
Sublinear time algorithms II
Ronitt Rubinfeld

MIT

FODSI Summer School August 2022

Plan

• Yesterday:
• Diameter of point set
• Estimate the degree of a graph
• Estimate the number of connected components of a graph
• Estimate Minimum Spanning Tree weight

• Today:
• Sublinear algorithms from distributed algorithms
• Sublinear algorithms from greedy algorithms
• Property testing -- monotonicity

More specific plan

• Oracle reduction framework
• Implementing the oracle via simulating parallel algorithms in sublinear time
• Implementing the oracle via simulating greedy algorithms in sublinear time
• Property testing -- monotonicity

The oracle reduction framework
[Parnas Ron]

• Given graph G(V,E), a vertex cover (VC) C is a subset of V such that it “touches”
every edge.

• What is minimum size of a vertex cover?
• NP-complete
• Poly time multiplicative 2-approximation based on relationship of VC and

maximal matching

Example problem: Vertex Cover

Approximation for VC
• Multiplicative?

• VC of graph with no edges vs. graph with 1 edge

• Additive?
• Need to allow some multiplicative error: Computationally hard

to approximate to better than 1.36 factor

• Combination?
• Def. y’ is (𝛼𝛼, 𝜖𝜖)-estimate of y if

𝑦𝑦 ≤ 𝑦𝑦′ ≤ 𝛼𝛼 ⋅ 𝑦𝑦 + 𝜖𝜖 ⋅ 𝑛𝑛
Good for minimization problems

Vertex cover approximation
• Can get CONSTANT TIME (𝛼𝛼, 𝜖𝜖)-estimate for vertex cover

on sparse graphs!

How?
• Oracle reduction framework [Parnas Ron]

• Construct “oracle” that tells you if node u in 2-approx vertex
cover

• Use oracle + standard sampling to estimate size of cover

But how do you implement the oracle?

Def. y’ is (𝛼𝛼, 𝜖𝜖)-estimate of y
if 𝑦𝑦 ≤ 𝑦𝑦′ ≤ 𝛼𝛼 ⋅ 𝑦𝑦 + 𝜖𝜖 ⋅ 𝑛𝑛

Implementing the oracle – two approaches:

• Sequentially simulate computations of a fast distributed algorithm
[Parnas Ron]

• Figure out what greedy maximal matching algorithm would do on
u [Nguyen Onak]

Constructing oracles via distributed
algorithms

Distributed Algorithms: LOCAL model (simple
version)

• Network
• Processors
• Links
• (assume maximum degree is known to all)

• Communication round
• Each node sends message to each neighbor

• Vertex Cover Problem:
• Network graph = input graph
• After k rounds, each node knows if it is in VC

LOCAL distributed algorithms give
sublinear algorithms for oracles

[Parnas Ron]

• If there is a k round distributed algorithm
for VC, then:

• v’s output depends only on inputs
(unique IDs, neighbors, randomness)
and computations of k-radius ball
around v

• Sequentially read/simulate in Δk

probes!

• How big is k? Big Graph

k –radius ball around v

v

How fast are distributed algorithms?

• Vertex cover: 𝑂𝑂 𝑑𝑑
𝜖𝜖

𝑂𝑂(log 𝑑𝑑/𝜖𝜖)
sequential time via [Kuhn Moscibroda

Wattenhoffer]

• Lots and lots of very fast distributed algorithms!
• Packing and covering problems, matching, maximal independent set,

coloring,…

Oracle reduction framework via simulating
distributed algorithms

Thm [Parnas Ron]: t-round distributed algorithm for vertex
cover yields dmax

O(t) sequential query approximation
algorithm for vertex cover.

Bounded degree graph G

Estimation idea:
Sample vertices of graph
For each sampled vertex v,

simulate distributed algorithm to see
if v is in VC

Output (fraction in VC)⋅n

Constructing Oracles via simulating greedy

Vertex Cover and Maximal Matching

• Maximal Matching:
• M ⊆ E is a matching if no node in in more than one edge.
• M is a maximal matching if adding any edge violates the matching property

• Classic result: nodes of M are a pretty good Vertex Cover!
(i.e., no more than twice value of optimal Maximal matching gives good
enough approximation)

Greedy algorithm for maximal matching

• Sequential Greedy Algorithm:
• 𝑀𝑀 ← ∅
• For every edge (u,v)

• If neither of u or v matched
• Add (u,v) to M

• Output M

• Why is M maximal?
• If (u,v) not in M then either u or v already matched by earlier edge

Which order?

Rank!

• Easy case: If edge has smaller rank than all neighboring edges, greedy will put it
into matching

Why can local algorithms hope to simulate
behavior of greedy?

Implementing the Oracle via Greedy

• To decide if edge e in matching:
• Must know if adjacent edges that come before e in the ordering are in the

matching
• Do not need to know anything about edges coming after

• Arbitrary edge order can have long dependency chains! Odd or even
steps from
beginning?

1 2 4 8 25 36 47 88 89 110 111 112 113

Breaking long dependency chains
[Nguyen Onak]

• Assign random ranks (ordering) to edges
• Greedy works under any ordering
• Important fact: random order has short dependency chains

Implementing oracle 𝓞𝓞
[Nguyen Onak]

• Preprocessing:
• assign random number re∊[0,1] to each e∊E

• Oracle implementation:
• Input: edge e∊E,
• Output: is e in M?
• Algorithm:

• Find all the adjacent edges of e, e’∊E, such that re’ < re
• Recursively check if any in M

• If any in the matching, output NO
• If none are in the matching, output YES

Example Run 𝓞𝓞

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Example Run 𝓞𝓞 (cont.)

Correctness

• This algorithm simulates run of classical greedy algorithm
• Greedy works under any ordering of edges

• Outputs estimate t such that
𝑀𝑀𝑀𝑀 𝐺𝐺 ≤ 𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀 𝐺𝐺 + 𝜖𝜖𝜖𝜖

where MM(G) is size of some maximal matching

Complexity

• Claim: Expected number queries to graph per oracle query is 2O(d)

• Total complexity is 2𝑂𝑂 𝑑𝑑 /𝜖𝜖2

• Main idea:
• Bound probability a path of length k explored:

• Ranks must decrease along the path
• So probability ≤1/(k)!

Complexity
• Claim: Expected number queries to graph per oracle query is 2O(d)

• Proof:
• Pr[given path of length k explored] ≤ 1/(k)!
• Number of neighbors at distance k ≤ dk

• E[Number of nbrs explored at dist k] ≤ dk/(k)!
• E[number of explored nodes] ≤ ∑ k=0

∞ dk/(k)!≤ ed/d
• E[query complexity] = O(d) ed/d

= 2O(d)

Better Complexity for VC

• Always recurse on least ranked edge first
• Heuristic suggested by [Nguyen Onak]
• Yields time nearly linear in degree [Yoshida Yamamoto Ito][Onak Ron Rosen R.]

[Behnezhad]

Further work

• More complicated arguments for maximum matching, set cover, positive LP…
(and lots more)

• Even better results for some of these problems on hyperfinite graphs [Hassidim
Kelner Nguyen Onak][Newman Sohler][Levi Ron]

• e.g., planar

Can dependence be
made poly in average

degree?

Property testing

• Quickly distinguish inputs that have specific
property from those that are far from having the
property

• Benefits:
• natural question
• just as good when data constantly changing
• fast sanity check:

• rule out “bad” inputs (i.e., restaurant bills)
• when is expensive processing worthwhile?

• Machine learning: Model selection problem

Main Goal:

all inputs

inputs with
the property

close to having
property

Property Testing

• Properties of any object, e.g.,
• Functions
• Graphs
• Strings
• Matrices
• Codewords

• Model must specify
• representation of object and allowable queries
• notion of close/far, e.g.,

• number of bits/words that need to be changed
• edit distance

A simple property tester

Sortedness of a sequence

• Given: list y1 y2 ... yn

• Question: is the list sorted?

• Clearly requires n steps – must look at each yi

Sortedness of a sequence

• Given: list y1 y2 ... yn

• Question: can we quickly test if the list close to sorted?

What do we mean by ``quick’’?

• query complexity measured in terms of list size n

• Our goal (if possible):
• Very small compared to n, will go for clog n

What do we mean by “close’’?

Definition: a list of size n is ε-close to sorted if can
delete at most εn values to make it sorted.
Otherwise, ε-far.

(ε is given as input, e.g., ε=1/5)

Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45
Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45

1 4 5 7 11 14 19 20 23 38 45
Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14

1 4 5 7 11 14

Requirements for algorithm:

• Pass sorted lists
• Fail lists that are ε-far.

• Equivalently: if list likely to pass test, can change at most ε fraction of list to
make it sorted

Probability of success > ¾
(can boost it arbitrarily high by repeating several times and outputting “fail” if ever see a “fail”,

“pass” otherwise)

• Can test in O(1/ε log n) time
(and can’t do any better!)

What if list not sorted, but not
far?

An attempt:
• Proposed algorithm:

• Pick random i and test that yi≤yi+1

• Bad input type:
• 1,2,3,4,5,…n/4, 1,2,….n/4, 1,2,…n/4, 1,2,…,n/4
• Difficult for this algorithm to find “breakpoint”
• But other tests work well…

i

yi

A second attempt:
• Proposed algorithm:

• Pick random i<j and test that yi≤yj

• Bad input type:
• n/4 groups of 4 decreasing elements

4,3, 2, 1,8,7,6,5,12,11,10,9…,4k, 4k-1,4k-2,4k-3,…
• Largest monotone sequence is n/4
• must pick i,j in same group to see problem
• need Ω(n1/2) samples

i

yi

A minor simplification:

• Assume list is distinct (i.e. xi ≠ xj)

• Claim: this is not really easier
• Why?

Can “virtually” append i to each xi
x1,x2,…xn (x1,1), (x2,2),…,(xn,n)
e.g., 1,1,2,6,6  (1,1),(1,2),(2,3),(6,4),(6,5)

Breaks ties without changing order

A test that works
• The test:

Test O(1/ε) times:
• Pick random i
• Look at value of yi
• Do binary search for yi
• Does the binary search find any inconsistencies? If yes,

FAIL
• Do we end up at location i? If not FAIL

Pass if never failed

• Running time: O(ε-1 log n) time
• Why does this work?

Behavior of the test:
• Define index i to be good if binary search for yi successful
• O(1/ε log n) time test (restated):

• pick O(1/ε) i’s and pass if they are all good
• Correctness:

• If list is sorted, then all i’s good (uses distinctness)  test
always passes

• If list likely to pass test, then at least (1-ε)n i’s are good.
• Main observation: good elements form increasing

sequence
• Proof: for i<j both good need to show yi < yj

• let k = least common ancestor of i,j
• Search for i went left of k and search for j went

right of k  yi < yk <yj
• Thus list is ε-close to monotone (delete < εn bad

elements)

In closing

• These examples are just the tip of the iceberg
• Lots of cool results in the workshop this week!

Thank you

	Sublinear time algorithms II
	Plan
	More specific plan
	The oracle reduction framework�[Parnas Ron]
	Example problem: Vertex Cover
	Approximation for VC
	Vertex cover approximation
	Implementing the oracle – two approaches:
	Constructing oracles via distributed algorithms
	Distributed Algorithms: LOCAL model (simple version)
	LOCAL distributed algorithms give sublinear algorithms for oracles� [Parnas Ron]
	How fast are distributed algorithms?
	Oracle reduction framework via simulating distributed algorithms
	Constructing Oracles via simulating greedy
	Vertex Cover and Maximal Matching
	Greedy algorithm for maximal matching
	Why can local algorithms hope to simulate behavior of greedy?
	Implementing the Oracle via Greedy
	Breaking long dependency chains�[Nguyen Onak]
	Implementing oracle 𝓞�[Nguyen Onak]
	Example Run 𝓞
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Example Run 𝓞 (cont.)
	Correctness
	Complexity
	Complexity
	Better Complexity for VC
	Further work
	Property testing
	Main Goal:
	Property Testing
	A simple property tester�
	Sortedness of a sequence
	Sortedness of a sequence
	What do we mean by ``quick’’?
	What do we mean by “close’’?
	Requirements for algorithm:
	An attempt:
	A second attempt:
	A minor simplification:
	A test that works
	Behavior of the test:
	In closing
	Thank you

