P

N

i=1

Y

i

=N . (Use � = 1=2.)

(2) If, for all i, �

i

� � and N =

1

�

�4 ln(2=�) then Pr[

~

Y � 2�] � �, where

~

Y =

P

N

i=1

Y

i

=N .

(Use � = 1.)

Theorem 4 Generic Self-Test 1 is an (�=54; �)-self-tester for any 0 � � � 1.

Proof:

( � �) By Theorem 2, this implies that � � 2�=9. Letting � = 2�=9 and letting N =

1

�

� 16 ln(2=�) =

72

�

ln(2=�) and using the Corollary 18, Part (1) yields Pr[total=N �

�=9] � �. On the other hand, if total=N > �=9 then the output of the program is

\FAIL". Thus, if  � �, the program outputs \FAIL" with probability at least 1��.

( � �=54) Lemma 15 implies that � � �=18. Letting � = �=18 and letting N =

1

�

�

4 ln(2=�) =

72

�

ln(2=�) and using the Corollary 18, Part (2), yields Pr[total=N �

�=9] � �. On the other hand, if total=N < �=9 then the output of the program is

\PASS". Thus, if  � �=54, the program outputs \PASS" with probability at least

1� �.

Theorem 5 Generic Self-Test 2 is an (�=54; �)-self-tester for any 0 � � � 1.

Proof:

( � �) We partition the possibilities into two subcases: (1) For all i = 1; : : : ; c, �

i

< 1=2;

(2) There is an i = 1; : : : ; c such that �

i

� 1=2. Case (1) is similar to the  � �

case of Theorem 4, using Theorem 3 in place of Theorem 2, which yields that the

program outputs \FAIL" with probability at least 1 � �=2. In case (2), because

of the Corollary 18, Part (1), letting � = 1=2 and letting N = 32 ln(4c=�) yields

Pr[total

0

=N

0

� 1=4] �

�

2c

. On the other hand, if total

0

=N

0

> 1=4 then the output of

the program is \FAIL", and thus the program outputs \FAIL" with probability at

least 1�

�

2c

. Thus, in either case, the program outputs \FAIL" with probability at

least 1� �.
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( � �=54) We partition the possibilities into two subcases: (1) For all i = 1; : : : ; c, �

i

�

1=8; (2) There is an i = 1; : : : ; c such that �

i

> 1=8. A portion of case (1) is similar to

the  � �=54 case of Theorem 4, which yields Pr[total=N > �=9] � �=2. Also in case

(1), using the Corollary 18, Part (2), letting � = 1=8 and letting N = 32 ln(4c=�)

and, using the fact that the union of c probabilities is upper bounded by their sum,

yields Pr[total

0

=N

0

> 1=4] � �=2. Thus, in case (1) the program outputs \PASS"

with probability at least 1 � �. In case (2), because of Lemma 16, there is some

i such that �

i

> 1=8 implies that  > 1=16 > �=54 since � � 1. Thus case (2) is

impossible.

3.4.3 Integer Multiplication

For positive integers x and y, let f(x; y) = x � y. We now describe in what sense integer

multiplication has the linearity property. For any triple of integers x

1

, x

2

and y, x

1

� y +

x

2

�y = (x

1

+x

2

) �y. Thus, for a �xed value of y, integer multiplication is a linear function.

For the following discussion, �x y to an arbitrary value. In this case, f can be viewed

of as a function of one input with domain G = Z

2

n

where � is +

2

n

, and range G

0

= Z

where �

0

is +. For x

1

; x

2

2 Z

2

n
, let c = 1 if x

1

+ x

2

� 2

n

and let c = 0 otherwise, and

let x = x

1

+ x

2

� c2

n

= x

1

+

2

n

x

2

. At the heart of the integer multiplication self-testing

program is the fact that f(x

1

; y)+f(x

2

; y) = f(x; y)+yc2

n

. Note that F

linear

(x

1

; x

2

) = yc2

n

is easily computable.

Based onGeneric Self-Test 1 with � = 1=16, the following program is an (1=864; 1=16)-

self-testing program for f making oracle calls to P with respect to U

Z

2

n

�U

Z

2

n

. The input

to the program is n and the con�dence parameter �.

Program Integer Multiplication Self-Test(n; �)

N = 1152 ln(2=�)

total  0

Do for m = 1; : : : ; N

Call Int Mult Linear Consistency(n; answer)

total  total + answer

If total=N > 1=144 then output \FAIL" else output \PASS"

Int Mult Linear Consistency(n; answer)

Choose y 2

U

Z

2

n

Choose x

1

2

U

Z

2

n

Choose x

2

2

U

Z

2

n
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x x

1

+

2

n
x

2

c (x

1

+ x

2

) div 2

n

If P (x

1

; y) + P (x

2

; y) = P (x; y) + cy2

n

then answer  0 else answer  1

Theorem 6 The above program is a (1=864; 1=16)-self-testing program for integer multi-

plication.

Proof: Similar to the proof of Theorem 4, except that for each y there is a di�erent value

for  (y) and  is the average of  (y) over all y. For the �rst part of the proof, note that

�(y) � 2 (y)=9 for each value of y. Thus, if  = E[ (y)] � � then � = E[�(y)] � 2�=9.

The rest of the proof is the same for case 1. Similar comments hold for the second case of

the proof.

The integer multiplication self-testing program is both di�erent and e�cient. The only

non-trivial lines of code in the self-testing program are generation of random numbers, calls

to the program P , integer additions, shifts and integer comparisons.

3.4.4 Modular Multiplication

For positive integers x, y and R, let f(x; y; R) = x �

R

y. For �xed value for R and y, f

can be thought of as a function of x. In this case, the domain of f can be thought of as

G = Z

R2

n

where � is +

R2

n

and the range of f is G

0

= Z

R

where �

0

is +

R

. The heart of the

modular multiplication self-testing program is the fact that, for any pair x

1

; x

2

2 Z

R2

n
,

f(x

1

; y; R) +

R

f(x

2

; y; R) = f(x

1

+

R2

n

x

2

); y; R). Thus, F

linear

(x

1

; x

2

; y) = 0

0

.

Based onGeneric Self-Test 2 with � = 1=16, the following program is an (1=864; 1=16)-

self-testing program for f with respect to U

Z

R2

n

�U

Z

R2

n

�U

fRg

. The input to the program

is n, R and the con�dence parameter �.

Program Modular Multiplication Self-Test(n;R; �):

N = 1152 ln(4=�)

total  0

Do for m = 1; : : : ; N

Call Mult Mod Linear Consistency(n;R; answer)

total  total + answer

If total=N > 1=144 then output \FAIL"

N

0

= 32 ln(4=�)

total

0

 0

Do for m = 1; : : : ; N

0

Call Mult Mod Neighbor Consistency(n;R; answer)

total

0

 total

0

+ answer

If total

0

=N

0

> 1=4 then output \FAIL" else output \PASS"
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Mult Mod Linear Consistency(n;R; answer)

Choose y 2

U

Z

R2

n

Choose x

1

2

U

Z

R2

n

Choose x

2

2

U

Z

R2

n

x x

1

+

R2

n

x

2

If P (x

1

; y; R) +

R

P (x

2

; y; R) = P (x; y; R) then answer  0 else answer  1

Mult Mod Neighbor Consistency(n;R; answer):

Choose y 2

U

Z

R2

n

Choose z 2

U

Z

R2

n

z

0

 z +

R2

n
1

If P (z; y; R) +

R

y = P (z

0

; y; R) then answer  0 else answer  1

Theorem 7 The above program is an (1=864; 1=16)-self-testing program for modular mul-

tiplication.

Proof: See the proof of Theorem 5, and combine this with some of the aspects of the

proof of Theorem 6.

The only non-trivial lines of code in the self-testing program are generation of random

numbers, calls to the program P , integer additions and integer comparisons, except for the

line \If P (z; y; R) +

R

y = P (z

0

; y; R) then : : : " in the Mult Mod Neighbor Consis-

tency program. The problem is that although P (z; y; R) and P (z

0

; y; R) are both in Z

R

,

y is in the much larger range Z

R2

n

and thus y mod R cannot be calculated easily using

just additions and comparisons.

This suggests using the library approach discussed in Chapter 5 to get around this

problem, i.e. use a library of functions including modular multiplication and the mod

function. We have already presented a self-testing/correcting pair (T

0

; S

0

) for the mod R

function. The modular multiplication self-testing program can then call S

0

to compute

y mod R. S

0

computes this correctly with high con�dence using any program P

0

for the

mod R function that passes the test T

0

. Note that any modular multiplication program

has the mod R function embedded in it, when restricting the inputs to multiplication by 1.

The resulting modular multiplication self-testing program is both di�erent and e�cient.

3.4.5 Modular Exponentiation

For positive integers x, a and R, let f(a; x; R) = a

x

mod R. Fix a and R to be positive

integers, and as before we restrict attention to a and R such that gcd(a;R) = 1 and

we assume that we know the factorization of R and thus can easily compute �(R). In
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this case, the domain of f is G = Z

�(R)2

n
where � is +

�(R)2

n
and the range of f is

G

0

= Z

�

R

and �

0

is �

R

. Because gcd(a;R) = 1, a

�(R)

= 1 mod R. The heart of the

modular exponentiation self-testing program is the fact that, for any pair x

1

; x

2

2 Z

�(R)2

n
,

f(a; x

1

; R) �

R

f(a; x

2

; R) = f(a; x

1

+

�(R)2

n
x

2

; R). (Thus, F

linear

(x

1

; x

2

; y) = 0

0

.)

Based onGeneric Self-Test 2 with � = 1=16, the following program is an (1=864; 1=16)-

self-testing program for f making oracle calls to P with respect to U

fag

�U

Z

�(R)2

n

�U

fRg

.

The input to the program is n, a, R and the con�dence parameter �.

Program Modular Exponentiation Self-Test(n; a; R; �)

N = 1152 ln(4=�)

total  0

Do for m = 1; : : : ; N

Call Mod Exp Linear Consistency(n; a; R; answer)

total  total + answer

If total=N > 1=144 then output \FAIL"

N

0

= 32 ln(4=�)

total

0

 0

Do for m = 1; : : : ; N

0

Call Mod Exp Neighbor Consistency(n; a; R; answer)

total

0

 total

0

+ answer

If total

0

=N

0

> 1=4 then output \FAIL" else output \PASS"

Mod Exp Linear Consistency(n; a; R; answer)

Choose x

1

2

U

Z

�(R)2

n

Choose x

2

2

U

Z

�(R)2

n

x x

1

+

�(R)2

n

x

2

If P (a; x

1

; R) �

R

P (a; x

1

; R) = P (a; x; R) then answer  0 else answer  1

Mod Exp Neighbor Consistency(n; a; R; answer):

Choose z 2

U

Z

�(R)2

n

z

0

 z +

�(R)2

n

1

If P (a; z; R) �

R

a = P (a; z

0

; R) then answer  0 else answer  1

Theorem 8 The above program is an (1=864; 1=16)-self-testing program for modular ex-

ponentiation.

Proof: Analogous to the proof of Theorem 7 (page 39).
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The modular exponentiation self-testing program consists solely of integer additions,

integer comparisons and calls to P except in two lines of code: (1) The line \If P (a; x

1

; R)

�

R

P (a; x

1

; R) = P (a; x; R) : : : " in the program Mod Exp Linear Consistency; (2)

The line \If P (a; z; R) �

R

a = P (a; z

0

; R) : : : " in the programMod Exp Neighbor Con-

sistency. We propose computing these two lines using the library approach. We can use

the modular multiplication self-correcting program presented above to compute (1) and

(2) which uses a program P

0

for computing multiplication modR, where we �rst use the

modular multiplication self-testing program to verify that P

0

is not too faulty. In addition

to these two lines of code, in the implicit range-check code (see page 20) we need to

verify that the answer � to a call to P is in range, i.e. in Z

�

R

. This can be done by

verifying that � 2 Z

R

(this is easy) and that gcd(�;R) = 1. If R is a prime, the gcd

computation is trivial (just verify that � 6= 0). If the prime factorization of R is

Q



i=1

p

e

i

i

where  is a small positive integer, then to verify that gcd(�;R) = 1, we can use the mod

function self-correcting program to compute � mod p

i

for all i = 1; : : : ;  and verify that

none of the answers are zero. This requires that the mod function is not too faulty for

modp

i

computations for all i = 1; : : : ; . In Section 3.6.3, we show how to reduce this

requirement to the case where the mod function is not too faulty for modR computations

if one assumes the existence of a program for modular inverse that is usually correct

(since a

�1

mod R exists if and only if gcd(a;R) = 1). Also in a later section of this

chapter, we present a self-testing/correcting pair for modular exponentiation when the

prime factorization of R and �(R) are not known, at the expense of some loss in e�ciency.

3.4.6 Integer Division

We now consider division of integers by R for a positive number R. in this case, f(x;R) =

(x div R; x mod R). We write f

div

(x;R) = x div R and f

mod

(x;R) = x mod R. We

have already seen that the mod function has the linearity property. We now describe

in what sense integer division has the linearity property. For any triple of integers x

1

,

x

2

and R, x

1

div R + x

2

div R + (x

1

mod R + x

2

mod R) div R = (x

1

+ x

2

) div R and

x

1

mod R +

R

x

2

mod R = x

1

+

R

x

2

. For the following discussion, �x R to an arbitrary

positive integer. In this case, f can be viewed of as a function of one input with domain

G = Z

R2

n
where � is +

R2

n
. The range G

0

of f is isomorphic to Z , where �

0

corresponds to

+. An element of G

0

is a pair of integers (a; b), where a 2 Z and b 2 Z

R

. For any pair of

elements (a; b); (c; d) 2 G

0

, (a; b)�

0

(c; d) = (a+c+(b+d) div R; b+

R

d). For x

1

; x

2

2 Z

R2

n

,

let c = (x

1

+x

2

) div R2

n

and let x = x

1

+x

2

�cR2

n

= x

1

+

R2

n
x

2

. At the heart of the integer

division self-testing program is the fact that f

div

(x;R) + c2

n

= f

div

(x

1

; R) + f

div

(x

2

; R) +

(f

mod

(x

1

; R) + f

mod

(x

2

; R)) div R and that f

mod

(x;R) = f

mod

(x

1

; R) +

R

f

mod

(x

2

; R)

Based onGeneric Self-Test 1 with � = 1=16, the following program is an (1=864; 1=16)-

self-testing program for f with respect to U

Z

R2

n

� U

fRg

. The input to the program

is n;R and the con�dence parameter �. We refer to the output of P as P (x;R) =

(P

div

(x;R); P

mod

(x;R)).
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Program Integer Division Self-Test(n;R; �)

N = 1152 ln(2=�)

total  0

Do for m = 1; : : : ; N

Call Int Div Linear Consistency(n;R; answer)

total  total + answer

If total=N > 1=144 then output \FAIL" else output \PASS"

Int Div Linear Consistency(n;R; answer)

Choose x

1

2

U

Z

R2

n

Choose x

2

2

U

Z

R2

n

x x

1

+

R2

n
x

2

c (x

1

+ x

2

) div R2

n

answer  0

If P

div

(x

1

; R)+P

div

(x

2

; R)+ (P

mod

(x

1

; R)+P

mod

(x

2

; R)) div R 6= P

div

(x;R)+

c2

n

then answer  1

If P

mod

(x

1

; R) +

R

P

mod

(x

2

; R) 6= P

mod

(x;R) then answer  1

Theorem 9 The above program is a (1=864; 1=16)-self-testing program for integer divi-

sion.

Proof: Similar to the proof of Theorem 4 (page 36).

3.5 Self-Testing Polynomial Functions

We consider the problem of computing any polynomial function which maps to a �nite

�eld Z

p

for prime p. In this case, f(x; p) = q(x) mod p, for a prime p, polynomial q

of degree d, and x in Z

p2

n
. We have already seen a self-corrector for the more general

problem of computing any multivariate polynomial function. We show a (

�

2

4(d+2)

; �)-self-

testing program (� �

1

10(d+1)

2

) for f with respect to U

Z

p2

n

�U

fpg

. The input to the program

is n, p, a list of d+1 inputs a

1

; : : : ; a

d+1

, the corresponding values of the function at these

inputs b

1

; : : : ; b

d+1

, and the con�dence parameter �.

Part of the tester is a subroutine, called Degree Test, that tests whether there is a

polynomial g of degree d such that Pr

x2Z

p2

n

[P (x) = g(x)] � 1 � �. Once this is veri�ed,

the other part of the tester indirectly veri�es, by making calls to P , that the polynomial

g is actually equal to f , by verifying that they are equal on at least d+ 1 inputs.
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Let �

0

; :::; �

d

be as discussed in the section on self-correcting any multivariate polyno-

mial function. Recall that �

0

= 1 and that

P

d+1

i=0

�

i

= 0.

Program Polynomial Self-Test (n; d; p; (a

1

; b

1

); : : : ; (a

d+1

; b

d+1

); �)

�

0

 �=(2d+ 2)

Call Degree Test(n; d; p; �=2)

For k = 1; : : : ; d+ 1, call Equality Test(n; d; p; (a

k

; b

k

); �

0

)

Output \PASS"

Degree Test (n; d; p; �)

total  0

N  

16

�

2

ln(2=�)

Do for j = 1; : : : ; N

Randomly choose x; t 2 U

Z

p2

n

If �

d+1

i=0

�

i

� P (x+

p2

n

it) mod p 6= 0 then total  total + 1

If total=N > �

2

=2 then output \FAIL" and halt.

Equality Test (n; d; p; (a; b); �)

total  0

N  12 ln(1=�)

Do for j = 1; : : : ; N

Randomly choose t 2 U

Z

p2

n

If b 6= �

d+1

i=1

� �

i

� P (a+

p2

n

it) mod p

then total  total + 1

If total=N > 1=4 then output \FAIL" and halt.

Theorem 10 The above program is a (

�

2

8(d+2)

; �)-self-testing program for the polynomial

function for � �

1

10(d+1)

2

.

Let � = Pr

x;t2Z

p2

n

[�

d+1

i=0

�

i

P (x +

p2

n
it) mod p 6= 0]. Let �

0

be the solution to �

02

= �. Let

 = Pr

x2Z

p2

n

[P (x) 6= f(x)].

In order to prove Theorem 10, we �rst prove the following:

Theorem 11 If � �

1

100(d+1)

4

then there is some polynomial g of degree d such that

Pr

x

[P (x) = g(x)] � 1� �

0

.
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Proof: [of Theorem 11] De�ne the set of good values as : G = fxjPr

t

[

P

d+1

i=0

�

i

P (x+

p2

n

it) mod p = 0] � 1� �

0

g.

The following lemma is proved by a simple counting argument:

Lemma 19 jGj � 1� �

0

.

Lemma 20 Let �

00

 4(d+ 1)�

0

. Then for all x 2 Z

p2

n

there exists an x

0

2 Z

p

such that

Pr

t2Z

p2

n

[x

0

=

P

d+1

i=1

��

i

P (x+

p2

n
it) mod p] � 1� �

00

:

Proof: [of Lemma 20] We note that for all x 2 Z

p2

n
:

Pr

t

1

;t

2

2Z

p2

n

[

d+1

X

i=1

�

i

P (x+

p2

n

it

1

) mod p =

d+1

X

i=1

�

i

d+1

X

j=1

��

j

P (x +

p2

n

it

1

+

p2

n

jt

2

) mod p (1)

=

d+1

X

j=1

�

j

d+1

X

i=1

��

i

P (x +

p2

n

it

1

+

p2

n

jt

2

) mod p (2)

=

d+1

X

j=1

�

j

P (x+

p2

n

jt

2

) mod p] � 1� 4(d+ 1)�

0

(3)

Using the de�nitions of G and Lemma 19, equation (1) holds with probability � 1 �

2(d+ 1)�

0

since for any i 2 [1; : : : ; d+ 1], Pr

t

1

2Z

p2

n

[(x +

p2

n

it

1

) 2 G and P (x +

p2

n

it

1

) =

P

d+1

j=1

��

i

P ((x +

p2

n

it

1

) +

p2

n

jt

2

) mod p] � 1 � 2�

0

: Similarly, equation (3) holds with

probability � 1 � 2(d + 1)�

0

. Since the probability that the same object is drawn twice

in two independent trials lower bounds the probability of drawing the most likely object,

the lemma follows.

Lemma 19 leads to the de�nition of the function g from Z

p2

n
to Z

p

de�ned as follows:

For all x 2 Z

p2

n

, let g(x) x

0

, where x

0

is the element of Z

p

described in Lemma 20.

Comment: Note that for all x 2 G, x

0

= P (x) and so Pr

x2Z

p2

n

[P (x) = g(x)] � 1� �

0

.

Lemma 21 For all x 2 Z

p2

n
, Pr

t2Z

p2

n

[

P

d+1

i=0

�

i

g(x+

p2

n
it) mod p = 0] � 1��

00

�(d+1)�

0

:

Proof: [of Lemma 21] By Lemma 20, Pr

t2Z

p2

n

[g(x) =

P

d+1

i=1

��

i

P (x +

p2

n

it) mod p] �

1 � �

00

. By the comment following Lemma 20, Pr

t2Z

p2

n

[x+

p2

n

jt 2 G] � 1� �

0

, and thus

Pr

t2Z

p2

n

[8j = 1; : : : ; d+ 1; P (x+

p2

n
jt) = g(x+

p2

n
jt)] � 1� (d+ 1)�

0

.

Lemma 22 g is a polynomial of degree � d.
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Proof: [of Lemma 22] It is su�cient to show that 8x; t

P

d+1

i=0

�

i

g(x+

p2

n

it) mod p = 0

[64, Van Der Waerden] p.89. We �rst upper bound for each i = 0; : : : ; d+ 1 the quantity

Pr

t

0

2Z

p2

n

[g(x+

p2

n

it) =

P

d+1

j=1

��

i

g(x+

p2

n

it+

p2

n

ijt

0

) mod p]. For i = 0, this occurs with

probability 1. For i 6= 0, ijt

0

is random, and thus by Lemma 21, this probability is at least

1� �

00

� (d+ 1)�

0

. Thus

Pr

t

0

2Z

p2

n

[

d+1

X

i=0

�

i

g(x+

p2

n

it) mod p =

d+1

X

i=0

�

i

d+1

X

j=1

��

j

g(x+

p2

n

it+

p2

n

ijt

0

) mod p

=

d+1

X

j=1

��

j

d+1

X

i=0

�

i

g(x+

p2

n
i(t+

p2

n
jt

0

)) mod p]

� 1� (d+ 1)(�

00

+ (d+ 1)�

0

) > 0 (1)

Finally, using Lemma 21 again, and the fact that jt

0

is random for j 6= 0, for all

j = 1; : : : ; d+1, Pr

t

0

2Z

p2

n

[

P

d+1

i=0

�

i

g(x+

p2

n
i(t+

p2

n
jt

0

)) mod p = 0] � 1��

00

�(d+1)�

0

. Thus,

summing over all j and combining this with (1), Pr

t

0

2Z

p2

n

[

P

d+1

i=0

�

i

g(x +

p2

n
it) mod p =

0] � 1 � 2(d + 1)(�

00

+ (d + 1)�

0

) � 0. Since the probability is positive and t

0

does not

appear in the expression,

P

d+1

i=0

�

i

g(x+

p2

n
it) mod p = 0.

(end of proof of Theorem 11)

Proof: [of Theorem 10]

( � �) (should output \FAIL") Let g be de�ned as the degree d polynomials for which

the quantity Pr

x

[P (x) 6= g(x)] is minimized. Let  

0

= Pr

x

[P (x) 6= g(x)].

( 

0

� �) By the assumption and Theorem 11, � � �

2

. Then letting � = �

2

and

N =

16

�

ln(4=�), and using the Corollary 18, Part (1) we see that in the degree

test, Pr[total=N � �

2

=2] � �=2. On the other hand, if total=N > �

2

=2 then

the output of the degree test is \FAIL". Thus, if  � � and  

0

� epsilon, the

degree test outputs \FAIL" with probability at least 1� �=2.

( 

0

� �) Since  6=  

0

, g 6= f . Then there is an i 2 [1::d+1] such that f(a

i

) 6= g(a

i

).

From the proof of Theorem 11 we see that if a polynomial g of degree d such that

Pr

x

[P (x) = g(x)] � 1 � � exists, we can compute g(x) by choosing a random

t 2 Z

p2

n
and computing g(x) as

P

d+1

i=1

��

i

P (x +

p2

n
it) mod p with probability

of error at most (d+ 1)�

0

� 1=4 in each pass. Thus the equality test will fail

with probability � 1� �

0

.

( � �

2

=4(d+ 2)) Using a proof similar to the second part of Theorem 4 (p. 36), one

can show that if Pr

x

[P (x) = g(x)] � 1 �

�

2

4(d+2)

, then the degree test passes with

probability � 1� �=2, and each equality test passes with probability � 1� �

0

.
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The total error probability of the degree test and all of the equality tests is � �=2 +

(d+ 1)�

0

= �.

3.6 Bootstrap Self-Testing

In this section we introduce another method of designing self-testers. It is easier to prove

that this method of self-testing meets its speci�cations than it is for self-testing based on

linearity. This method works for all the functions that the linear self-testing works for,

as well as for polynomial multiplication, matrix multiplication, modular exponentiation

when the � function of the modulus is not known, and integer division. The drawback is

that this method is often less e�cient and that the code is slightly more complicated.

The two requirements for this method to work are random self-reducibility and:

Definition 3.6.1 (smaller self-reducibility) We say that f is c�self-reducible to smaller

inputs if for all x 2 I

n

, f(x) can be expressed as an easily computable function F

smaller

of

x, a

1

; : : : ; a

c

and f(a

1

); : : : ; f(a

c

), where a

1

; : : : ; a

c

are each in I

n�1

. Furthermore, for all

x 2 I

1

, f(x) is easy to compute directly.

For example, for integer multiplication, where f(x

1

; x

2

) = x

1

� x

2

, this condition is ful-

�lled as follows: Let x = (x

1

; x

2

), where x

1

; x

2

2 Z

2

n
and where n is a power of two. Let x

L

1

be the most signi�cant half of the bits of x

1

and let x

R

1

be the least signi�cant half of the bits

of x

1

. De�ne x

L

2

and x

R

2

analogously with respect to x

2

. Let a

1

= (x

R

1

; x

R

2

), a

2

= (x

L

1

; x

R

2

),

a

3

= (x

R

1

; x

L

2

) and a

4

= (x

L

1

; x

L

2

). Then, f(x) = F

smaller

(x; a

1

; : : : ; a

c

; f(a

1

); : : : ; f(a

c

)) =

f(a

1

) + (f(a

2

) + f(a

3

))2

n=2

+ f(a

4

)2

n

:

The overall idea behind this method is that once smaller size inputs have been self-

tested, larger inputs can be self-tested by choosing a random input x, decomposing x into

smaller inputs, self-correcting the smaller inputs using random self-reducibility (which

works because smaller inputs have been self-tested), and then comparing the answer

against the answer the program gives on input x. This method of bootstrapping can

be continued until the desired input size is reached. We now give more speci�c details.

We say that x 2 I

n

is bad if P (x) 6= f(x), and otherwise x is good. Generic Self-

Correct is the program described on page 22. Program Rec Self-Test, described below,

veri�es that most of the inputs in I

n

are good given that, recursively, most of the inputs

in I

n�1

are good.

Speci�cations of Rec Self-Test(n; �):

(1) If at least a fraction of

1

4c

of the inputs in I

n

are bad and at most a fraction of

1

4c

of
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the inputs in I

n�1

are bad then Rec Self-Test outputs \FAIL" with probability at

least 1� �.

(2) If at most a fraction of

1

16c

of the inputs in I

n

are bad and at most a fraction of

1

4c

of the inputs in I

n�1

are bad then Rec Self-Test outputs \PASS" with probability

at least 1� �.

Program Rec Self-Test(n; �)

N  O(c ln(1=�))

Do for m = 1; : : : ; N

answer

m

 0

Choose x 2

U

I

n

If n = 1 then:

Compute f(x) directly

If f(x) 6= P (x) then answer

m

 1

Else n > 1 then:

Randomly generate a

1

; : : : ; a

c

from x

For k = 1; : : : ; c, y

k

 Generic Self-Correct(n� 1; a

k

;

1

16c

2

)

If F

smaller

(x; a

1

; : : : ; a

c

; y

1

; : : : ; y

c

) 6= P (x) then answer

m

 1

If �

N

k=1

answer

k

=N �

3

16c

then \FAIL" else \PASS"

Lemma 23 Rec Self-Test meets the speci�cation.

Proof:

(1) Because of the speci�cations for Generic Self-Correct and because it is called with

con�dence parameter

1

16c

2

, the probability that there is an incorrect y

k

for k =

1; : : : ; c is at most

1

16c

. Therefore, in each iteration Pr[answer

m

= 1] �

1

4c

(1�

1

16c

) �

15

64c

>

3

16c

.

(2) In each iteration Pr[answer

m

= 1] �

1

16c

+

1

16c

=

2

16c

<

3

16c

.

Thus, the average of answer

m

over O(c ln(1=�)) iterations is at least

3

16c

with probability

at least 1� � in case 1 and at most

3

16c

with probability at least 1� � in case 2.

Finally, we describe the main program Generic Bootstrap Self-Test. We make the

convention that if any call to one of the subroutines returns \FAIL" then �nal output is

\FAIL" and otherwise the output is \PASS".

Speci�cations of Generic Bootstrap Self-Test(l; x; �):
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(1) If there is an i, 1 � i � l, such that the fraction of of bad inputs in I

i

is at least

1

4c

,

then output \FAIL" with probability at least 1� �.

(2) If for all i, 1 � i � l, the fraction of bad inputs in I

i

is at most

1

16c

then output

\PASS" with probability at least 1� �.

Program Generic Bootstrap Self-Test(l; x; �)

For i = 1; : : : ; l, call Rec Self-Test(i; �=l).

Theorem 12 Generic Bootstrap Self-Test meets the speci�cations.

Proof:

(1) If there is an i, 1 � i � l such that for all 1 � j � i � 1, the fraction of bad

inputs in I

j

is at most

1

4c

and the fraction of bad inputs in I

i

is at least

1

4c

then

Rec Self-Test(i; �=l) outputs \FAIL" with probability at least 1� �=l � 1� �.

(2) If, for all i, 1 � i � l, the fraction of bad inputs in I

i

is at most

1

16c

then Rec Self-

Test(i; �=l) outputs \FAIL" with probability at most �=l. Thus, over the l calls,

the probability that all answers are \PASS" is at least 1� �.

3.6.1 Matrix Multiplication

We showed in Subsection 2.2.2 how to get a self-tester for matrix multiplication. To

illustrate the method, we show in this subsection how to get another self-tester based on

bootstrapping.

Let M

n�n

[F ] be the set of n� n matrices with entries from a �eld F , and let U

M

n�n

[F ]

be the uniform distribution on M

n�n

[F ].

random self-reducibility: LetA;B 2M

n�n

[F ]. Independently chooseA

1

2

U

M

n�n

[F ],

B

1

2

U

M

n�n

[F ] and let A

2

 A � A

1

, B

2

 B � B

1

. Then (A

1

; B

1

), (A

2

; B

1

), (A

1

; B

2

),

(A

2

; B

2

) are each distributed according to U

M

n�n

[F ]

�U

M

n�n

[F ]

and f(A;B) = f(A

1

; B

1

)+

f(A

2

; B

1

) + f(A

1

; B

2

) + f(A

2

; B

2

).

smaller self-reducibility: Let A;B 2M

2n�2n

[F ] where

A =

 

A

11

A

12

A

21

A

22

!

; B =

 

B

11

B

12

B

21

B

22

!
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and A

11

; A

12

; A

21

; A

22

; B

11

; B

12

; B

21

; B

22

2M

n�n

[F ]. Then

f(A;B) =

 

f(A

11

; B

11

) + f(A

12

; B

21

) f(A

11

; B

12

) + f(A

12

; B

22

)

f(A

21

; B

11

) + f(A

22

; B

21

) f(A

21

; B

12

) + f(A

22

; B

22

)

!

:

Since matrix multiplication is randomly self-reducible and self-reducible to smaller

inputs, the method of bootstrapping can be used to self-test the matrix multiplication

function. The self-tester makes O(log(n)) calls to the program. However, the self-tester

makes only a constant number of the calls to the program on n � n matrices, only a

constant number of the calls to the program are on n=2 � n=2 matrices, etc. Thus, the

incremental time of the self-tester is linear in the size of the input, and the total time is

linear in the running time of the program.

3.6.2 Polynomial Multiplication

We consider multiplication of polynomials over �nite �elds: in this case f(p; q) = p�q where

p; q are two degree n polynomials with coe�cients from �nite �eld F . Using Kaminski's

polynomial multiplication result checker, one can get a self-tester for polynomial multipli-

cation. We show how to get a self-tester based on the method of bootstrapping.

Let P

n

[F ] be the set of degree n polynomials where each coe�cient is an element of

the �nite �eld F . Let U

n

be the distribution on pairs of degree n polynomials where each

coe�cient is chosen independently and uniformly from the �nite �eld F .

random self-reducibility: Let p; q 2 P

n

[F ]. Independently choose p

1

2

U

P

n

[F ],

q

1

2

U

P

n

[F ], and let p

2

 p � p

1

, q

2

 q � q

1

. Then (p

1

; q

1

); (p

2

; q

1

); (p

1

; q

2

); (p

2

; q

2

) are

distributed according to U

n

and f(p; q) = f(p

1

; q

1

) + f(p

2

; q

1

) + f(p

1

; q

2

) + f(p

2

; q

2

).

smaller self-reducibility: Let p; q 2 P

2n

[F ] where p = p

1

x

n

+ p

2

, q = q

1

x

n

+ q

2

, and

p

1

; p

2

; q

1

; q

2

2 P

n

[F ]. Then f(p; q) = f(p

1

; q

1

)x

2n

+ (f(p

1

; q

2

) + f(p

2

; q

1

))x

n

+ f(p

2

; q

2

).

Since polynomial multiplication is randomly self-reducible and self-reducible to smaller

inputs, the method of bootstrapping can be used to self-test the polynomial multiplication

function. The self-tester makes O(logn) calls to the program, and has incremental time

linear in the size of the input, and the total time is linear in the running time of the

program.

3.6.3 Modular Inverse

In this subsection, we develop some programs that are used in the modular exponentiation

self-tester developed in the next subsection. For simplicity, we assume that we are using

a correct program for modular multiplication in the code; all of the code can be modi�ed

to use the library approach described in Chapter 5, where all modular multiplications are
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computed by a self-correcting program that makes calls to a program for modular multi-

plication that has been self-tested. A modular multiplication can also be easily computed

using a program that correctly computes modular exponentiation (and in particular is

able to square) using the fact that x � y mod R = ((x + y)

2

� x

2

� y

2

)=2 mod R. Thus,

the ideas of the library approach can be applied to this problem, without assuming the

existence of any programs for other problems.

Let R be a positive integer of length n. For x 2 Z

�

R

, let f(x;R) be the mod R inverse of

x, i.e. f(x;R) �

R

x = 1. Let P be a program that supposedly computes f . We assume that

P satis�es the following condition: When x 2

U

Z

R

, P (x;R) �

R

x = 1 with probability at

least

1

c ln(n)

for some constant c > 0. We can easily estimate this probability by randomly

choosing several independent x 2

U

Z

R

and computing the fraction of these x that satisfy

P (x;R) �

R

x = 1. For all R > 3, �(R) = jZ

�

R

j >

R

6 ln(n)

[56, Rosser, Schoenfeld], and thus if

P is correct for a constant fraction � of the x 2 Z

�

R

then the above condition is true with

c = 6=�.

We now describe a random generator Gen Inv Mod(R) which makes calls to P to

generate x 2

U

Z

�

R

.

Function Gen Inv Mod(R)

Repeat forever

Choose x 2

U

Z

R

Choose y 2

U

Z

R

z  x �

R

y

z

0

 P (z; R)

If z

0

�

R

z = 1 then return x and EXIT

Lemma 24 If Gen Inv Mod(R) returns x, then x 2

U

Z

�

R

. Furthermore, if P (w;R) �

R

w = 1 with probability at least

1

c ln(n)

when w 2

U

Z

R

, then the expected number of executions

of the repeat loop before Gen Inv Mod(R) halts is O(c

2

ln

2

(n)).

Proof: P (z; R) �

R

z = 1 can be true only if z 2 Z

�

R

, which in turn can only be true if

both x 2 Z

�

R

and y 2 Z

�

R

. The conditional probability of choosing x such that x 2 Z

�

R

is uniform. Furthermore, the conditional probability of choosing y such that y 2 Z

�

R

is

uniform given x. Since the distribution de�ned by x �

R

w, where x is �xed in Z

�

R

and

w 2

U

Z

�

R

, is the uniform distribution U

Z

�

R

, the conditional probability of choosing z such

that z 2 Z

�

R

is uniform given x 2 Z

�

R

. Thus, the probability that P (z; R) �

R

z = 1 is

independent of x as long as x 2 Z

�

R

. This implies that each x 2 Z

�

R

is equally likely to be

the output of Gen Inv Mod(R).

The running time analysis is straightforward, noting that x 2 Z

�

R

with probability at

least

1

c ln(n)

, and independently y 2 Z

�

R

with probability at least

1

c ln(n)

.
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The incremental time of Gen Inv Mod(R), not counting the time for calls to the

modular multiplication program, is O(c

2

n ln

2

(n)). The total time is O(c

2

ln

2

(n)T (n)),

where T (n) is the running time of the modular multiplication program.

We next develop a function that on input x 2 Z

�

R

and R outputs the mod R inverse of

x. This function makes calls to both P and Gen Inv Mod. As before, we assume that

P satis�es the condition described above.

Function Mod Inv Self-Correct(x;R)

Repeat O(c ln(n)) times

w Gen Inv Mod(R)

y  x �

R

w

y

0

 P (y; R)

z  y

0

�

R

y

If z = 1 then EXIT repeat loop

If z 6= 1 then return x

0

= 1 else return x

0

= w �

R

y

0

Mod Inv Self-Correct (hereafter abbreviated Mod InvSC) has the property that

if x 2 Z

�

R

then with very high probability the output x

0

satis�es x

0

�

R

x = 1. For simplicity,

hereafter we assume that if x 2 Z

�

R

then the x

0

�

R

x = 1 always.

The expected incremental time of Mod InvSc(x;R) is O(c

3

n ln

3

(n)) and the total

time is O(c

3

ln

3

(n)T (n)), where T (n) is the running time of the modular multiplication

program plus the running time of the modular inverse program.

3.6.4 Modular Exponentiation

Let R be a positive integer of length m and let a 2 Z

�

R

. Let n be a positive integer that

is a power of 2 and let x 2 Z

2

n
. Let f(a; x; R) = a

x

mod R. In previous sections we

developed a self-testing/correcting pair for f when the factorization of R is known. In

this subsection, we develop a self-testing/correcting pair for f without this assumption,

but with the assumption that we have access to P

0

, a program for modular inverse, where

P

0

(w;R) �

R

w = 1 with probability at least

1

c ln(n)

when w 2

U

Z

R

. Let P be a program that

supposedly computes f . We make the convention that if the second argument in a call to

P is 0 (i.e. the exponent is 0) then the call to P is not actually made and the answer is

automatically set to 1.

Speci�cations of Mod Expon Self-Correct(n; a; x; R; �):

If error(f; P;U

Z

�

R

� U

Z

2

n

� U

fRg

) � 1=32 then the output is a

x

mod R with probability at

least 1� �.

Program Mod Expon Self-Correct(n; a; x; R; �)
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N  12 ln(1=�)

For i = 1; : : : ; N do

Choose x

1

2

U

Z

2

n

If x

1

� x then �  0 else �  1

x

2

 x� x

1

+ �2

n

Choose x

3

2

U

Z

2

n

x

4

 2

n

� 1� x

3

b Gen Inv Mod(R)

�

1

 P (a �

R

b; x

1

; R)

�

2

 P (a �

R

b; x

2

; R)

�

3

 P (b; �x

3

; R)

�

4

 P (b; �x

4

; R)

�

5

 Mod InvSC(P (b; x

1

; R); R)

�

6

 Mod InvSC(P (b; x

2

; R); R)

�

7

 Mod InvSC(P (a �

R

b; �x

3

; R); R)

�

8

 Mod InvSC(P (a �

R

b; �x

4

; R); R)

answer

i

 �

1

�

R

�

2

�

R

�

3

�

R

�

4

�

R

�

5

�

R

�

6

�

R

�

7

�

R

�

8

�

R

(�a)

Output the most common answer among fanswer

m

:m = 1; : : : ; Ng

Lemma 25 Mod Expon Self-Correct meets the speci�cations.

Proof: It can be veri�ed that x

1

2

U

Z

2

n

, x

2

2

U

Z

2

n

, x

3

2

U

Z

2

n

and x

4

2

U

Z

2

n

.

Furthermore, b 2

U

Z

�

R

, and from this and because a 2 Z

�

R

, a �

R

b 2

U

Z

�

R

. Thus, in all eight

calls to P the input distribution is U

Z

�

R

� U

Z

2

n

� U

fRg

(except in the case when � = 0, in

which case four of the calls to P are not actually made and the answer is automatically 1).

Thus, with probability at least 3/4, all eight calls to P return the correct answer. It is not

hard to verify that if all eight calls to P return the correct answer, then by the properties

of Mod InvSC, answer

i

= a

x

mod R. The lemma follows from Proposition 1.

Hereafter, we refer toMod Expon Self-Correct as Mod ExpSC. The incremental

time of Mod ExpSC, not counting time for calls to the programs for modular multipli-

cation and modular inverse, is O(n + c

3

m ln

3

(m)). The total time of Mod ExpSC is

O(c

3

ln

3

(m)T (m)+T

0

(n;m)), where T (m) is the running time of the program for modular

multiplication plus the running time of the program for computing modular inverse and

T

0

(n;m) is the running time of the program for computing modular exponentiation.

We now describe the recursive self-tester for modular exponentiation.

Speci�cations of Rec Mod Expon Self-Test(n;R; �):

(1) If error(f; P;U

Z

�

R

�U

Z

2

n=2

�U

fRg

) � 1=32 and error(f; P;U

Z

�

R

�U

Z

2

n

�U

fRg

) � 1=128

then the output is \PASS" with probability at least 1� �.
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(2) If error(f; P;U

Z

�

R

� U

Z

2

n=2

� U

fRg

) � 1=32 and error(f; P;U

Z

�

R

� U

Z

2

n

� U

fRg

) > 1=32

then the output is \FAIL" with probability at least 1� �.

Program Rec Mod Expon Self-Test(n;R; �)

answer  0

N  O(ln(1=�))

Do for i = 1; : : : ; N

b Gen Inv Mod(R)

Choose y 2

U

Z

2

n

Let y = y

1

2

n=2

+ y

2

, where y

1

; y

2

2 Z

2

n=2

�

1

 Mod ExpSC(n=2; b; y

1

; 1=512)

�

2

 Mod ExpSC(n=2; �

1

; 2

n=2

� 1; 1=512) �

R

�

1

�

3

 Mod ExpSC(n=2; b; y

2

; 1=512)

If P (b; y; R) 6= �

2

�

R

�

3

then answer answer + 1

If answer � N=64 then output \FAIL" then output \PASS"

Lemma 26 Rec Mod Expon Self-Test meets the speci�cations.

Proof: By design, b 2

U

U

Z

�

R

and y 2

U

U

Z

2

n

. Because b 2 Z

�

R

and by the properties

of Mod ExpSC, �

1

6= b

y

1

mod R with probability at most 1=512 independent of b and

y

1

. If �

1

= b

y

1

mod R, then �

1

2 Z

�

R

. In this case, �

2

6= �

2

n=2

�1

1

�

R

�

1

= b

y

1

2

n=2

mod R

with probability at most 1=512. Similarly, �

3

6= b

y

2

mod R with probability at most

1=512. Thus, the probability that �

2

�

R

�

3

6= b

y

mod R is at most 3=512. From this and

Proposition 1 it can be veri�ed that the lemma follows.

The incremental and total time of Rec Mod Expon Self-Test are linear in the

incremental and total time of Mod ExpSC(n;R; �), respectively.

We �nally describe the self-tester for modular exponentiation, which is based on

Generic Boostrap Self-Test. We make the convention that if any call to one of the sub-

routines returns \FAIL" then �nal output is \FAIL" and otherwise the output is \PASS".

Speci�cations of Mod Expon Bootstrap Self-Test(n;R; �):

(1) If, for all i = 1; : : : ; log(n), error(f; P;U

Z

�

R

�U

Z

2

i

�U

fRg

) � 1=128 then output \PASS"

with probability at least 1� �.

(2) If, for some i = 1; : : : ; log(n), error(f; P;U

Z

�

R

� U

Z

2

i

� U

fRg

) > 1=32 then output

\FAIL" with probability at least 1� �.

Program Mod Expon Bootstrap Self-Test(n;R; �)
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For i = 1; : : : ; log(n), call Rec Mod Expon Self-Test(2

i

; R; �= log(n))

Lemma 27 Mod Expon Bootstrap Self-Test meets the speci�cations.

Proof: Similar to the proof of Theorem 12 (page 48).

The incremental and total time of Mod Expon Bootstrap Self-Test are linear in

the incremental and total time of Mod ExpSC(n;R; �= log(n)), respectively.

[2, Adleman Huang Kompella] have independently discovered a method of result check-

ing the exponentiation function without the restriction that a and R be relatively prime.

Their method uses similar ideas of testing by bootstrapping. The incremental time of

their result checker is O((n+m) log(n)), not counting calls to the modular multiplication

program or the modular exponentiation program. The total time of their result checker

is O((T (n;m)+T

0

(n;m)) log(n)), where T (n;m) is the running time of the modular mul-

tiplication program for multiplying two n bit numbers mod a number of length m, and

T

0

(n;m) is the running time of the modular exponentiation program where both the base

and modulus are of length m and the exponent is of length n.
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Chapter 4

Approximate Result Checking and

Self-Testing/Correcting

In the notions of a result checker and self-testing/correcting pair considered so far, a result

of a program is considered incorrect if it is not exactly equal to the function value. Some

programs are designed only to correctly approximate the value of a function. In this chapter

we introduce approximate result checkers and approximate self-testers/correctors. An

approximate result checker checks that the program correctly approximates the function on

a particular input. Similarly, an approximate self-tester checks that the program correctly

approximates the function on most inputs, and an approximate self-corrector takes a

program that approximates the function on most inputs, and turns it into a program that

approximates the function on all inputs. All of the functions discussed in this chapter

map the domain into Z or Z

q

for some positive integer q. The notions can be naturally

extended for functions whose ranges are metric spaces.

These results also apply to functions which are approximations of other functions,

e.g. the quotient function f

0

(x;R) = x div R can be thought of as an approximation of

the integer division function f(x;R) = (x div R; x mod R). We have already seen how

to apply self-testing/correcting to integer division, but we do not know how to devise a

self-testing/correcting program for the quotient function. On the other hand, in this and

other applications, instead of the exact answer, a reasonably good approximation of the

exact answer is all that is required. This function is important because it is a system

function that is often used.

We present a generic technique for designing approximate self-correctors for all of the

functions with the random self-reducibility property, as well as the quotient function. We

present a generic technique for designing approximate result checkers/self-testers for all

of the functions with the linearity property which map to Z , as well as the quotient func-

tion. We know that a self-testing/correcting pair can be easily made into a result checker,
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and similarly an approximate self-testing/correcting pair can be easily made into an ap-

proximate result-checker. Thus we concentrate on the approximate self-testing/correcting

pairs.

We assume that there is a well-de�ned metric space as the range of f in the following

de�nitions.

Definition 4.0.2 We use a �

�

b to denote that ja� bj � �. Then a �

�

1

b �

�

2

c implies

that a �

�

1

+�

2

c.

Definition 4.0.3 We say that x is � � good if P (x) �

�

f(x), otherwise, we say that x

is �� bad.

Definition 4.0.4 (approximate result checker) Let 0 � �

1

� �

2

. A (�

1

;�

2

)-approx-

imate result checker for f is a probabilistic oracle program R

f

that has the following

properties for any program P on input x and �.

1. If x is �

2

� bad then R

f

outputs \FAULTY" with probability � 1� �.

2. If P is �

1

� good on all inputs, then R

f

outputs \OK" with probability � 1� �.

Definition 4.0.5 (approximate error) Let the �-approximate error of g and f with re-

spect to D be de�ned as apperr(f; g;D;�) = Pr

x2D

[x is �� bad].

Definition 4.0.6 (approximates) If apperr(f; g;D;�) � � then we say that g (�;�)-ap-

proximates (f;D).

Definition 4.0.7 (approximate self-testing) Let 0 � �

1

< �

2

� 1. Let 0 � �

1

� �

2

. An

(�

1

; �

2

;�

1

;�

2

)-approximate self-testing program for f with respect to D is a probabilistic

oracle program T

f

that has the following properties for any program P on input n and �.

1. If P (�

1

;�

1

)-approximates (f;D) then T

P

f

outputs \PASS" with probability at least

1� �.

2. If P does not (�

2

;�

2

)-approximate (f;D) then T

P

f

outputs \FAIL" with probability

at least 1� �.

The value of �

1

should be as close as possible to �

2

and the value of �

1

should be as

close as possible to �

2

to allow as faulty as possible programs P to pass test T

P

f

and still

have the approximate self-corrector C

P

f

work correctly.
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Definition 4.0.8 (approximate self-correcting) Let 0 � � < 1, �

1

� �

2

. An (�;�

1

;�

2

)-

approximate self-correcting program for f with respect to D is a probabilistic oracle pro-

gram C

f

that has the following property on input n, x 2 I

n

and �. If P (�

1

;�

1

)-

approximates (f;D) then for all x, C

P

f

(x) �

�

2

f(x) with probability at least 1� �.

We would like T

f

and C

f

to be both di�erent and e�cient as discussed previously.

Definition 4.0.9 (approximate self-testing/correcting pair) Let �

1

� �

2

� �

3

. A

(�

1

;�

2

;�

3

)-approximate self-testing/correcting pair for f is a pair of probabilistic pro-

grams (T

f

; C

f

) such that there are constants 0 � �

1

< �

2

< 1 and an ensemble of distri-

butions D such that T

f

is an (�

1

; �

2

;�

1

;�

2

)-approximate self-testing program for f with

respect to D and C

f

is an (�

2

;�

2

;�

3

)-approximate self-correcting program for f with re-

spect to D.

It is easy to see that a (�

1

;�

2

;�

3

)-approximate self-testing/correcting pair for f can

be turned into a (�

1

; 2�

3

)-approximate result checker

We often use the following corollary to Proposition 1 (page 21) in the proofs of the

lemmas in this section.

Corollary 28 Let a and b be real numbers such that a � b. Let y

1

; : : : ; y

m

be independent

real-valued random variables such that for each i = 1; : : : ; m, Pr[a � y

i

� b] � 3=4. Let

median be the index of the median value of y

1

; : : : ; y

m

. Then

Pr [a � y

median

� b] � 1� e

�m=12

:

Proof: For each i = 1; : : : ; m, de�ne x

i

= 1 if a � y

i

� b and x

i

= 0 otherwise. Suppose

y

median

is not between a and b; without loss of generality suppose the y

median

< a. Then

for at least m=2 of the i, y

i

< a and consequently for at least m=2 of the i, x

i

= 0. But

by Proposition 1, this happens with probability at most e

�m=12

.

4.1 Approximate Self-Correcting

In a previous chapter, the property of random self-reducibility was used in designing self-

testers/correctors. By knowing the value of the function on random inputs, this property

allows one to easily compute the function on a particular input. Consider the situation in

which the approximate value of the function is known on random inputs. Then, can the

function be approximated on a particular input? If this is true, we say that the function is

approximately random self-reducible. We formalize the de�nition of approximate random

self-reducibility.
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Definition 4.1.1 (approximate random self-reducibility) Let x 2 I

n

. Let c > 1 be an

integer. We say that f is (�

1

;�

2

)-approximate c�random self-reducibility if there is an

easily computable function F

appran

of x, a

1

; : : : ; a

c

and g(a

1

); : : : ; g(a

c

), where a

1

; : : : ; a

c

are

easily computable given x, each a

i

is randomly distributed in I

n

according to D

n

.

1

F

appran

has the property that if, for all i = 1; : : : ; c; g(a

i

) �

�

1

f(a

i

) then f(x) �

�

2

F

appran

(x; a

1

;

: : : ; a

c

; g(a

1

); : : : ; g(a

c

)). By easily, we mean that the worst case computation time of the

approximate random self-reduction (excluding the time for computing g on a

1

; : : : ; a

c

) is

smaller than that of computing f(x) on inputs from I

n

.

The strength of this property is that it can be used to transform a program that

approximates a function on a large enough fraction of the inputs into a program that

approximates f(x) with high probability for every input x.

Integer division f(x;R) = (x div R; x mod R) was shown to be random self-reducible

as follows: Given x 2 Z

R2

n

, choose x

1

2

U

Z

R2

n

and let x

2

2 Z

R2

n

be such that x =

x

1

+

R2

n

x

2

. Then x mod R = x

1

mod R+

R

x

2

mod R, and x div R = x

1

div R+x

2

div R�

((x

1

+x

2

) div 2

n

R)2

n

+(x

1

mod R+x

2

mod R) div R (recall that the div by 2

n

R and the

last div R are easily computable). However, the quotient function f(x;R) = x div R is

not quite random self-reducible by this relationship because the quotient function does not

provide x

1

mod R and x

2

mod R. On the other hand, we have that x div R = x

1

div R+

x

2

div R� ((x

1

+ x

2

) div 2

n

R)2

n

+ � where � 2 f0; 1g. There is no obvious way to easily

compute � using only the quotient function, though using this relationship, we can still

approximate x div R as x

1

div R+ x

2

div R � ((x

1

+ x

2

) div 2

n

R)2

n

and know that our

approximation is within 1 of the correct answer. Furthermore, if we have approximations

to x

1

div R and x

2

div R then we can use this relationship to approximate x div R. From

this it is easy to see that the quotient function is (�; 2� + 1)-approximately random

self-reducible. Thus we have an example of a function which is not known to be random

self-reducible, but is known to be approximately random self-reducible.

In the following subsections, we show the speci�c details of the approximate self-

correcting program for the quotient function. We then give the generic approximate self-

correcting program that works for any approximate random self-reducible function, and

upon which the all the mentioned approximate self-correcting programs are based.

4.1.1 Quotient

We consider computing the quotient of an integer when divided by a positive number R. In

this case, f(x;R) = x div R. In a subsequent section, we give an approximate self-testing

algorithm for the quotient function. Suppose that the x 2 Z

R2

n
. Assume that we have

a program P such that P (1=8;�)-approximates (f;U

Z

R2

n

� U

fRg

). We have seen that

1

However, no independence between these random variables is needed, e.g. given the value of a

1

it is

not necessary that a

2

be randomly distributed in I

n

according to D

n

.
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the quotient function is (�; 2�+ 1)-approximately random self-reducible. The following

program is a (1=8;�; 2� + 1)-approximate self-correcting program for f making oracle

calls to P with respect to U

Z

R2

n

� U

fRg

. The input to the program is n, R, x 2 Z

R2

n
and

the con�dence parameter �.

Program Quotient Function Approximate Self-Correct(n;R; x; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Call Random Split(R2

n

; x; x

1

; x

2

; c)

answer

m

 P (x

1

; R) + P (x

2

; R)� c � 2

n

Output median of answer

1

; : : : ; answer

N

Lemma 29 The above program is a (1=8;�; 2�+1)-approximate self-correcting program

for the quotient function.

Proof: Follows the outline of the proof of Lemma 30 (page 60). For i 2 f1; 2g,

x

i

2

U

Z

R2

n
. Thus, by the properties of P , x

i

is �-bad with probability at most 1=8,

and consequently both calls to P in a single loop return a �-good answer with probability

at least 3=4. Since the quotient function is (�; 2�+1)-approximate random self-reducible,

if both x

1

and x

2

are �-good then f(x) �

2�+1

answer

m

. The lemma follows by a straight-

forward application of Corollary 28.

The quotient function approximate self-correcting program is very simple to code, the

only operations used are integer additions, comparisons and calls to the program P . Note

that the approximate self-correcting program is di�erent, because the running time, not

counting calls to P , is linear in n, and it is also e�cient, because the total running time,

counting time for calls to P , is within a constant multiplicative factor of the running time

of P .

4.1.2 Generic Approximate Self-Correcting Program

Generic Self-Correct is a (

1

4c

;�

1

;�

2

)-approximate self-correcting program for any (�

1

;�

2

)-

approximate random self-reducible function f with respect to D

n

. Let R be such that f

maps to Z

R

(if f maps to Z , we make the convention that R =1). We assume �

2

< R=8.

Program Generic Approximate Self-Correct(n;R; x; �)

N  12 ln(1=�)

Do for m = 1; : : : ; N

Randomly generate a

1

; : : : ; a

c

based on x

For i = 1; : : : ; c, �

i

 P (a

i

)
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answer

m

 F (x; a

1

; : : : ; a

c

; �

1

; : : : ; �

c

)

Output Find-Modular-Median(N; answer

1

; : : : ; answer

N

; R)

Function Find-Modular-Median(l; a

1

; a

2

; : : : ; a

l

; q)

If q =1, output median of a

1

; : : : ; a

l

and return.

If majority of i satisfy (0 � a

i

� q=4 or 3q=4 � a

i

� q)

then split q=2

else split 0

Do for i = 1; : : : ; l

b

i

 a

i

+

q

split

c median of b

1

; : : : ; b

l

Output c�

q

split

Lemma 30 Generic Self-Correct is a (

1

4c

;�

1

;�

2

)-approximate self-correcting program

for f with respect to D

n

.

Proof: Because P (

1

4c

;�

1

)-approximates (f;D

n

), and because for each k = 1; : : : ; c,

a

k

is randomly distributed in I

n

according to D

n

, all c of the a

i

's are �

1

-good with

probability at least 3=4 each time through the loop. If all c of the a

i

's are �

1

-good, then

by the (�

1

;�

2

)-approximate random self-reducibility property of f with respect to D

n

,

f(x) �

�

2

answer

m

. If R =1, then the median is within �

2

of f(x) by a straightforward

application of Corollary 28. If R is �nite, since modular numbers can be thought of as

lying on a circle, there is no notion of a median. The idea is to choose a split point along

the circle that is not within �

2

of f(x). We then treat the points as lying on a total

order, where the minimum is the �rst point after the split point and the maximum is

the last point before the split point. We �nd the median with respect to this order. By

Proposition 1 (page 21), the majority of the answers lie within �

2

of f(x) with probability

at least 1� �. Assume the majority of the answers are within �

2

of f(x). If the circle is

split at a point somewhere further than �

2

from f(x), using reasoning similar to that in

the proof of Corollary 28, the median of the answers with respect to the order de�ned by

the split will lie within �

2

of f(x). If f(x) �

�

2

0 then because �

2

< R=8, split  R=2

and thus the median of the answers with respect to the order de�ned by the split is within

�

2

of f(x). Similarly, if f(x) �

�

2

R=2, split  0 and thus the median of the answers is

within �

2

of f(x). If f(x) is not within �

2

of either 0 or R=2, then regardless of where

the split is made, the median of the answers is within �

2

of f(x).

4.2 Approximate Linearity and Approximate Self-Testing

We saw that functions which have the linearity property can be self-tested. In this section

we show that programs which approximate any linear function which maps to the integers
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can be approximate self-tested. As mentioned before in the discussion of approximate self-

correcting, there are functions such as the quotient function, where the linearity property

does not hold, but something very close to it does. We call such functions approximately

linear. We show that programs which approximate a linear mapping from a given domain

to the integers can be also be approximate self-tested. This method applies to all linear

functions which map to the integers as well as the quotient function. All of the results

in this section are easily stated for linear or approximately linear functions that map to

in�nite cyclic groups.

To give some idea of how the method works, we concentrate on the quotient function.

We de�ne the approximate linearity property for functions which map to the integers, and

give a generic approximate tester that works for any function with this property (and thus

works for any function with the linearity property as well).

4.2.1 Quotient Function

For positive integers x and R, let f

R

(x) = x div R. (As before, we are viewing this as a

function of one input x, where R is a �xed but arbitrary positive integer.) Because the

approximate self-correcting program for the quotient function relies on a program that is

approximately correct for most inputs with respect to a particular R, the approximate self-

testing program for the quotient function is designed to approximate self-test with respect

to an input divisor R. This is an important motivation for constructing e�cient approxi-

mate self-testing programs, because the approximate self-testing program is executed each

time a new divisor is used.

There is one critical test performed by the approximate self-tester. Let x

1

and x

2

be

randomly, independently and uniformly chosen in Z

R2

n
, and set x  x

1

+

R2

n
x

2

. Note

that f

R

(x) = f

R

(x

1

) + f

R

(x

2

) + � where � 2 f0; 1g, i.e. f

R

is almost a linear function of

its inputs. The �-approximate linear consistency test is

\Is P

R

(x) �

�

P

R

(x

1

) + P

R

(x

2

)?",

and the approximate linear consistency error is the probability that the answer to the

approximate linear consistency test is \no".

Our main theorem with respect to the approximate self-tester for f

R

is that the linear

consistency error gives good bounds on apperr(f

R

; P

R

; U

Z

R2

n

;�

2

): there are constants

0 <  < 1 and  

0

> 1 such that apperr(f

R

; P

R

; U

Z

R2

n

;�

1

) is at least  times the

approximate linear consistency error, and that apperr(f

R

; P

R

; U

Z

R2

n

;�

2

) is at most  

0

times the approximate linear consistency error. Thus, we can indirectly approximate

apperr(f

R

; P

R

; U

Z

R2

n

;�

2

) by instead estimating the approximate linear consistency error.

Program Quotient Function Approximate Self-Test (n;R; �)
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N = O(ln(1=�))

t 0

Do for m = 1; : : : ; N

Call Quotient Linear Test (n;R; ans; 3�

1

+ 1)

t t + ans

If t=N > 1=256 then \FAIL"

Quotient Linear Test (n;R; ans)

ans 0

Choose x 2

U

Z

R2

n

Call Random Split(R2

n

; x; x

1

; x

2

; c)

If jP (x

1

; R) + P (x

2

; R)� P (x;R)� c � 2

n

j � 3�

1

+ 1 then ans 1

Theorem 13 For �

2

� 18�

1

+ 6, the above program is an (1=768; 1=8;�

1

;�

2

)-approxi-

mate self-testing program for the quotient function with any R.

Proof: Corollary of Theorem 14 from the subsection on generic approximate self-testing.

The only non-trivial lines of code in the approximate self-testing program are generation

of random numbers, calls to the program P , integer additions and integer comparisons.

4.2.2 Generic Approximately Linear Self-Testing

In this section, we describe a generalization of the quotient function approximate self-

tester to functions f mapping a group G into Z . In all cases, the resulting approximate

self-testing program is extremely simple to code, di�erent and e�cient.

Let G be a �nite group with group operation +

G

. For y 2 G, let y

�1

denote the inverse

of y. Let f : G ! Z be a function. Intuitively, f is hard to compute compared to either

+

G

or +.

Let U

G

be the uniform probability distribution on G. We say that f has the �-

approximate linearity property if:

(1) It is easy to choose random elements of G according to U

G

.

(2) F

applin

is an easily computable function with the property that, for any pair x

1

; x

2

2 G,

F

applin

(x

1

; x

2

) 2 Z and furthermore f(x

1

+

G

x

2

) �

�

f(x

1

) + f(x

2

) + F

applin

(x

1

; x

2

).

62



Note that if f(x

1

) �

�

1

g(x

1

) and f(x

2

) �

�

1

g(x

2

) then f(x

1

+

G

x

2

) �

2�

1

+�

g(x

1

)+g(x

2

)+

F

applin

(x

1

; x

2

).

The approximate linearity property is a special case of approximate random self-reduci-

bility.

Let P be a program that supposedly computes f such that, for all y 2 G, P (y) 2 Z .

Let �

0

 � + 3�

1

, and �

2

 6�

0

. Then Generic Approximate Self-Testing Program

is an (�

2

=12; �;�

1

;�

2

)-approximate self-testing program for f with respect to U

G

. Note

that the quotient function is 1-approximately linear. The approximate self-tester for the

quotient function is based on Generic Approximate Self-Testing Program, where G = Z

R2

n

with addition mod R2

n

as the group operation.

Generic Approximate Self-Testing Program (�; �;�

0

)

N  

16

�

2

ln(2=�)

t 0

Do for m = 1; : : : ; N

Call Generic Linear Test (ans;�

0

)

t t + ans

If t=N > �

2

=4 then \FAIL" else \PASS"

Generic Linear Test (ans;�

0

)

randomly choose x

1

2 G according to U

G

.

randomly choose x

2

2 G according to U

G

.

If P (x

1

+

G

x

2

) �

�

0

P (x

1

) + P (x

2

) + F

applin

(x

1

; x

2

) then ans 1 else ans 0

We introduce some notation and provide motivation for why the approximate self-testers

work. For each y 2 G, de�ne the discrepancy of y to be

disc(y) = f(y)� P (y):

Because of the approximate linearity property, part (2), and because the approximate

self-testing program computes F

applin

(x

1

; x

2

) correctly on its own, with �

0

 �+3�

1

, we

have that P (x

1

+

G

x

2

) �

�

0

P (x

1

) + P (x

2

) + F

applin

(x

1

; x

2

) implies

disc(x

1

+

G

x

2

) �

�

0

disc(x

1

) + disc(x

2

):

Theorem 14 If f has the �-approximate linearity property, then the Generic Self-Testing

Program is (�

2

=12; �;�

1

;�

2

)-approximate self-testing for (f;U

G

), for any 0 � � � 1=8

where �

1

is arbitrary and �

2

is related to �

1

via the following: �

0

= � + 3�

1

, and

�

2

= 6�

0

.
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The following notation is used throughout the rest of this section:

� �

0

= Pr[jdisc(x

1

+

G

x

2

)�disc(x

1

)�disc(x

2

)j � �

0

] when x

1

and x

2

are randomly and

independently chosen according to U

G

.

�  

1

= Pr[jdisc(y)j � �

1

] when y is randomly chosen in G according to U

G

.

�  

2

= Pr[jdisc(y)j � �

2

] when y is randomly chosen in G according to U

G

.

Since �

2

� �

1

,  

1

�  

2

.

Uncapitalized letters from the end of the alphabet denote elements chosen randomly

from G according to U

G

, e.g. x,y, z, whereas uncapitalized letters from the beginning of

the alphabet denote �xed elements of G, e.g. a, b, c. +

G

denotes addition modulo R2

n

.

Theorem 15 �

0

�  

2

2

.

Before giving the proof of this theorem, we prove some intermediate lemmas. We assume

that �

0

< 1=64 in Lemmas 31, 32, and 33. Let � satisfy the equality �

2

= �

0

. Because

�

0

< 1=64, � < 1=8.

Lemma 31 8a 2 G, 9a

0

2 Z such that Pr

x2U

G

[disc(x+

G

a) �

2�

0
disc(x)+a

0

+�] � 1�2�.

Proof: [of Lemma 31] Let S = fajPr

x2U

G

[disc(x+

G

a) �

�

0
disc(x) + disc(a)] � 1� �. By

a simple counting argument, jSj=jGj � 1� �. For all a 2 S, set a

0

 disc(a).

If a = b+

G

c, and b; c 2 S, let a

0

 b

0

+ c

0

(if more than one pair of elements of S sum to

a, then pick one pair arbitrarily). Then

Pr

x2U

G

[disc(x+

G

b+

G

c) �

�

0
disc(x+

G

b) + c

0

�

�

0
disc(x) + b

0

+ c

0

= disc(x) + a

0

] � 1� 2�:

Thus Pr

x2U

G

[disc(x+

G

a) �

2�

0
disc(x) + a

0

] � 1� 2�.

Let T = fajPr

x2U

G

[disc(x+

G

a) �

2�

0
disc(x)� a

0

] � 1� 2�g.

Now we claim that T = G and Lemma 31 follows. To prove the claim, it is enough

to show that for a 2 G, there exists an a

1

; a

2

2 S such that a

1

+

G

a

2

= a. Pick a

1

2 G
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uniformly at random, and let a

2

 a�

G

a

1

. a

2

is then also distributed uniformly in G.

Since � < 1=2, both a

1

; a

2

2 S with probability at least 1�2� > 0. Thus there exists some

pair a

1

; a

2

2 S such that a

1

+

G

a

2

= a.

Lemma 31 leads to the de�nition of the function h from G to Z de�ned as follows: For all

a 2 G, let h(a) = a

0

, where a

0

is the element of Z described in Lemma 31.

Lemma 32 For all a; b 2 G, h(a+

G

b) �

6�

0

h(a) + h(b).

Proof: [of Lemma 32]

Pr

x2U

G

[disc(x) + h(a) + h(b) �

2�

0

disc(x+

G

a) + h(b)

�

2�

0

disc(x+

G

a+

G

b)

�

2�

0
disc(x) + h(a+

G

b)] � 1� 6�:

Thus Pr

x2U

G

[disc(x) + h(a) + h(b) �

6�

0

disc(x) + h(a+

G

b)] � 1 � 6�: This probability is

strictly greater than zero because � < 1=6, and thus h(a+

G

b) �

6�

0
h(a) + h(b):

Lemma 33 For all a 2 G, jh(a)j � 6�

0

.

Proof: Let t

1

be such that h(t

1

) = min

x2G

h(x) and t

2

be such that h(t

2

) = max

x2G

h(x).

Then by Lemma 32, h(t

1

+

G

t

1

) � 2h(t

1

) + 6�

0

. If h(t

1

) < �6�

0

, the minimality of h(t

1

)

is contradicted so h(t

1

) � �6�

0

. Similarly h(t

2

) � 6�

0

.

Proof: [of Theorem 15] By the way function h was de�ned, the disc function (�; 0)-

approximates (h;U

G

). Thus by Lemma 33, P (�; 6�

0

)-approximates (f;U

G

).

Theorem 16  

1

� �

0

=3.

Proof: Because  

1

= Pr[jdisc(y)j � �

1

], Pr[jdisc(x

1

+

G

x

2

)j; jdisc(x

1

)j; jdisc(x

2

)j � �

1

] �

(1 � 3 

1

), and consequently �

0

� Pr[disc(x

1

+

G

x

2

) �

3�

1

+1

disc(x

1

) + disc(x

2

)] � 1 � 3 

1

Proof: [of Theorem 14]

Similar to proof of Theorem 4 (p. 36).

4.3 Open Question

The generic self-testing method given in this chapter works for any function with the

linearity property which maps to an in�nite cyclic group, as well as the quotient function.

Is there a modi�cation of this technique which gives a self-tester for any function with the

linearity property that maps to a �nite cyclic group?
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Chapter 5

Libraries and Linear Algebra

Often programs for related functions are grouped in packages; common examples include

packages that solve statistics problems or packages that do matrix manipulations. It is

reasonable therefore to use programs in these packages to help test and correct each other.

We extend the theory proposed in [15, Blum] to allow the use of several programs, or a

library, to aid in testing and correcting. We show that this allows one to construct self-

testing/correcting pairs for functions which did not previously have e�cient self-testing

or self-correcting programs, or even result checkers. Thus, the self-testing/correcting pair

is given a collection of programs, all of which are possibly faulty, and may call any one

of them in order to test or correct a particular program. Working with a library of

programs rather than with just a single program is a key idea: enormous di�culties arise

in attempts to result check a determinant or rank program in the absence of programs for

matrix multiplication and inverse.

The notion of libraries is useful for another reason as well: Consider again the problem

of designing a self-testing/correcting pair for the determinant. Many of the proposed solu-

tions require matrix multiplication. However, matrix multiplication and determinant are

equivalent problems with respect to asymptotic running times [3, Aho Hopcroft Ullman].

Therefore, a determinant self-testing/correcting pair using matrix multiplication will not

be quanti�ably di�erent from a program for the determinant. On the other hand, since

matrix multiplication can be self-tested/corrected, one should not consider the complexity

of the matrix multiplication routine towards the complexity of the self-testing/correcting

pair for the determinant. In other words, the complexity of the self-testing/correcting pair

should be evaluated as the complexity of the unchecked parts of the self-testing/correcting

pair. The notion of libraries gives us a clean way of evaluating the complexity of the

unchecked parts of the self-testing/correcting pair.

As an example of self-testing/correcting pairs written for a library of programs, we show

how to self-test/correct a library of possibly fallible programs for matrix multiplication,

matrix inverse, determinant and rank. A library of self-testing/correcting pairs based on
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similar principles can be constructed for the following functions: integer mod, modular

multiplication, modular exponentiation, and multiplicative inverse mod R. With such a

library, the self-testing/correcting for all functions can be done with only a small number

of additions, subtractions, comparisons and generation of random numbers.

Previously, [39, Kannan] provides elegant program result checkers for the problems of

computing the determinant and rank of a matrix, but they are not e�cient. Our self-

correcting/testing pairs for determinant and rank are e�cient, but they rely heavily on

allowing the pair to call a library of linear algebra programs instead of restricting calls to

a single program that supposedly computes determinant or rank.

The results in this chapter were done in collaboration with Manuel Blum and Michael

Luby [20, Blum Luby Rubinfeld 2], [21, Blum Luby Rubinfeld 3].

5.1 De�nitions

We give the following de�nitions, which generalize the previously given result checking

and self-testing/correcting de�nitions.

Definition 5.1.1 (library) Let c be a positive integer. A library is a family of functions

f

1

; : : : ; f

c

with a corresponding set of input universes I

1

; : : : ; I

c

. A distribution set for a

library is a family D

1

; : : : ;D

c

, where D

i

is an ensemble of distributions on inputs I

i

n

to

f

i

. An error set for a library is a family of constants �

1

; : : : ; �

c

, where 0 < �

i

< 1.

Definition 5.1.2 (library result checking) A result checking program for f

1

with respect

to a library f

1

; : : : ; f

c

with input universes I

1

; : : : ; I

c

is a probabilistic program R

P

1

;:::;P

c

f

that on input x 2 I

1

and � makes calls to P

1

; : : : ; P

c

. R

P

1

;:::;P

c

f

1

has the following properties:

1. If for all i = 1; : : : ; c and for all y 2 I

i

, f

i

(y) = P

i

(y) then R

P

1

;:::;P

c

f

1

outputs \PASS"

with probability at least 1� �.

2. If f

1

(x) 6= P

1

(x) then R

P

1

;:::;P

c

f

1

outputs \FAIL" with probability at least 1� �.

Definition 5.1.3 (library self-testing) A self-testing program for a library f

1

; : : : ; f

c

with

input set I

1

; : : : ; I

c

, distribution set set D

1

; : : : ;D

c

, error set �

1

1

; : : : ; �

c

1

and error set

�

1

2

; : : : ; �

c

2

, where, for each i = 1; : : : ; c, �

i

1

< �

i

2

, is a probabilistic program T that has

input n and � and makes calls to P

1

; : : : ; P

c

, where P

i

supposedly computes f

i

. T

P

1

;:::;P

c

f

1

;:::;f

c

has the following properties:

1. If, for all i = 1; : : : ; c, error(f

i

; P

i

;D

i

n

) � �

i

1

then T

P

1

;:::;P

c

f

1

;:::;f

c

outputs \PASS" with

probability at least 1� �.
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2. If, for some i = 1; : : : ; c, error(f

i

; P

i

;D

i

n

) � �

i

2

then T

P

1

;:::;P

c

f

1

;:::;f

c

outputs \FAIL" with

probability at least 1� �.

Definition 5.1.4 (library self-correcting) A self-correcting program for f

1

with respect to

a library f

1

; : : : ; f

c

with input set I

1

; : : : ; I

c

, distribution set set D

1

; : : : ;D

c

, and error set

�

1

; : : : ; �

c

is a probabilistic program C

P

1

;:::;P

c

f

1

that on input n, x 2 I

1

n

and � makes calls to

P

1

; : : : ; P

c

to compute C

P

1

;:::;P

c

f

1

(x). C

P

1

;:::;P

c

f

1

has the property that if, for all i = 1; : : : ; c,

error(f

i

; P

i

; D

i

n

) � �

i

then, for all x 2 I

1

n

, C

P

1

;:::;P

c

f

1

(x) = f

1

(x) with probability at least

1� �.

Definition 5.1.5 (library self-testing/correcting pair) A self-testing/correcting pair for

f

1

with respect to a library f

1

; : : : ; f

c

is a pair of probabilistic programs (T; C) with the

following properties. T

P

1

;:::;P

c

f

1

;:::;f

c

is a self-testing program for the library with some input set

I

1

; : : : ; I

c

, distribution set set D

1

; : : : ;D

c

, and pair of error sets �

1

1

; : : : ; �

c

1

and �

1

2

; : : : ; �

c

2

.

C

P

1

;:::;P

c

f

1

is a self-correcting program for f

1

with respect to the library with the same input

set I

1

; : : : ; I

c

and distribution set D

1

; : : : ;D

c

and with an error set �

1

; : : : ; �

c

, where for

all i = 1; : : : ; c, 0 � �

i

1

< �

i

2

� �

i

< 1.

As before, we require that both T and C be di�erent than any correct program for f

1

.

To enforce this condition, we say that T and C are di�erent than any correct program for f

1

if the running time of T and C, not including the time for calls to the programs P

1

; : : : ; P

c

,

are smaller than the fastest known running time of any correct program for computing

f

1

. We say that T and C are e�cient if the total running time of T and C, including the

time for the calls to the program P

1

; : : : ; P

c

, are within a constant multiplicative factor

of the running time of P

1

, assuming that the running times of P

2

; : : : ; P

c

are reasonable

with respect to the running time of P

1

.

A typical way to build a self-testing/correcting pair (T; C) for f

1

with respect to

a library f

1

; f

2

is as follows. First, build a self-testing/correcting pair (T

0

; C

0

) for f

2

.

Now consider building the self-testing program T for f

1

, where program P

1

supposedly

computes f

1

and P

2

supposedly computes f

2

. The typical situation is that T , in order

to self-test P

1

, needs to compute f

2

on various inputs. Instead of computing f

2

directly,

T �rst uses T

0

to test how well P

2

computes f

2

. If P

2

passes the test then T uses the

self-corrector C

0

for f

2

, which makes calls to P

2

, to correctly compute f

2

whenever needed.

Similarly, the self-corrector C may need to compute f

2

on various inputs, in which case it

uses C

0

which in turn makes calls to P

2

.

5.2 The Linear Algebra Library

We now show how to self-test/correct a library of possibly fallible programs for matrix mul-

tiplication, matrix inverse, determinant and rank. We use the following notation through-
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out this section.

Definition 5.2.1 (matrix notation) LetM

n�n

[F ] be the set of n�n matrices with entries

from a �eld F , and let U

M

n�n

[F ]

be the uniform distribution on M

n�n

[F ]. For all A 2

M

n�n

[F ], let det(A) be the determinant of A and let rank(A) be the rank of A. For all

r 2 f0; : : : ; ng, let I

r

n�n

be the n � n matrix where all entries are 0 except that the �rst

r entries along the main diagonal are 1, and thus I

n

n�n

is the identity matrix. For all

r 2 f0; : : : ; ng, M

r

n�n

[F ] be the set of matrices in M

n�n

[F ] of rank r, and let U

M

r

n�n

[F ]

be

the uniform distribution on M

r

n�n

[F ]. Thus, M

n

n�n

[F ] is the set of invertible matrices in

M

n�n

[F ].

5.2.1 Matrix Multiplication

The input to matrix multiplication is A;B 2M

n�n

[F ], and the output is A �B. The input

to matrix inverse is A 2M

n�n

[F ], and the output is A

�1

if it exists, and \NO" otherwise.

The input to determinant is A 2 M

n�n

[F ], and the output det(A). The input to rank is

A 2M

n�n

[F ], and the output is rank(A).

For the analysis of the running time, we assume that �eld operations can be performed

in constant time, and that an element from F can be randomly chosen uniformly in

constant time. The self-testing/correcting pairs that we present are all di�erent and

e�cient.

Program Freivalds Checker referred to below is given in Chapter 2, page 14.

Speci�cations of Matrix Mult Self-Correct(n;A;B; �):

If error(f; P;U

M

n�n

[F ]

� U

M

n�n

[F ]

) � 1=8 then the probability that the output is equal to

A �B is at least 1� �.

Program Matrix Mult Self-Correct(n;A;B; �)

Do for i = 1; : : : ;1

Choose A

1

2

U

M

n�n

[F ]

Choose B

1

2

U

M

n�n

[F ]

A

2

 A� A

1

B

2

 B � B

1

C  P (A

1

; B

1

) + P (A

1

; B

2

) + P (A

2

; B

1

) + P (A

2

; B

2

)

If Freivalds Checker(n;A;B; C; �) =\PASS" then output C and HALT

Lemma 34 Matrix Mult Self-Correct meets the speci�cations. Furthermore, the ex-

pected total time is O(T (n) + n

2

ln(1=�)), where T (n) is the running time of P on inputs

from M

n�n

[F ]�M

n�n

[F ].
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Proof: A

1

2

U

M

n�n

[F ], A

2

2

U

M

n�n

[F ], B

1

2

U

M

n�n

[F ], B

2

2

U

M

n�n

[F ] and,

although A

1

may depend on A

2

and B

1

may depend on B

2

, A

1

and A

2

are independent of

B

1

and B

2

. Hence P (A

i

; B

j

) 6= A

i

�B

j

with probability at most 1=8, and thus C = A �B

with probability at least 1=2 at each iteration. Let p be the probability that the �nal

output of Matrix Mult Self-Correct is equal to A � B. With probability at least 1=2

in the �rst iteration C = A �B, in which case Freivalds Checker returns \PASS". With

probability at most 1=2 in the �rst iteration, C 6= A �B, in which case Freivalds Checker

returns \FAIL" with probability at least 1 � �, and the second iteration starts. Thus

p �

1

2

+

1

2

(1� �)p. From this, it can be veri�ed that 1� p is at most �.

The expected total time ofMatrix Mult Self-Correct is at mostO(T (n)+n

2

ln(1=�))

because the expected number of iterations until C = A �B is at most two.

The self-testing program for matrix multiplication program is di�erent. The following

step is executed O(ln(1=�)) times to obtain a good estimate of error(f; P;U

M

n�n

[F ]

�

U

M

n�n

[F ]

). Independently choose A 2

U

M

n�n

[F ] and B 2

U

M

n�n

[F ] and set C  P (A;B).

If the output of Freivalds Checker(n;A;B; C; 1=4) is \PASS", then the answer is 0 from

the step, and if the output is \FAIL" then the answer is 1. It is easy to verify that if

error(f; P;U

M

n�n

[F ]

� U

M

n�n

[F ]

) � 1=8 then the fraction of 1 answers is at least 1=16 with

probability at least 1� �, and if error(f; P;U

M

n�n

[F ]

�U

M

n�n

[F ]

) � 1=32 then the fraction

of 1 answers is at most 1=16 with probability at least 1� �. This yields a (1=32; 1=8)-self-

tester for matrix multiplication.

5.2.2 Matrix Inversion

We next design a self-correcting program for matrix inversion. Hereafter, we call Ma-

trix Mult Self-Correct (abbreviated MMSC) whenever we want to multiply matrices

together. The assumption is thatMMSC uses a program P

1

has already been self-tested

and \PASSED" to compute matrix multiplications. To avoid cluttering the explanation

with messy details, we assume that P

1

\PASSED" for good reason, i.e. it has error prob-

ability at most 1=8, and thus MMSC does self-correct.

We use program Gen Inv Matrix(n) as a subroutine in our code to choose A 2

U

M

n

n�n

[F ]. Gen Inv Matrix(n) is due to [54, Randall], and a description of it can be found

there. The incremental time ofGen Inv Matrix(n) is O(n

2

), excluding the time for com-

puting the one required matrix multiplication. We assume thatGen Inv Matrix(n) calls

MMSC in order to compute the matrix multiplication. Thus,Gen Inv Matrix(n) has a

small probability of error, which we ignore for purposes of clarity. Gen Inv Matrix/Det(n),

also due to [54, Randall], in addition to outputting A 2

U

M

n

n�n

[F ], also outputs det(A).

Speci�cations of Matrix Inv Self-Correct(n;A; �):

If error(f; P;U

M

n

n�n

[F ]

) � 1=8 and A is invertible then the output is A

�1

with probability

at least 1 � �. If A is not invertible then the output is \NO" with probability at least
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1� �.

Program Matrix Inv Self-Correct(n;A; �)

N  12 ln(1=�)

Do for i = 1; : : : ; N

R Gen Inv Matrix(n)

R

0

 MMSC(n;A;R; 1=32)

R

00

 P (R

0

)

If R

00

= \NO" then answer

i

 \NO"

Else

A

0

 MMSC(n;R;R

00

; 1=32)

If I

n

n�n

6=MMSC(n;A;A

0

; 1=32) then answer

i

 \NO" else answer

i

 A

0

Output the most common answer among fanswer

i

: i = 1; : : : ; Ng

Lemma 35 Matrix Inv Self-Correct meets the speci�cations.

Proof: Suppose that A is invertible. Then, because R 2 U

M

n

n�n

[F ]

, A � R 2

U

U

M

n

n�n

[F ]

.

If the �rst call to MMSC is correct then R

0

= A � R. Because the �rst call is correct

with probability at least 31=32, the distance between the distribution on R

0

and U

M

n

n�n

[F ]

is at most 1=32. Consequently R

00

= P (R

0

) = R

0�1

= R

�1

� A

�1

with probability at least

7=8� 1=32. If R

00

= R

�1

�A

�1

and the second call to MMSC is correct then A

0

= A

�1

.

If the third call to MMSC is correct then answer

i

= A

�1

. Since these last two calls to

MMSC are both correct with probability at least 15=16, answer

i

= A

�1

with probability

at least 7=8� 1=32� 1=16 � 3=4. Now suppose that A is not invertible. Then, for every

A

0

, I

n

n�n

6= A

0

�A. Since the last call toMMSC is wrong with probability at most 1=32, it

follows that answer

i

= \NO" with probability at least 31=32. Proposition 17 shows that

12 ln 1=� trials are su�cient to guarantee the result.

As was the case for the self-testing program for matrix multiplication, the self-tester

for matrix inversion is di�erent. Notice that inputs need only be self-tested with respect

to U

M

n

n�n

[F ]

. The following step is executed O(ln(1=�)) times to obtain a good estimate

of error(f; P;U

M

n

n�n

[F ]

). Set R  Gen Inv Matrix(n), and set R

0

 P (R). If I

n

n�n

=

MMSC(R;R

0

; 1=64) then the answer is 0 from the step, and otherwise the answer is 1.

It is easy to verify that if error(f; P;U

M

n

n�n

[F ]

) � 1=8 then the fraction of 1 answers is

at least 1=16 with probability at least 1 � �, and if error(f; P;U

M

n

n�n

[F ]

) � 1=32 then

the fraction of 1 answers is at most 1=16 with probability at least 1 � �. This yields a

(1=32; 1=8)-self-tester for matrix inversion.

5.2.3 Determinant

We next design a self-correcting program for determinant. Hereafter, we call Matrix Inv

Self-Correct (abbreviatedMISC) whenever we want to �nd the inverse of a matrix. The
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assumption is thatMISC uses a program P

2

has already been self-tested and \PASSED"

to compute matrix inversions. To avoid cluttering the explanation with messy details, we

assume that P

2

\PASSED" for good reason, i.e. it has error probability at most 1=8, and

thus MISC does self-correct.

Speci�cations of Determinant Self-Correct(n;A; �):

If error(f; P;U

M

n

n�n

[F ]

) � 1=16 then the output is det(A) with probability at least 1� �.

Program Determinant Self-Correct(n;A; �)

N  O(ln(1=�))

Do for i = 1; : : : ; N

If MISC(n;A; 3=4) = \NO" then answer

i

 0

Else

R Gen Inv Matrix(n)

R

0

 MMSC(n;A;R; 1=16)

d

R

 P (R)

d

R

0
 P (R

0

)

If d

R

= 0 then answer

i

 0 else answer

i

 d

R

=d

R

0

Output the most common answer among fanswer

i

: i = 1; : : : ; Ng

One can easily prove the following lemma:

Lemma 36 Determinant Self-Correct meets the speci�cations.

As was the case for the self-testing program for matrix inversion, the self-tester for

determinant is di�erent and the inputs need only be self-tested with respect to U

M

n

n�n

[F ]

.

The following step is executed O(ln(1=�)) times to obtain a good estimate of

error(f; P;U

M

n

n�n

[F ]

). Set (R; d)  Gen Inv Matrix/Det(n), and set d

0

 P (R). If

d = d

0

then the answer is 0 from the step, and otherwise the answer is 1. It is easy to

verify that if error(f; P;U

M

n

n�n

[F ]

) � 1=8 then the fraction of 1 answers is at least 1=16

with probability at least 1� �, and if error(f; P;U

M

n

n�n

[F ]

) � 1=32 then the fraction of 1

answers is at most 1=16 with probability at least 1��. This yields a (1=32; 1=8)-self-tester

for matrix determinant.

5.2.4 Matrix Rank

We �nally design a self-testing/correcting pair for Matrix Rank. One interesting aspect of

the matrix rank self-corrector is that to self-correct an n � n matrix we call the program

on 2n� 2n matrices.

Definition 5.2.2 (distribution for matrix rank) Let D

n

be the distribution de�ned by B

randomly chosen as follows. Choose r 2

U

f0; : : : ; ng and then choose B 2

U

M

r

n�n

[F ].
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Let A 2M

n�n

[F ].

Speci�cations of Matrix Rank Self-Correct(n;A; �):

If error(f; P;D

2n

) � 1=16 then the output is rank(A) with probability at least 1� �.

Program Matrix Rank Self-Correct(n;A; �)

N  O(ln(1=�))

Do for i = 1; : : : ; N

Choose r 2

U

f0; : : : ; ng

A

0

 

"

A I

0

n�n

I

0

n�n

I

r

n�n

#

R Gen Inv Matrix(2n)

R

0

 MISC(2n;R; 1=16)

S  MMSC(2n;A

0

; R; 1=16)

T  MMSC(2n;R

0

; S; 1=16)

answer

i

 P (T )� r

Output the most common answer among fanswer

i

: i = 1; : : : ; Ng

Lemma 37 Matrix Rank Self-Correct meets the speci�cations.

Proof: If the call to MISC and the two calls to MMSC are correct then R

0

= R

�1

,

S = A

0

� R and T = R

�1

� A

0

� R in which case rank(T ) = rank(A

0

) = rank(A) + r. Let

E

2n

be the distribution de�ned by B where B is randomly chosen as follows. Choose

r 2

U

f0; : : : ; ng and B 2

U

M

r+rank(A)

2n�2n

[F ]. Because R 2

U

M

2n

2n�2n

[F ], we claim that the

distribution E

0

2n

on T can be expressed in the form

E

0

2n

=

13

16

E

2n

+

3

16

F

2n

;

where F

2n

is some distribution on M

2n�2n

[F ]. The case when T is chosen according to

E

2n

with probability

13

16

corresponds to the case when each call to MISC and MMSC

is correct, which happens with probability at least

13

16

independent of R, and thus in

addition rank(T ) = rank(A) + r. It is not hard to verify that for all B 2 M

2n�2n

[F ],

E

2n

[fBg] � 2D

2n

[fBg]. From this and the assumption that error(f; P;D

2n

) �

1

16

it follows

that

Pr[P (B) 6= rank(B)] �

1

8

when B is randomly chosen according to E

2n

. From this and the fact that E

0

2n

=

13

16

E

2n

+

3

16

F

2n

it follows that

Pr[P (T ) 6= rank(A) + r] �

13

16

�

1

8

+

3

16

�

5

16

:
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Thus, for each i, Pr[answer

i

= rank(A)] �

11

16

>

1

2

. The lemma follows from a slight

modi�cation of Proposition 1.

As was the case for the self-testing program for matrix inversion, the self-tester for

matrix rank is di�erent.

Speci�cations of Matrix Rank Self-Test(n; �):

(1) If error(f; P;D

n

) � 1=64 then the output is \PASS" with probability at least 1� �.

(2) If error(f; P;D

n

) � 1=16 then the output is \FAIL" with probability at least 1� �.

Program Matrix Rank Self-Test(n; �)

answer  0

N  O(ln(1=�))

Do for i = 1; : : : ; N

Choose r 2

U

f0; : : : ; ng

R Gen Inv Matrix(n)

R

0

 MISC(R; 1=256)

S  MMSC(I

r

n�n

; R; 1=256)

T  MMSC(R

0

; S; 1=256)

r

0

 P (T )

If r 6= r

0

then answer  answer + 1

If answer � N=32 then output \FAIL" then output \PASS"

Lemma 38 Matrix Rank Self-Test meets the speci�cations.

Proof: It is easy to verify that if error(f; P;D

n

) � 1=16 then the fraction of 1 answers is

at least 1=32 with probability at least 1�� and if error(f; P;D

n

) � 1=64 then the fraction

of 1 answers is at most 1=32 with probability at least 1� �.
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Chapter 6

Result Checkers for Parallel

Programs

Many result checkers in the sequential model of computation have been found for various

types of problems. However, a user is unlikely to be willing to use a sequential result

checker to verify the correctness of a result produced by a fast parallel algorithm. In

this chapter, we extend the program result checking framework to the setting of checking

parallel programs and �nd general techniques for designing such result checkers. For

example, we �nd techniques for result checking programs which compute certain types of

functions that have the property that they can be computed be computed \indirectly",

by calling the program on another, related input. We also present techniques based on

quickly reconstructing the computation of a simple sequential algorithm, on duality and

on constant depth reducibility among problems. We �nd result checkers for many basic

problems in parallel computation.

The di�erence in the complexity of solving a problem as compared to the complexity

of result checking a problem is often very dramatic. For example, we show that there are

P-complete problems (evaluating straight-line programs, linear programming) that have

very fast (even constant depth) parallel result checkers. Integer GCD is not known to be

in RNC, yet a logarithmic depth parallel result checker exists for it [2, Adleman Huang

Kompella]. Maximum Matching is not known to be in NC (though it is in RNC), and it

has a deterministic NC result checker. Multiplication, parity and majority all have lower

bounds of 
(logn= log logn) depth, yet all have (completely di�erent) constant depth

result checkers.

The results in this chapter also appear in [57, Rubinfeld 1].
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6.1 The Parallel Program Result Checking Model

A parallel result checker must satisfy all of the same requirements as a sequential result

checker mentioned in Chapter 2, with the following added remarks which are speci�c to

the parallel programming setting.

The parallel result checker is allowed to call the program as many times as desired at

each parallel step.

Both the running time of the parallel checker and the number of processors used by the

parallel checker are quantities that are of interest. The incremental time (parallel depth)

of the result checker includes the parallel time required by the result checker and the time

to write the inputs to and read outputs from the program, but does not include any of the

running time of the program. The incremental number of processors includes the number

of processors used by the parallel checker and the processors required to write the inputs

to and read outputs from the program, but does not include any of the processors used

by the program.

The total running time of the result checker includes the parallel running time of the

result checker and that of the program when called as a subroutine. This is the actual

time required to perform the check. The total number of processors used by the result

checker includes the number of processors used by the result checker, and those used by

the program. This is the actual number of processors required to perform the check.

In order to enforce the result checker to be quanti�ably di�erent from any program

which computes the function, we make the following de�nitions: Suppose that any parallel

program running on a particular parallel model of computation (i.e. EREW PRAM,

CRCW PRAM) which compute the function f requires at least d depth. Suppose the

number of processors required when computing f in depth d is p. We say a parallel result

checker is quanti�ably di�erent if it either (1) the incremental time is o(d) or (2) the

incremental time is O(d) and (simultaneously) the incremental number of processors is

o(p) on the same model of parallel computation. All of the result checkers are quanti�ably

di�erent.

For e�ciency purposes we would also like to minimize the total parallel running time

and total number of processors. All of the result checkers call the program at most once

on any computation path, so the total depth is big oh of the depth of the program being

checked. Many of the result checkers have the property that the total number of processors

used is big oh of the number of processors used by the program (e.g. sorting, parity).

When describing the total running time of a result checker, we will use D(n) to refer

to the depth of the program running on an input of size n, and N(n) to refer to the

number of processors used by the program when running on an input of size n. None of

the result checkers described here ever needs to call the program more than once along

any computation path.
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In all of the examples, the result checker �rst calls the program on the input which is

being checked.

All of the examples in this chapter are written for the arbitrary and priority CRCW

PRAM models.

6.2 Simple Parallel Result Checkers

Clearly the existence of a fast sequential result checker for a problem does not imply the

existence of a fast or e�cient parallel result checker because of the di�culty of parallelizing

the result checker. In fact, some of the major ideas used in checking sequential programs

do not seem to be as applicable in checking parallel programs. For example, one of the

ideas proposed in [15, Blum] for the sequential checking of decision problems is the idea

of reducing a search problem to a decision problem. This gives a simple proof of the

correctness of a `yes' instance. Results in [52, Mulmuley Vazirani Vazirani] show that

there are techniques for reducing a search problem to a decision problem for weighted

search problems. However results in [44, Karp Upfal Wigderson 2] about the di�culty of

reducing search to decision in NC indicate that in general this idea could be di�cult to

utilize in parallel.

There are many problems for which the sequential result checking algorithm can be

converted to a parallel result checking algorithm in a straightforwardmanner. For example,

the deterministic result checker algorithm for sorting presented in Chapter 2 can be easily

implemented in constant depth with O(n) processors.

A sequential result checker for a program that �nds the rank of a matrix (over a �nite

�eld) is described in [39, Kannan]. This result checker uses the ideas of interactive proofs

to check that the program is correct by making sure that it is consistent with itself. By

slightly changing it, the sequential result checker can be parallelized to run in O(logn)

depth. The sequential result checker for Integer GCD [2, Adleman Huang Kompella] uses

ideas from interactive proofs and can be made into a parallel result checker. It runs in

O(logn) depth, with n processors.

Another example of a function for which there is a simpel result checker is that of the

maximal independent set problem: simply verify that the output is an independent set,

and then verify that it is maximal. This can be done in constant time with O(n + m)

processors where n is the number of nodes and m is the number of edges. Furthermore,

the checker is deterministic, and no other calls to the program are made. In contrast, the

best known algorithms for this problem use at least logarithmic parallel time [36, Goldberg

Spencer], [5, Alon Babai Itai], [49, Luby].
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6.3 Computability by Random Inputs

In Chapter 3, [20, Blum Luby Rubinfeld 2] we show that one can design result checkers

for many functions that have the property of random self-reducibility - that the function

can be computed by computing the function on one or more \random" instances. Here

we show that often the property that a function can can be computed by computing the

function on one or more \almost-random" instances can also be utilized in designing a

result checker.

We concentrate on symmetric functions - functions on n bits whose output depends

only on the number of 1's in the input. Thus, the value of the function can be computed

indirectly by computing the function on a \shu�e" (random permutation) of the input

bits. However, the techniques in this chapter are applicable to other functions as well.

For example, using the technique in Section 6.3.2, the running time of the sequential self-

tester for the matrix rank function given in [21, Blum Luby Rubinfeld 3] is dramatically

improved in Chapter 5, page 72, [20, Blum Luby Rubinfeld 2].

The techniques in this section are based on testing the program on random inputs for

which the answer is known, and then verifying that the program's answer on the particular

input being checked is consistent with the program's answer on most other inputs.

6.3.1 Any Symmetric Function on n Bits

We give a result checker for any symmetric function:

Input: A list of input bits â = a

1

; a

2

; :::; a

n

, a table of values

^

t = t

0

; :::; t

n

.

Output: b = t

i

where i = �

1�j�n

a

j

.

The majority, exactly i and parity functions are all examples of symmetric functions.

As mentioned before, [14, Beame Hastad] show that 
(logn= log logn) depth is required

to compute these functions. For these and other examples, no table is needed as input

because the table can be computed in constant depth by the result checker.

Let P be the program that supposedly computes the symmetric function. P is checked

by partitioning the inputs of size n into n + 1 equivalence classes, where all inputs in a

particular equivalence class contain the same number of 1's. Intuitively, the result checker

veri�es that P is correct on more than 1/2 of the members of each equivalence class, and

that the answer of P on the input in question is consistent with more than 1/2 of the

members within its own equivalence class. Therefore, even if the result checker cannot

determine which equivalence class the input is in, it can verify that the answer of P on

the input is correct. In the result checking algorithm, several random permutations of the

input bits are made; [4, Ajtai] gives a way of doing this in constant depth.

Program Symmetric Function Result Check(n; â;

^

t; b; �)
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k  log 1=�

b P (â)

In parallel, compute k random permutations �

1

; : : : ; �

k

of f1; : : : ; ng

Phase 1: (Consistency with our input)

In parallel, for i = 1; : : :k

If P (�

i

(â)) 6= b then output \FAIL" and halt

Phase 2: (Testing Correctness of most inputs)

In parallel, for j = 0; : : : ; n

In parallel, for i = 1; : : : ; k

If P (�

i

(1

j

0

n�j

)) 6= t

j

then output \FAIL" and halt.

Output \PASS".

Proof: [of correctness of result checker] Clearly if P is correct on all inputs, the result

checker will output \PASS". Assume that P is incorrect on input â, we show that the

result checker outputs \FAIL" with probability � 1� �. Let j be the number of ones in

â. Suppose that P is correct (and consequently di�ers from the output on â) on � 1=2

the inputs with j ones. Then with probability � 1� �, an input that is inconsistent with

â is found in Phase 1. Suppose that the program errs on � 1=2 the inputs of size n with j

ones. Then with probability � 1��, the j

th

group of processors in Phase 2 �nds that the

program is buggy. Notice that by this argument the same k permutations can be used in

Phase 1, and by every group of processors in Phase 2.

The incremental time is O(1) and incremental number of processors is O(C(n) + n

2

)

where C(n) is the number of processors necessary to compute a random permutation in

O(1) parallel steps. The total time is O(1 +D(n)) and the total number of processors is

O(C(n) + nN(n)).

6.3.2 Special Symmetric Functions

A factor of n in the number of processors can be saved when the symmetric function f is

of a special type: Let t

0

; : : : ; t

n

be the input table for problems of size n and t

0

0

; : : : ; t

0

2n

be

the input table for problems of size 2n. We say that f is of this special type if there is an

easily computable function g(b; j) such that if t

0

i

= b then t

i�j

= g(b; j).

Examples of such functions are parity, where g(b; j) = b� (j mod 2), and the unary to

binary conversion function, where g(b; j) = b� j.

Program Special Symmetric Function Result Check(n; â;

^

t; b; �)

k  O(log 1=�)

b P (â)

In parallel, compute k random permutations �

1

; : : : ; �

k

of f1; : : : ; 2ng

Phase 1: (Consistency with our input)
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In parallel, for i = 1; : : : ; k:

Uniformly and randomly pick j 2 [0; : : : ; n]

Let s be the string a

1

; :::; a

n

; 1

j

0

n�j

s

0

 �

i

(s)

If b 6= g(P (s

0

); j), output \FAIL" and halt.

Phase 2: (Testing Correctness of most inputs)

In parallel, for i = 1; : : : ; k:

Uniformly and randomly pick j 2 [0; : : : ; 2n]

Create the string s = 1

j

0

2n�j

s

0

 �

i

(s)

If P (s

0

) 6= t

0

j

, output \FAIL" and halt.

Output \PASS".

Proof: [of correctness of result checker (sketch)] If P is correct on all inputs, then

clearly the result checker outputs \PASS". Let l be the number of 1's in â and suppose

b = P (â) 6= t

l

. Let D be the probability distribution de�ned by (j; r), where j is chosen

uniformly at random in [0; : : : ; 2n] and r is a random string of length 2n with j 1's. Let D

0

be the probability distribution de�ned by (j; r), where j is chosen uniformly at random in

[0; : : : ; n] and r is a random string of length 2n with j+ l 1's. Let p be the probability that

P (r) 6= t

0

j

when (j; r) is chosen according to D. If p � 1=4, then each execution of the loop

in Phase 2 outputs \FAIL" and halts with probability at least 1=4. Thus, the output is

\FAIL" with probability at least 1� �. Now consider the case where p � 1=4. Let s

0

be a

string of length 2n with l+j 1's. By the properties of g, if P (s

0

) = t

0

l+j

then g(P (s

0

); j) = t

l

.

Furthermore, it can be shown that if p � 1=4 then Pr[P (s

0

) = t

0

l+j

] � 1=2 when (j; s

0

)

is chosen according to D

0

. These two facts imply that Pr[g(P (s

0

); j) = t

l

] � 1=2 in each

execution of the loop in Phase 1, and thus, since b 6= t

l

, Pr[g(P (s

0

); j) 6= b] � 1=2 in each

execution of the loop in Phase 1, in which case the output is \FAIL". Thus, the output is

\FAIL" with probability at least 1� �.

The incremental time is O(1) parallel steps and the incremental number of processors

is O(C(n) + n). The total time is O(1 + D(n)) and the total number of processors is

O(C(n) +N(n)).

6.3.3 Randomly Self-Reducible, Linear and Smaller Self-Reducible Prob-

lems

If the program computes a function which is randomly self-reducible and either has the

linearity property or is self-reducible to smaller inputs (see de�nitions on pages 31,46),

the general techniques described in Chapter 3, [20, Blum Luby Rubinfeld 2] can be paral-

lelized. This gives constant depth e�cient result checkers for checking numerical problems

such as integer multiplication, integer division, mod, modular multiplication, modular

exponentiation, polynomial multiplication, squaring and matrix multiplication. The tech-
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nique can also be used to give a result checker for parity that uses O(1) incremental time

and O(n) incremental number of processors.

6.4 Consistency

Many problems have linear time sequential algorithms that are extremely simple and even

possible to prove correct with formal veri�cation methods. However, it is often the case

that any parallel algorithm P for the same problem is necessarily radically di�erent and

more complex. Intuitively, a typical parallel result checker developed in this section calls

P to reconstruct the computation steps of the extremely simple sequential algorithm, and

then veri�es the consistency between adjacent steps of the computation. This can be

done very quickly, and independently of the algorithm actually used by P . This simple

idea gives deterministic parallel result checkers for a surprising number problems. Some

problems have result checkers that do not even need an additional call to P .

The pre�x sums problem takes as input a list of elements a

1

; a

2

; :::; a

n

, and outputs

(b

1

; b

2

; :::; b

n

), where b

i

= a

1

� a

2

� a

3

� ::: � a

i

for an associative binary operator �. We

assume that � can be computed correctly by one processor in constant time. In order

to verify that P computes the correct result, in parallel for 1 � i � n � 1, processor i

checks that b

i

� a

i+1

= b

i+1

. The incremental time is O(1) and the incremental number of

processors is n. The total depth is O(D(n)) with O(N(n)+n) total processors. Note that

the result checker makes no additional calls to P . A small variant of this result checker

works for the list ranking problem as well in the same time and with the same number of

processors.

The sum problem is similar to pre�x sums, except that only b

n

is output, and thus

it is harder to check. The intermediate pre�x answers b

1

; : : : ; b

n�1

can be reconstructed

as follows: In parallel for 1 � i � n, group i of processors calls the program to compute

b

i

= P (a

1

; a

2

; :::; a

i

). Then processor i veri�es that b

i

� a

i+1

= b

i+1

. The incremental time

is O(1) and the incremental number of processors is O(n

2

). The total depth is O(1)+D(n)

with O(n�N(n)) total processors.

The ideas in this result checker can be used for various problems, including parity,

addition of n numbers, and can be modi�ed to work for straight-line programming (when

the variables are each set only once) and the expression evaluation problem. When the

variables can be set more than once, the incremental time of straight-line programming is

O(logn) using sorting.

A result checker for integer multiplication can also be constructed using this idea,

where the input is 2 n-bit numbers a; b and the output is a � b. The result checker

algorithm is as follows: In parallel for 1 � i � n, the i

th

group of n processors asks the

program to multiply a by the last i bits of b to get r

i

. If the i

th

least signi�cant bit of b

is a 0 then the result checker veri�es that r

i

= r

i�1

, otherwise the result checker veri�es
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that r

i

� r

i�1

= a � 2

i

. The incremental time is O(1), and the incremental number of

processors is n � A(n), where A(n) is the number of processors required to do addition

in constant depth. In [24, Chandra Fortune Lipton], it is shown that A(n) is O(ng

�1

(n))

for any strictly increasing primitive recursive function g. The total time is O(D(n)) with

O(n� A(n) + n�N(n)) total processors.

Because of the following known results, all the checkers presented in this section are

quanti�ably di�erent. The best known algorithm for pre�x sums uses O(n= logn) proces-

sors and O(logn) depth ([47, Ladner Fischer],[31, Fich]). Multiplication can be done in

O(logn= log logn) parallel depth, with O(n

�

) processors (for any �). Any algorithm using

only a polynomial number of processors for pre�x sums, sum, parity and integer multi-

plication provably requires 
(logn= log log n) depth ([14, Beame Hastad]). Straight-line

programming is P-complete.

6.4.1 Problems that can be solved using Dynamic Programming

Richard Karp has pointed out that the basic technique described in this section can be

used to check any problem that can be solved sequentially using dynamic programming,

regardless of the algorithm used by the program. By dynamic programming, we mean

that there is some polynomial algorithm that computes the function on the whole set of

inputs by evaluating the same function on smaller sets of inputs and somehow combining

the results. This usually involves writing out the function on smaller sets of inputs in

the form of a table. The idea behind the result checker is to call the program on each

subproblem in parallel to �ll in the table, and then verify that the entries of the table are

consistent with each other. In most cases, this combination of results involves �nding the

minimum or maximum of a set of numbers. Since the minimum and maximum function

can be computed in constant time, the incremental time is constant.

The following is an example:

Longest Common Subsequence

Input: Two strings x = x

1

x

2

x

3

:::x

n

and y = y

1

y

2

y

3

:::y

n

.

Output: The length of the longest common subsequence of x and y.

Let lcs(l; k) denote the length of the longest common subsequence of x

l

x

l+1

:::x

n

and

y

k

y

k+1

:::y

n

. Then the sequential dynamic programming algorithm used to solve the longest

common subsequence problem builds up the table as follows: if x

l

= y

k

then lcs(l; k) =

1 + lcs(l+ 1; k+ 1), otherwise lcs(l; k) = maxflcs(l; k+ 1); lcs(l+ 1; k)g.

The algorithm for the result checker is:

Do for all 1 � l � n

Do for all 1 � k � n

s

lk

 P (x

l

:::x

n

; y

k

:::y

n

)
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Verify consistency:

If x

l

= y

k

verify that s

lk

= 1 + s

l+1;k+1

else verify that s

lk

= maxfs

l;k+1

; s

l+1;k

g

If any of these veri�cations fail then output \FAIL" else output \PASS"

The incremental time is O(1) and the incremental number of processors is O(n

3

). The

total running time is O(1 +D(n)) with O(n

3

+ n

2

�N(n)) total processors.

6.4.2 All Pairs Shortest Path

Input: n� n adjacency matrix A, with a nonegative weight for each edge.

Output: Matrix Dist specifying length of shortest path between every pair of nodes.

Program All Pairs Shortest Path Result Check(D;A):

Do in parallel for each entry D(u; v)

(1) check that Dist(u; v) � A(u; v)

(2) check that for all w that are neighbors of v, Dist(u; w) + A(w; v) �

Dist(u; v)

(3) check that 9w neigbor of v such that Dist(u; w) +A(w; v) = Dist(u; v)

If any of these checks fail then output \FAIL" else output \PASS"

Proof: [of correctness of result checker] It is clear that if the program is correct, the

result checker will output \PASS". Suppose that the result checker outputs \PASS". Let

d(u; v) denote the correct shortest distance between u and v. We want to show that for

all pairs (u; v), Dist(u; v) = d(u; v).

Suppose for contradiction that there are nodes u; v such that Dist(u; v) < d(u; v). Let

u; v be nodes with Dist(u; v) < d(u; v) such that v has the smallest possible index. Then

because of step 3, there must be a w such that Dist(u; w) < d(u; w) and w has smaller

index that v. Therefore, for all u; v we have that Dist(u; v) � d(u; v).

We will show by induction on the number of intermediate nodes along a shortest path

between a pair of nodes that Dist(u; v) = d(u; v).

Basis: The number of intermediate nodes visited when taking the shortest path from u to

v is 0 (edge uv is the shortest path). Step 1 guarantees thatDist(u; v) � A(u; v) = d(u; v).

Induction Step: Suppose that Dist(u; v) = d(u; v) for all pairs (u; v) where there is a

shortest path from u to v that visits i intermediate nodes. Consider pair (u; v) where there

is a shortest path from u to v with i + 1 intermediate nodes, and let w be the last node

along this path. Then, step 2 veri�es that Dist(u; w) + A(w; v) � Dist(u; v). We know

d(u; w) + A(w; v) = d(u; v). By the induction hypothesis, since there is a shortest path
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between u and w of length i, Dist(u; w) = d(u; w). Thus Dist(u; v) � A(w; v)+d(u;w) =

d(u; v) and so Dist(u; v) = d(u; v).

The incremental time is O(1) and the incremental number of processors is O(n

3

). The

total time is D(n)+O(1) with O(n

3

)+N(n) total processors. Note that the result checker

makes no extra calls.

6.5 Duality

When result checking an optimization problem, it is necessary to check that the solution

is as good as is claimed, and that it is the best solution. Duality can sometimes be used

to show the latter.

For example, to result check a program that does linear programming, the result

checker needs only check that the optimal solution is feasible, and to call the program

again on the dual problem (again making sure that it is feasible) to check that the solution

to the original problem is the same (and therefore optimal). If the program claims that

there is no solution or that the solution is unbounded, this can be veri�ed symbolically

using the program in [18, Blum Kannan Rubinfeld]. This problem is P-complete, so no

fast parallel algorithm is known for it. However, it can be result checked in logarithmic

time with only two calls to the program.

Another example is the following:

Maximum Matching

Input: Graph G = (V;E)

Output: k = the size of a maximum matching, and the edges in a maximum matching in

G

No deterministic NC algorithm is known for this problem, but it is known to be in

RNC ([43, Karp Upfal Wigderson], [52, Mulmuley Vazirani Vazirani]).

Result Checking Algorithm:(sketch)

The result checker �rst checks in parallel that no vertex is matched more than once

and that the maximum matching is of size k. Then the algorithm in [40, Karlo�] is used

to �nd a proof that there is no matching of size � k. This proof will be an odd set

cover of size k. Karlo�'s algorithm requires computing a maximal independent set. This

computation can be checked using the result checker described earlier. Karlo�'s algorithm

also calls a matching oracle on other problem instances. The result checker calls the

matching program on these instances, and proceeds as if all of the answers are correct.

If the output of his algorithm is an odd set cover of size 6= k, the result checker outputs

\FAIL". Otherwise, the odd set cover of size k is veri�cation that the maximum matching

is of size k, and the result checker outputs \PASS".
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The incremental time is O(d

MIS

(n)) parallel steps and O(p

MIS

(n)) processors, where

d

MIS

(n) is the parallel depth and p

MIS

(n) is the number of processors required to �nd a

maximal independent set in an n node graph. The total running time is O(d

MIS

(n)+D(n))

with O(n

3

�N(n) + p

MIS

(n)) processors.

6.6 Constant Depth Reducible Functions

We can say something about the relationship among result checking problems that are

AC

0

equivalent.

Proposition 39 Let �

1

; �

2

be two AC

0

equivalent computational problems. Then from

any fast program result checker C

�

1

for �

1

, is is possible to construct a fast program result

checker C

�

2

for �

2

.

Proof: Similar to Beigel's trick described in [15, Blum]. We outline the proof for

decision problems, but the general proof is similar. The idea is to construct a program

result checker for �

2

by transforming it to an instance of �

1

and result checking that

instance. Since the oracle program still only solves �

2

, in order to get an oracle for �

1

on

x, we use the reverse transformation on x into an instance of �

2

, and call the oracle for �

2

on it. Since the transformation and the reverse transformation can be computed in AC

0

,

the depth of the result checker for �

2

will be at most a constant times the depth of the

result checker for �

1

. Since �

1

and �

2

are AC

0

equivalent, the fastest parallel program for

each is related by a constant factor. Therefore, if �

1

is a fast program result checker, so is

�

2

.

More recently, in [39, Kannan] Section 2.3, Beigel's theorem was generalized to prob-

lems in the same robust complexity classes, and used to show that if two problems are

equivalent under NC reductions, and if one has a result checker, then so does the other.

We have already shown two P-complete problems that are checkable in small depth:

linear programming and straight line programming. In [39, Kannan] it is observed that

since P-complete problems are all NC-reducible to each other, all P-complete problems are

checkable in polylogarithmic depth. Moreover, a problem is presented for which programs

can be written that run in small depth, but for which result checking the result is P-

complete.
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Chapter 7

Adaptive Programs and

Cryptographic Settings

In the theory of program result checking introduced in [15, Blum], P is always assumed

to be a �xed program, whose output on input x is a static function P (x). This is not

always the case, as there are programs whose behavior changes as they run, even though

the functions that they supposedly compute remain �xed. For example, hardware errors

may evolve over time depending on the previous inputs that the program has been run

on, or, the software may be written such that running the program on certain inputs

may have unintended side e�ects on the program's future behavior. This could occur in

a program that stores tables of previously computed information in a permanent �le to

make subsequent processing more e�cient.

We extend the theory to check a program P which returns a result on input x that

may depend on previous questions asked of P . We call such a program that can modify

itself and its subsequent computation an adaptive program. We call a result checker that

works for such a program an adaptive result checker. The work in this chapter was done

in collaboration with Manuel Blum and Michael Luby [19, Blum Luby Rubinfeld 1].

This model is a restriction of the model used in interactive proof systems of [37,

Goldwasser Micali Racko�], in which the role of the veri�er is played by the result checker

and the role of the prover is played by the program P . The restriction is that the veri�er

may only ask questions of the form \What is the value of f(x)?". All result checkers

extract an interactive proof of correctness from the program P . Since we do not always

know how to extract such an interactive proof from a single program P running on one

machine, we allow one program that supposedly computes f on each of k noninteracting

machines, where k is a parameter which we would like to minimize. This corresponds to a

restriction of the multi-prover interactive proof systems model of [13, Ben Or Goldwasser

Kilian Wigderson] where k is the number of provers. We design adaptive result checkers

that work for a constant number of independent and noninteracting programs.
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Because the program can change and become faulty at any time, testing is of no interest

when the program is adaptive. Self-correcting will also be impossible, because there is no

notion of having a program that has been certi�ed to be usually correct.

We make the following de�nitions:

Definition 7.0.1 (adaptive result checker) Program R is an adaptive result checker for

f if R is a result checker for f that also works with respect to adaptive programs that

supposedly compute f .

Definition 7.0.2 (k-adaptive result checker) Program R is a k-adaptive result checker if

R is a result checker for k adaptive programs which do not communicate among themselves.

An adaptive result checker is automatically a k-adaptive result checker, and a k-

adaptive result checker is automatically a (non-adaptive) result checker.

Many result checkers that have been found are also adaptive result checkers. For

example, it can easily be seen that the GCD checker in [2, Adleman Huang Kompella]

and that all of the result checkers given in [17, Blum Kannan] are adaptive. Other result

checkers do not work for an adaptive program. Examples of such result checkers are the

ones in Chapter 3, [20, Blum Luby Rubinfeld 2], where adaptive programs can easily fool

the result checkers. At the present time we see no way to convert such a result checker

into an adaptive result checker. However, if more than one copy of the program exists,

we show that result checkers based on the methods in Chapter 3 can work for adaptive

programs.

Next suppose we are in the following cryptographic situation: A user wants to evaluate

function f on input x using program P running on another machine. As in result checking,

the user does not trust the program to be correct. The additional requirement is that the

user wants to let the other machine know as little information as possible about x from

the questions asked of the program P (for example, the user may want the program to

be able to learn at most the input size). This is similar to the model introduced in [1,

Abadi Feigenbaum Kilian] and later extended in [9, Beaver Feigenbaum] to allow using

several non-communicating programs for the same function, except that here we do not

trust the program to return correct answers. In addition, we only allow protocols which

are restricted versions of [1, Abadi Feigenbaum Kilian] [9, Beaver Feigenbaum] where the

result checker may only ask the program questions of the form \What is the value of

f(x)?". We call a program that satis�es the above constraints a private result checker.

As is the case for adaptive result checking, we consider the case where there is a program

that supposedly computes f on each of several noninteracting machines.

We introduce some notation in order to de�ne a private result checker:

Let k be the number of programs purporting to compute f , such that none of these

programs can communicate with any other program, and let P

i

be the program on the i

th

machine for 1 � i � k.
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As in [1, Abadi Feigenbaum Kilian], we de�ne L to be a function which we call the

leak function. Intuitively, L(x) is the amount of information leaked by the result checker

to the programs on input x. An example is L(x) = jxj, i.e. the result checker leaks the

length of x to the programs, but nothing more.

Let CONV

i

[x] denote the probability distribution of the variable representing the

concatenation of the questions that C asks of P

i

on input x and let Pr

CONV

i

[x]

(y) denote

the probability of the string y according to the distribution.

Definition 7.0.3 ((k; L)-private) A program C is (k; L)-private if for all k-tuples of pro-

grams (P

1

; :::; P

k

), for all v; w such that L(v) = L(w), for all 1 � i � k and all y,

Pr

CONV

i

[v]

(y) = Pr

CONV

i

[w]

(y).

If a result checker C is (k; L)-private where L leaks a very small amount of information

about x (e.g. the length of x), then with high probability C does not ask any of the

programs P

1

; ::; P

k

to evaluate input x. This means that the usual way of de�ning a result

checker to output \FAIL" on input x if P (x) 6= f(x) is insu�cient. We de�ne a private

result checker as follows:

Definition 7.0.4 ((k; L)-private result checker) A program C is a (k; L)-private result

checker if C is (k; L)-private and on input x and �, outputs C(x) satisfying the following

conditions: (1) if P

1

; :::; P

k

answer correctly on all inputs, C(x) = f(x). (2) Pr[C(x) =

f(x) or C(x) = \FAIL

00

] � 1� �.

Thus, C outputs the correct answer if all programs always compute f as they should,

but on the other hand it is unlikely that they can fool C into outputting the wrong answer

(with probability at most �).

Definition 7.0.5 ((k; L)-private/adaptive result checker) C is a (k; L)-private/adaptive

result checker if it is a k-adaptive result checker and a (k; L)-private result checker.

We ask that the adaptive and private result checkers be di�erent, and as e�cient as

possible. A (k; L)-private result checker or a k-adaptive result checker is f(n)-e�cient if

the total work done by all k programs and the result checker is f(n) multiplied by the

running time of the program.

We present general techniques for constructing simple to program and e�cient (k; L)-

private and 2-adaptive result checkers, and where L is a function that does not leak much

about the input (for example only the size of the input), for a variety of numerical problems.

The result checkers given in this paper are all based on the algorithms given in Chapter 3,

though the proofs are di�erent. They apply to integer multiplication, the mod function,

modular multiplication, modular exponentiation, integer division, and polynomial and
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matrix multiplication over �nite �elds. For all problems, the result checker algorithms

are both e�cient and di�erent. Furthermore, the result checker algorithms consists of the

execution of the following basic operations at most a logarithmic number of times in a

prescribed order: (1) calls to P on random instances of the problem; (2) additions; (3)

comparisons.

7.1 Related Work

[Abadi Feigenbaum Kilian] show that there is not likely to be a (1; jxj)-private result check-

er for SAT that runs in polynomial time (not including the time required by the oracle).

[Beaver Feigenbaum] describe how to compute any function privately with O(jxj) oracles

that are trusted not to err, however the oracles are not restricted to answer questions of the

form \What is the value of f(x)?". [Beaver Feigenbaum Kilian Rogaway] later improved

this result to show that it can be done with O(jxj= log jxj) oracles.

[9, Beaver Feigenbaum] [48, Lipton] show that any function that is a polynomial of

degree d over a �nite �eld is d-random-self-reducible. Thus, one can get a (O(d); L)-

private result checker for the function, where L is the description of the �nite �eld, under

the following conditions: (1) the program is not adaptive and (2) the program is already

known to be correct on a large fraction of inputs in the �nite �eld.

In [13, Ben Or Goldwasser Kilian Wigderson] [33, Fortnow Rompel Sipser], there is

a general technique for turning any result checker into a 2-adaptive result checker. This

technique can actually be used for many of the result checkers. However, it requires a

quadratic blowup in the number of calls made. Thus, if the number of calls made to the

program is not constant, the extra work done by their technique is not of the same time

order. For example, we give a way of converting one of the result checking techniques

in Chapter 3, which makes O(logn) calls to the program, into an adaptive result checker

which is of the same e�ciency as the original result checker. The techniques of [13, Ben

Or Goldwasser Kilian Wigderson] [33, Fortnow Rompel Sipser] yield an adaptive result

checker that is slower than the original result checker by a multiplicative factor of O(logn).

In [13, Ben Or Goldwasser Kilian Wigderson], there is a general technique for turning

any k-adaptive result checker into a 2-adaptive result checker. This technique requires an

additional O(k) multiplicative factor in the number of calls made.

Previous to our work, [38, Kaminski] introduced a result checker for integer and poly-

nomial multiplication based on computing the result of the program mod small special

numbers. This result checker trivially works for an adaptive program as well, because

it makes no extra calls to the program. Independently of our work, [2, Adleman Huang

Kompella] describe a result checker for multiplication in the same spirit but di�erent than

[38, Kaminski] which also makes no calls to the program. Also previous to our work, [34,

Freivalds] introduced a result checker for matrix multiplication which does not call the
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program.

7.2 Private/Adaptive Checker

We �rst show how to construct a di�erent and e�cient result checker that is both adaptive

and private for any function that has the linearity property. The result checker is an

adaptation of the self-testing/correcting pair using the method based on linearity given in

Chapter 3.

Theorem 17 Any function which is computable by random homomorphisms has e�-

cient and di�erent 2-adaptive and (k; L)-private/adaptive result checkers, for constant

k = maxf4; c

1

+ 1g, where L(x) = G (G is the underlying group).

Proof: [of Theorem 17 (idea)] [13, Ben-Or Goldwasser Kilian Wigderson] [33, Fortnow

Rompel Sipser] show how to transform any result checker into a 2-adaptive result checker

by simply running the original result checking protocol with the �rst program. If the

original result checker would have accepted, a random question asked of the �rst program

is chosen, and is also asked of the second program. If the second program gives the same

answer as the �rst program, then the adaptive result checker returns \PASS". Otherwise,

if the original result checker would have returned \FAIL", or if the second program answers

di�erently than the �rst, the adaptive result checker returns \FAIL". An adaptation of

the algorithm for self-testing/correcting based on linearity in Chapter 3 combined with

the technique of [Fortnow Rompel Sipser] proves Theorem 2: The idea is that since every

veri�cation made by the checker involves program calls made on inputs that are uniformly

distributed, though not independent from each other, each call can be made to a di�erent

program. Thus, each program sees a uniformly distributed input which is independent

from the input being checked. Of these calls, one is chosen at random and asked of yet

another program to verify that the same answer is given.

Some examples of programs that can be checked using this method are:

Problem #Progs. L Without P Total

Mod Mult. f(x; y; R) = x � y mod R 6 jxj; jyj; R n M(n)

Mod f(x;R) = x mod R 4 R n M(n)

Integer Div. f(x;R) = (x div R; x mod R) 4 jxj; R n M(n)

Mod Exp.,� f(x; y; R) = x

y

mod R 5 x; jyj; R n M(n)

When applied to checkers based on bootstrap self-testing, this method causes a slow-

down by an O(logn) multiplicative factor. We give the following e�cient way of con-

structing a private-adaptive checker from checkers that are based on bootstrap self-testing

as described in Chapter 3.

Algorithm:
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The algorithm is designed to run asking questions of programs P

1

; : : : ; P

c

1

running on

non-communicating machines. We describe the algorithm as if the questions are asked and

immediately answered. However, the actual order of the questions is as follows: Let Q

i

be

the set of questions asked of P

i

. The questions in Q

i

are asked in a randomly permuted

order, and then the veri�cations are done once all of the answers have been given. This

can be done because none of the questions asked depend on results of previous questions.

We make the convention that if any call to one of the subroutines returns \FAIL" then

the entire result checker program outputs \FAIL" and halts immediately.

The inputs to the private-adaptive result checker are n 2 N , x 2 I

n

.

Program Private-Adaptive Check(l; x; �)

N  O(c ln(1=�))

Do for m = 1; : : : ; N

For i = 1; : : : ; l, call Private-Adaptive Gen Rec ST(i)

answer =Private-Adaptive Gen SC(l; x̂)

Output (answer,\PASS")

Subroutine Private-Adaptive Gen Rec ST(n)

Choose x 2

U

I

n

If n = 1 then:

Compute f(x) directly

If 9i; 1 � i � c

2

; such that f(x) 6= P

i

(x) then output \FAIL" and halt

Else n > 1 then:

Randomly generate a

1

; : : : ; a

c

2

from x

For k = 1; : : : ; c

2

y

k

 Private-Adaptive Gen SC(n� 1; a

k

;

1

16c

2

2

)

If 9i; 1 � i � c

2

; such that F

smaller

(x; a

1

; : : : ; a

c

2

; y

1

; : : : ; y

c

2

) 6= P

i

(x)(�)

then output \FAIL" and halt.

Subroutine Private-Adaptive Gen SC(n; x; �)

Randomly generate a

1

; : : : ; a

c

1

based on x

For i = 1; : : : ; c

1

, �

i

 P

i

(a

i

)(��)

answer  F

random

(x; a

1

; : : : ; a

c

1

; �

1

; : : : ; �

c

1

)

Output answer

This result checker uses the method of self-testing based on bootstrapping described

in Chapter 3, which tests the program on successively larger ranges, bootstrapping on the
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fact that the smaller ranges have already been tested. Since testing has no meaning for

an adaptive program, the proofs given in Chapter 3 do not work in this setting. In fact,

a naive implementation of the bootstrap protocol described in Chapter 3 can be fooled

by c

1

adaptive programs, because the adaptive program can �gure out where the result

checker is in the computation by the questions asked of it, and lie accordingly. The above

protocol overcomes this by asking the questions on each machine in a random order. Using

the techniques of [13, Ben Or Goldwasser Kilian Wigderson], one can simply transform

the bootstrap result checker into a 2-adaptive result checker, with an additional cost of

O(logn) multiplicative overhead in the running time over the original result checker. On

the other hand, the adaptive result checker presented here is as e�cient as the original

bootstrap result checker.

Theorem 18 Any function which is computable by random inputs and computable by

smaller inputs has a di�erent and T (x)-e�cient (c

1

; L)-private/adaptive result checker,

where T (x) = L(x) is the size of x.

Proof: [of Theorem 18] The intuition behind why this result checker works in the adap-

tive setting is that the questions are being sent to c

1

adaptive programs in such a way

that the programs do not know whether the question was generated at random in line

(*) of Private-Adaptive Gen Recursive ST or whether the question was generated at ran-

dom in line (**) of Private-Adaptive Gen SC. We show that this is enough to get a c

1

-

adaptive result checker. Let m be the total number of questions asked to program P

i

and

let q

1

; : : : ; q

m

be the questions asked of P

i

. Each program receives a random permuta-

tion of the questions (q

1

; q

2

; : : : ; q

m

). One can easily verify that the distribution of the

questions is the same for all inputs of the same size, showing that the result checker is

(c

1

; L)-private. One can also easily verify that q

1

; : : : ; q

m

are independently and uniformly

distributed (but not identically distributed, there are a subset of questions that are uni-

formly distributed in I

r

for each r = 1; : : : ; l.) Some of the questions are generated in

Private-Adaptive Gen Recursive ST, and some of the questions are generated in Private-

Adaptive Gen SC in order to verify the questions in Private-Adaptive Gen Recursive ST.

Notice that the questions asked in Private-Adaptive Gen Recursive ST are veri�ed by

computing them from questions that are of a smaller size. Let r be the smallest sized ques-

tion on which any program errs and let P

i

be a program that errs on an input of size r. Since

the questions are asked in a randomly permuted order, with probability p where 1=(c

2

+

2) � p � 1=(c

2

+ 1), the question was generated in Private-Adaptive Gen Recursive ST

rather than Private-Adaptive Gen SC. This is because Private-Adaptive Gen Recursive ST

only makes one call to P

i

on inputs of size r, whereas Private-Adaptive Gen SC is called

c

2

times on inputs of size r (c

2

+ 1 times on inputs of size l) and makes one call to P

i

on

an input of size r each time that it is called. The program P

i

cannot tell which subroutine

generated the questions of size r because they are asked in a random order. If P

i

errs

on a question generated by Private-Adaptive Gen Recursive ST, then if r > 1, since the

question is being veri�ed with smaller inputs, all of which are correct (by choice of r), the

92



mistake is caught. Otherwise, if r = 1, the question is being veri�ed by computation done

by the result checker, and the mistake is caught.

To decrease the probability of error to � �, run the protocol O(log 1=�) times sequen-

tially. If answer is always the same, output answer, otherwise output \FAIL".

This outline can be used to develop di�erent and e�cient adaptive and private result

checker for the following problems:

Problem #Progs. L Without P Total

Int. Mult. 4 jxj; jyj n M(n)

Poly. Mult. 4 deg(p); deg(q) n M(n)

Mod Exp., no � 5 jxj; jyj; R n ln

4

n M(n) ln

3

n

Matrix Mult. 4 n n M(n)

Using the method of [13, Ben Or Goldwasser Kilian Wigderson], one can convert all

of the above adaptive result checkers into 2-adaptive result checkers. However, the stated

privacy constraints will no longer be satis�ed.

7.3 Open Questions

By the results of [33, Fortnow Rompel Sipser], any checker can be converted into a 2-

adaptive result checker. A question that arises naturally is whether a result checker can

in general be converted into a 1-adaptive result checker, as opposed to 2-adaptive. Since

there is a complete language in EXPTIME that has a result checker [8, Babai Fortnow

Lund], there is no general technique that converts any result checker into a 1-adaptive

result checker unless EXPTIME=PSPACE. To see this, suppose there is such a general

technique and consider the result checker for the complete language in EXPTIME. Now,

because we can supposedly convert this result checker into a 1-adaptive result checker,

there is an interactive proof for the language. Then by the result of [29, Feldman] the

language must be in PSPACE.

Since there is probably no general technique for converting a result checker into a

1-adaptive result checker, it would be interesting to charactize which problems do have

adaptive result checkers.

Another interesting question is under what conditions on L it is true that a (1; L)-

private result checker is always a 1-adaptive result checker?

[33, Fortnow Rompel Sipser] have shown a technique by which any result checker can

be made into a 2-adaptive result checker. Is there a more e�cient technique which does

the same thing?
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Chapter 8

Batch Result Checking

Though many programmers are willing to spend some time overhead in order to verify

that their programs give correct answers, for some applications, where e�ciency is crucial,

even a constant multiplicative time overhead makes result checking undesirable. In this

chapter, we de�ne a variant model of result checking, called batch result checking: Often

greater e�ciency can be achieved if the user does not need to know immediately whether

the program gives the correct result. In this case, the result checker can wait until the

program has been called on several inputs and check that the program is correct on all

of the inputs at once. Batch result checking can allow greater e�ciency, and we give

examples of functions for which batch result checking allows one to reduce the overhead

of the result checking process to the point where it is arbitrarily small.

A batch result checker is a result checker that checks that the program is correct on

several inputs at once, and outputs \FAIL" if the program is incorrect on any of the inputs:

Definition 8.0.1 (probabilistic batch program result checker) A probabilistic batch pro-

gram result checker for f is a probabilistic oracle program R

f

which is used to verify, for

any program P that supposedly evaluates f , that P outputs the correct answer on several

given inputs in the following sense. On given inputs x

1

; : : : ; x

m

and con�dence parameter

�, R

P

f

has the following properties:

1. If 9i such that P (x

i

) 6= f(x

i

) then R

p

f

outputs \FAIL" (with probability � 1� �).

2. If P is a correct program for every input then R

p

f

outputs \PASS" (with probability

� 1� �).

Often a batch result checker can be made more e�cient. For example, recall that a

self-testing/correcting pair can be used to construct a result checker: use the self-tester to

test the program. If the program fails the test, output \FAIL" and halt, and if the program
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passes, use the self-corrector to compute the correct result for the input being checked with

high con�dence, and compare the \correct" result to the output of the program on that

input. Suppose the self-tester requires total time T , and the self-corrector requires total

time S, then the incremental time is T + S. To check m inputs, rather than running the

result checker m times, for a total running time of m(T + S), the tester need only be run

once, giving a total running time of T + mS. Since T time is usually much larger than

S (for example, the self-tester for the mod function makes several hundred calls to the

program while the self-corrector makes fewer than 20), this savings can be quite signi�cant.

However, the following technique can be used to reduce the multiplicative overhead to

arbitrarily close to 1 for any function with the linearity property (for de�nition see page 31).

We present the speci�c batch result checker that results from applying the technique to

the mod R function. The technique is based on the idea of Freivalds [34, Freivalds] used

in the result checker for matrix multiplication (see Section 2.2.2, page 14). Freivalds' idea

was also used in a similar setting by [30, Fiat Naor] where many modular exponentiation

computations are veri�ed by doing very few modular exponentiation computations.

Program Mod Function Batch Checker(n;R; x

1

; : : : ; x

m

; �)

For i = 1; :::; O(log(1=�)) do:

Randomly generate m-bit 0=1 vector �

sumin 0

sumout 0

For i = 1; :::; m do

sumin sumin+

R2

n
�

i

� x

i

sumout sumout +

R

�

i

� P (x

i

)

Verify that sumout = P (sumin)

Call Mod Result Checker(sumin; 1=4)

If veri�cation fails or checker returns \FAIL" then

output \FAIL" and stop.

Output \PASS".

Proof: [of correctness of batch checker] Since the modR function is linear, f(

P

R2

n

�

i

x

i

) =

P

R

�

i

f(x

i

). Thus, if P is always correct, the checker outputs \PASS". If there is an

i 2 [1 : : :m] such that P (x

i

) 6= f(x

i

), then with probability at most 1=2,

P

R

�

i

P (x

i

) =

P

R

�

i

f(x

i

). Suppose

P

R

�

i

P (x

i

) 6=

P

R

�

i

f(x

i

). If the veri�cation that sumout =

P (sumin) passes (

P

R

�

i

P (x

i

) 6= P (

P

R2

n

�

i

x

i

)), we know that

P (

P

R2

n

�

i

x

i

) 6= f(

P

R2

n

�

i

x

i

). Then the call toMod Result Checker passes with prob-

ability at most 1=4. Thus the batch checker outputs \FAIL" with probability at least 1=4

after one iteration. The proof follows from Proposition 1.

Let T (n) be the running time of P on inputs of size n. From the self-testing/correcting

pair for the mod function, a result checker for the mod function can be designed such that
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Mod Result Checker requires at most c �T (n) total time for constant c. The total work

done by the batch checker is (c+m)T (n) + O(n �m). Since the program is called on all

of the m x

i

's regardless of whether any result checking is done, the multiplicative running

time overhead required by batch result checking is less than 1 +

c+1

m

.
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Chapter 9

Conclusions

We have presented a framework and given several techniques for writing self-testing/correcting

programs. We have extended the result checking model to apply to several di�erent set-

tings, including parallel programs and programs that are adaptive. It is now of interest to

characterize the problems that have program result checkers, self-testers and self-correctors

in each of these settings.

We stress that since a program result checker for a function can easily be converted

into a self-tester for that function, and since many types of functions have program result

checkers, functions that have self-testers do not necessarily have any special structure.

However, the same cannot be said for functions that have self-correctors: All of the known

self-correctors rely on the property of random self-reducibility. This motivates the study

of which functions are random self-reducible. The de�nition of random self-reducibility

given in Chapter 3 di�ers from the standard de�nition (see for example [28, Feigenbaum

Kannan Nisan]) in that it requires the reduction to be faster than any program for the

original function, whereas the latter only requires that the reduction be in polynomial

time. For the purposes of this discussion, we refer to the latter notion of random self-

reducibility as polynomial time random self-reducibility. [28, Feigenbaum Kannan Nisan]

have shown that random boolean functions are not polynomial time random self-reducible,

and that if a function is polynomial time 2-random self-reducible (for de�nition see [28]),

then the function can be computed nonuniformly in nondeterministic polynomial time. No

such results are known for random self-reducibility, because for random self-reducibility

the only requirement is that the computation of the random self-reduction be faster than

the computation of the function itself. Thus for functions that do not have polynomial

time algorithms, it is possible there might be a random self-reduction that is faster than

computing the function, but not polynomial time. The notion of random self-reducibility

is also related to private result checking because it is possible to privately compute random

self-reducible functions. On the other hand, it would be interesting to �nd new classes of

functions which are random self-reducible. We have seen that a large class of functions that
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have the linearity property or compute polynomial functions are random self-reducible. Is

it possible to determine whether or not sorting is random self-reducible?

Some inroads have been made in the study of which functions do not have polynomial

time result checkers. Yao [66] has shown that there are functions in DSPACE(2

n

logn

) that

do not have polynomial time result checkers. Beigel and Feigenbaum [11], later improved

upon this to show that there is a function in DSPACE(n

log

�

n

) that has no polynomial

time result checker and is not polynomial time random self-reducible. They also show

that if NEEEXPTIME is not a subset of BPEEEXPTIME (EEEXPTIME is the

union, over all polynomials p, of DTIME(2

2

2

p(n)

)), then there is a set in NP that has no

polynomial time result checker and is not polynomial time random self-reducible. Since

there is a complete problem in EXPTIME that has a polynomial time checker [8, Babai

Fortnow Lund], there is no correlation between the complexity of computing a function

and the complexity of result checking the function. It has not been determined whether or

not it is possible to have a polynomial time result checker for complete problems in many

other complexity classes; most notably it is not known whether there are polynomial time

result checkers for NP -complete problems.

1

Result checkers, self-testers/correctors have been written for many types of problems:

numerical, graph theoretic, algebraic. However, since this approach to program correctness

is relatively new, general techniques must be developed in order to write result checkers,

self-testers/correctors for new problems, and to improve the existing ones.

We mention some areas that deserve special attention: One new area is that of data-

structure checking as introduced in [16, Blum Evans Gemmell Kannan Naor]. They study

result checkers for database problems, and for programs that manipulate simple data

structures such as stacks. A second important area is that of problems dealing with

real numbers. Because computers have �nite precision, much of the problem with such

programs is to determine what their speci�cations should be. This is not an issue that

is addressed by program result checking, however many interesting problems remain once

the speci�cations have been determined. It would be interesting to see if any of the

existing techniques in Chapter 4 can be applied to such problems and if new techniques

can be developed. A third area is that of cryptographic protocols. Some initial results

about result checking/self-testing/correcting with respect to cryptographic multi-party

protocols are given in [51, Micali Rubinfeld].

1

If one shows a polynomial time result checker for any NP -complete problem, a polynomial time result

checker for any other NP -complete problem can be constructed using Beigel's theorem [15, Blum].
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