Sublinear time algorithms II

Ronitt Rubinfeld

MIT

FODSI Summer School August 2022

Plan

- Yesterday:
 - Diameter of point set
 - Estimate the degree of a graph
 - Estimate the number of connected components of a graph
 - Estimate Minimum Spanning Tree weight
- Today:
 - Sublinear algorithms from distributed algorithms
 - Sublinear algorithms from greedy algorithms
 - Property testing -- monotonicity

More specific plan

- Oracle reduction framework
- Implementing the oracle via simulating parallel algorithms in sublinear time
- Implementing the oracle via simulating greedy algorithms in sublinear time
- Property testing -- monotonicity

The oracle reduction framework [Parnas Ron]

Example problem: Vertex Cover

- Given graph G(V,E), a vertex cover (VC) C is a subset of V such that it "touches" every edge.
- What is minimum size of a vertex cover?
 - NP-complete
 - Poly time multiplicative 2-approximation based on relationship of VC and maximal matching

Approximation for VC

- Multiplicative?
 - VC of graph with no edges vs. graph with 1 edge
- Additive?
 - Need to allow some multiplicative error: Computationally hard to approximate to better than 1.36 factor
- Combination?
 - Def. y' is (α, ϵ) -estimate of y if $y \le y' \le \alpha \cdot y + \epsilon \cdot n$ Good for minimization problems

Vertex cover approximation

• Can get CONSTANT TIME (α, ϵ)-estimate for vertex cover on sparse graphs!

How?

- Oracle reduction framework [Parnas Ron]
 - Construct "oracle" that tells you if node u in 2-approx vertex cover
 - Use oracle + standard sampling to estimate size of cover

But how do you implement the oracle?

Implementing the oracle – two approaches:

- Sequentially simulate computations of a fast distributed algorithm [Parnas Ron]
- Figure out what greedy maximal matching algorithm would do on *u* [Nguyen Onak]

Constructing oracles via distributed algorithms

Distributed Algorithms: LOCAL model (simple version)

- Network
 - Processors
 - Links
 - (assume maximum degree is known to all)
- Communication round
 - Each node sends message to each neighbor
- Vertex Cover Problem:
 - Network graph = input graph
 - After k rounds, each node knows if it is in VC

LOCAL distributed algorithms give sublinear algorithms for oracles [Parnas Ron]

- If there is a *k* round distributed algorithm for VC, then:
 - v's output depends only on inputs (unique IDs, neighbors, randomness) and computations of k-radius ball around v
 - Sequentially read/simulate in Δ^k probes!
- How big is k?

How fast are distributed algorithms?

- Vertex cover: $O\left(\left(\frac{d}{\epsilon}\right)^{O(\log d/\epsilon)}\right)$ sequential time via [Kuhn Moscibroda Wattenhoffer]
- Lots and lots of very fast distributed algorithms!
 - Packing and covering problems, matching, maximal independent set, coloring,...

Oracle reduction framework via simulating distributed algorithms

Thm [Parnas Ron]: *t*-round distributed algorithm for vertex cover yields $d_{max}^{O(t)}$ sequential query approximation algorithm for vertex cover.

Estimation idea:

Sample vertices of graph For each sampled vertex *v*, simulate distributed algorithm to see if *v* is in VC Output (fraction in VC) ∩

Constructing Oracles via simulating greedy

Vertex Cover and Maximal Matching

- Maximal Matching:
 - $M \subseteq E$ is a matching if no node in in more than one edge.
 - M is a maximal matching if adding any edge violates the matching property

• Classic result: nodes of M are a pretty good Vertex Cover!

(i.e., no more than twice value of optimal \rightarrow Maximal matching gives good enough approximation)

Greedy algorithm for maximal matching

- Why is M maximal?
 - If (u,v) not in M then either u or v already matched by earlier edge

Why can local algorithms hope to simulate behavior of greedy?

• Easy case: If edge has smaller rank than all neighboring edges, greedy will put it into matching

Implementing the Oracle via Greedy

- To decide if edge e in matching:
 - Must know if adjacent edges that come *before* e in the ordering are in the matching
 - Do not need to know anything about edges coming *after*

Breaking long dependency chains [Nguyen Onak]

- Assign random ranks (ordering) to edges
 - Greedy works under any ordering
 - Important fact: random order has short dependency chains

Implementing oracle *O* [Nguyen Onak]

- Preprocessing:
 - assign random number $r_e \in [0,1]$ to each $e \in E$
- Oracle implementation:
 - Input: edge $e \in E$,
 - Output: is e in M?
 - Algorithm:
 - Find all the adjacent edges of e, e' \in E, such that $r_{e'} < r_e$
 - Recursively check if any in *M*
 - If any in the matching, output NO
 - If none are in the matching, output YES

Example Run *O*

Correctness

- This algorithm simulates run of classical greedy algorithm
 - Greedy works under any ordering of edges
- Outputs estimate t such that MM(G) ≤ t ≤ MM(G) + εn where MM(G) is size of some maximal matching

Complexity

- Claim: Expected number queries to graph per oracle query is 2^{O(d)}
 - Total complexity is $2^{O(d)} / \epsilon^2$
 - Main idea:
 - Bound probability a path of length k explored:
 - Ranks must decrease along the path
 - So probability $\leq 1/(k)!$

Complexity

- Claim: Expected number queries to graph per oracle query is 2^{O(d)}
- Proof:
 - Pr[given path of length k explored] $\leq 1/(k)!$
 - Number of neighbors at distance $\mathsf{k} \leq \mathsf{d}^\mathsf{k}$
 - E[Number of nbrs explored at dist k] $\leq d^{k}/(k)$!

 $= 2^{O(d)}$

- E[number of explored nodes] $\leq \sum_{k=0}^{\infty} d^k/(k)! \leq e^d/d$
- E[query complexity] = O(d) e^d/d

Better Complexity for VC

- Always recurse on least ranked edge first
 - Heuristic suggested by [Nguyen Onak]
 - Yields time nearly linear in degree [Yoshida Yamamoto Ito][Onak Ron Rosen R.] [Behnezhad]

Further work

 More complicated arguments for maximum matching, set cover, positive LP... (and lots more)

Can dependence be made poly in average

degree?

- Even better results for some of these problems on hyperfinite graphs [Hassidim Kelner Nguyen Onak][Newman Sohler][Levi Ron]
 - e.g., planar

Property testing

Main Goal:

 Quickly distinguish inputs that have specific property from those that are far from having the property

Property Testing

- Properties of any object, e.g.,
 - Functions
 - Graphs
 - Strings
 - Matrices
 - Codewords
- Model must specify
 - representation of object and allowable queries
 - notion of close/far, e.g.,
 - number of bits/words that need to be changed
 - edit distance

A simple property tester

Sortedness of a sequence

- Given: list $y_1 y_2 \dots y_n$
- Question: is the list sorted?
- Clearly requires n steps must look at each y_i

Sortedness of a sequence

- Given: list $y_1 y_2 \dots y_n$
- Question: can we quickly test if the list close to sorted?

What do we mean by ``quick''?

- query complexity measured in terms of list size *n*
- Our goal (if possible):
 - Very small compared to n, will go for clog n

What do we mean by "close"?

Definition: a list of size *n* is ε -close to sorted if can delete at most εn values to make it sorted. Otherwise, ε -far.

(ϵ is given as input, e.g., ϵ =1/5)

 Sorted:
 1
 2
 4
 5
 7
 11
 14
 19
 20
 21
 23
 38
 39
 45

 Close:
 1
 4
 2
 5
 7
 11
 14
 19
 20
 39
 23
 21
 38
 45

 1
 4
 5
 7
 11
 14
 19
 20
 39
 23
 21
 38
 45

 Far:
 45
 39
 23
 1
 38
 4
 5
 21
 20
 19
 2
 7
 11
 14

 1
 4
 5
 21
 20
 19
 2
 7
 11
 14

 1
 4
 5
 7
 11
 14
 5
 7
 11
 14

Requirements for algorithm:

• Pass sorted lists

What if list not sorted, but not far?

- Fail lists that are $\epsilon\text{-far.}$
 - Equivalently: if list likely to pass test, can change at most ϵ fraction of list to make it sorted

Probability of success > 3/4

(can boost it arbitrarily high by repeating several times and outputting "fail" if ever see a "fail", "pass" otherwise)

• Can test in $O(1/\epsilon \log n)$ time

(and can't do any better!)

An attempt:

- Proposed algorithm:
 - Pick random *i* and test that $y_i \le y_{i+1}$
- Bad input type:
 - 1,2,3,4,5,...n/4, 1,2,....n/4, 1,2,....n/4, 1,2,....,n/4
 - Difficult for this algorithm to find "breakpoint"
 - But other tests work well...

A second attempt:

- Proposed algorithm:
 - Pick random *i*<*j* and test that *y_i*≤*y_i*
- Bad input type:
 - n/4 groups of 4 decreasing elements

4,3, 2, 1,8,7,6,5,12,11,10,9...,4k, 4k-1,4k-2,4k-3,...

- Largest monotone sequence is n/4
- must pick *i*,*j* in same group to see problem
- need $\Omega(n^{1/2})$ samples

A minor simplification:

- Assume list is distinct (i.e. $x_i \neq x_j$)
- Claim: this is not really easier
 - Why?

Can "virtually" append *i* to each x_i $x_1, x_2, ..., x_n \rightarrow (x_1, 1), (x_2, 2), ..., (x_n, n)$ *e.g.*, 1,1,2,6,6 $\rightarrow (1,1), (1,2), (2,3), (6,4), (6,5)$ Broaks tios without changing order

Breaks ties without changing order

A test that works

- The test:
 - Test O($1/\epsilon$) times:
 - Pick random i
 - Look at value of y_i
 - Do binary search for y_i
 - Does the binary search find any inconsistencies? If yes, FAIL
 - Do we end up at location i? If not FAIL

Pass if never failed

- Running time: $O(\epsilon^{-1} \log n)$ time
- Why does this work?

Behavior of the test:

- Define index *i* to be good if binary search for y_i successful
- $O(1/\epsilon \log n)$ time test (restated):
 - pick $O(1/\epsilon)$ i's and pass if they are all good
- Correctness:
 - If list is sorted, then all i's good (uses distinctness) → test always passes
 - If list likely to pass test, then at least $(1-\varepsilon)n$ i's are good.
 - Main observation: good elements form increasing sequence
 - Proof: for i<j both good need to show $y_i < y_j$
 - let k = least common ancestor of i,j
 - Search for i went left of k and search for j went right of k → y_i < y_k < y_i
 - Thus list is ε -close to monotone (delete < εn bad elements)

In closing

- These examples are just the tip of the iceberg
- Lots of cool results in the workshop this week!

Thank you