
Decoupled Architectures for Complexity-Effective
General Purpose Processors

Ronny Krashinsky and Mike Sung
Advanced VLSI Computer Architecture (6.893) Term Project

MIT Laboratory for Computer Science, Cambridge, MA 02139
fronny,darkman g@mit.edu

12-12-2000

Abstract

Decoupled architectures have previously been investi-
gated in the context of high performance scientific comput-
ing. For general purpose computing, however, superscalar
processors have proven to be flexible in providing high per-
formance across a wide range of applications. To achieve
this goal, these architectures have incorporated enormous
amounts of complexity to obtain modest performance im-
provements. Looking towards the future, complexity will
be of primary importance, and these inefficient designs will
not be tolerated. This work investigates decoupled archi-
tectures as a complexity-effective means of obtaining high
performance for general purpose workloads. A general
survey of decoupled architectures is presented, as well as
some proposals for incorporating decoupled architectures
into a general purpose computing environment.

1 Introduction

Complexity-effective design is taking on new impor-
tance in modern general purpose architectures. A limi-
tation in these architectures is the cost of accessing large
centralized resources as global communication delays con-
tinue to increase relative to computation delays [1]. This
impacts the scalability of superscalar designs, as they de-
pend on large multi-ported highly-associative structures.
Additionally, with energy consumption playing a major
role in the cost and performance of designs, it is no longer
feasible to greatly increase complexity to obtain diminish-
ing performance gains. However, the evolution of out-of-
order superscalar designs has a tradition of incoporating
unwarranted complexity.

Decoupled architectures have been explored as a more
efficient means of achieving some of the same benefits
as out-of-order superscalar execution. In these architec-

tures, decoupling can provide memory and control latency
hiding, parallel instruction exection, dynamic scheduling,
and efficient resource utilization with a minimal amount of
complexity. Additionally, the decentralized nature of de-
coupled designs makes them inherently scalable.

Due to the increased demands of scaling, superscalar ar-
chitectures are beginning to use more complexity-effective
designs [26]. Some superscalar processors [22] use a clus-
tered organization to simplify issue logic, whereby instruc-
tions are directed to separate clusters with independent reg-
ister files and functional units. Additionally some designs
[18] are incorporating deep queues to decouple instruction
fetch from execution. These designs are being forced to
take on some of the attributes of decoupled architectures
as complexity becomes unmanageable.

More traditional decoupled architectures have primarily
been targeted at scientific codes. In this paper, we investi-
gate the potential of using decoupled architectures for gen-
eral purpose computing. We present a survey of various
decoupled architectures, and follow up with a design pro-
posal for a multithreaded control-decoupled architecture as
a more complexity-effective alternative to superscalars.

Section 2 introduces decoupled access execute architec-
tures, and Section 3 describes extending these designs with
simultaneous multithreading. The addition of decoupled
control flow is presented in Section 4, along with some de-
scription of loss of decoupling events. Section 5 compares
the merits of superscalar and decoupled architectures. Fi-
nally, a proposal for using decoupled architectures for gen-
eral purpose computing is presented in Section 6.

2 Decoupled Access/Execute

The first major investigation of decoupled architectures
was done by James Smith [35, 34] (although, [34] provides
a survey of several similar designs [7, 31, 32, 6]), and led

1



eventually to the Astronautics ZS-1 Processor [12, 33]. In
his preliminary study, Smith introduces the concept of a de-
coupled access/execute (DAE) machine, as shown in Fig-
ure 1. The access processor (AP) and an execute proces-
sor (EP) work on separate instruction streams, communi-
cating data values via queues. In this design, not only is
instruction level parallelism exploited by processing two
instruction streams at the same time, but these decoupled
processing units canslip with respect to each other. This
allows the access processor to run further ahead in the pro-
gram to fetch values from memory, effectively providing
a large amount of memory latency hiding. Smith argues
that this design provides a more complexity-effective way
of obtaining the benefits of dynamic scheduling than the
methods used in designs with more complex issuing meth-
ods (namely, out-of-order superscalars).

In the proposed DAE architecture, the access processor
sends load addresses to memory, and the data is pushed
onto the AEQ when it arrives (if the data is to be used
by the EP). The value(s) at the head of this queue can be
used directly as operands to arithmetic instructions in the
EP which will block if the data is not yet available; this pro-
vides a seamless integration of the architectural queues. In
this way, the slots in the architectural queues take the place
of resource allocation with register renaming used in super-
scalar processors[33, 24]. Store addresses are produced by
the AP, and they enter the WAQ to wait for the correspond-
ing store data to arrive from the EP via the EAQ. A poten-
tial advantage of this design is that loads can bypass previ-
ous stores as long as the load address does not match any of
those waiting in the WAQ. Program control flow is imple-
mented by inserting corresponding conditional branch in-
structions in each instruction stream, and allowing branch
conditions to be passed between the processors via the
AEBQ and the EABQ. When possible, the AP will deter-
mine the branch outcomes; in this case, the branch condi-
tion latency is hidden from the EP and it effectively ob-
serves unconditional branches. The performance degrada-
tion which will occur if the AP depends on a branch condi-
tion which must be determined by the EP is not discussed
in this work; we will further investigate such loss of de-
coupling events below. Smith also points out that deadlock
may occur in a DAE architecture, and describes a simple
hardware detection mechanism in addition to source code
constraints which can ensure deadlock avoidance.

The preliminary study also describes using a single in-
terleaved instruction stream which is then split into sep-
arate streams for the AP and EP. This is the approach
adopted in the Astronautics ZS-1 [12, 33]. In this case,
decoupling is accomplished through the use of instruction
queues which feed the AP and EP; the queue for the EP
is significantly longer since it usually runs behind the AP.

All control flow instructions are executed in the instruction
splitter.

Descendants of the ZS-1 DAE architecture include the
PIPE project [13] which was followed in turn by MISC
[38, 37] (Multiple Instruction Stream Computer). The pro-
posed MISC design (Figure 2) consists of four generic
processing elements (PEs) which collaborate to complete
a common task. Dedicated communication channels con-
nect each PE to every other PE, and each PE has four in-
put queues to receive data from the other PEs as well as
two input queues from memory. To execute a program, the
compiler (human or otherwise) partitions the computation
among the four PEs. In a typical configuration, two PEs
could operate as access processors, fetching data which is
then sent to the two other PEs which perform computation
on the data in a pipelined manner. To minimize control
overhead, the PEs can operate in a “vector loop” mode in
which a loop counter is used to execute a basic block a
specified number of times. Another interesting mechanism
for control is the ability to execute an instruction until the
value in an input data stream matches a sentinel value (e.g.
a null pointer). The MISC architecture can be considered
a less scalable predecessor to tiled architectures such as
RAW [11].

The WM architecture [3, 4] is another variation on
decoupled architecture. In this design, a single in-
struction stream controls a collection of decoupled com-
ponents which communicate via architecturally visible
queues. Parallelism and memory latency hiding are
achieved through the use of decoupled data units which can
process vector load and store instructions. The instruction
fetch unit is also decoupled from the functional units and
control unit.

3 Simultaneous Multithreading and Decou-
pling

In their analyses of DAE architectures [28, 29, 30],
Parcerisa and Gonzalez make the observation that although
decoupled machines effectively hide memory latency, they
suffer from functional unit latencies when there are true
(RAW) data dependencies. They propose a synergy be-
tween simultaneous multithreading and access/execute de-
coupling in order to uncover more ILP and better utilize the
functional units; this is the same motivation that prompted
the development of SMT for superscalar processors. The
proposed architecture is shown in Figure 3. The extension
to a traditional DAE architecture is relatively straightfor-
ward; the fetch and dispatch stages and the register file and
queues are replicated for each context, while the functional
units and data cache, which is augmented to four ports,

2



Figure 1: Decoupled access/execute architecture. Taken from
[35].

d d

Processor 1 Processor 2 Processor 3 Processor 4

1234

PBus 4
PBus 3
PBus 2
PBus 1

1234

1 1 1 11 1 1 12 2 2 2 223 3 3 34 4 4 422

1234

LAQ/SAQ
List

Data Q

Return List

Data Cache Unit

CBus 1
CBus 2 Register File

P1 P2 P3 P4

PC

From:

Optional Unit

Result Bus

Out

VREG

To: PBus

M1 M2

I/O #1 I/O #2

Cache 1 Cache 2

CBus Ctrl

CBusPBus

Q Q Q Q Q Q

DREG

IREG
Ctrl

ICache

FPU

IU

Q

ICacheICacheICacheICache

SrcA

SrcB

1 12 23 4

Figure 2:MISC architecture. Taken from [37].

are shared. Parcerisa and Gonzalez find that SMT designs
can effectively hide functional unit latencies, but do a poor
job at hiding long memory latencies. The access/execute
decoupling provides an effective means of hiding this la-
tency.

4 Decoupled Control/Access/Execute

Another extension to the DAE architecture is to aug-
ment it with decoupled control flow (DCAE). This de-
coupling represents a further separation of basic program
functionalities; control, memory access, and computation
are partitioned into three instruction streams. The ACRI
project [5] proposed an implementation of such an archi-
tecture, shown in Figure 4. Decoupling the control flow
into a separate instruction stream allows it to be processed
ahead of the access and execute streams and potentially
eliminates control overhead from these streams.

The control processor (CP) executes the control flow
graph of the program, sending directives to the AP and EP
to execute basic blocks (IFBs). These directives include
the address and length of the block. The actual code for
these basic blocks are in separate instruction streams, and
instruction fetch engines (IFEs) in the AP and EP process
the IFBs and fill queues with ready-to-execute instructions.
The address and execute processors operate on this stream
of valid (non-speculative) instructions, and do not imple-
ment conditional branches. Since they process streams of
valid instructions and data without using speculation, they
can be consideredstream units[27]. The ACRI description
does however provide these engines with limited control
capabilities; an IFB can include a loop count specifying the
number of iterations of the basic block to perform, and the
processors can be augmented with support for predicated
instruction execution to enable larger basic blocks.

The instruction set architecture for the individual pro-
cessors in the DCAE architecture can be optimized for their
particular task and capabilities. For example, the ISA for
the AP can include specialized instructions such as auto-
increment loads and stores. Additional parallelism can be
achieved with little overhead by providing the AP and EP
with VLIW instructions to match their mix of functional
units.

In the ACRI proposal, the CP is actually a fully func-
tional processor with the capability of performing mem-
ory operations. One reason for this is if the CP requires a
value from memory to determine control flow, the AP can
be of little help since it usually trails the CP in program
execution. Additionally, this allows the CP to implement
procedure calls by directly manipulating the stack frame
which is shared between the processing units [36, 14]. In
the planned ACRI implementation, the control processor

3



Figure 3:Multithreaded decoupled access/execute architecture.
Taken from [30].

Figure 4:Decoupled control/access/execute architecture. Taken
from [5].

LOD Description Example cause
1 AP must wait for memory indirect memory reference
2 AP must wait for DP computed memory address
3 CP must wait for AP read-after-write hazard
4 CP must wait for DP computed branch condition
5 AP must wait for DP conditional basic-block nullification
6 DP must wait for DP conditional basic-block nullification

Table 1: Description of LOD events of Figure 5.

was actually a DEC 21064 Alpha processor which would
run the operating system as well [20]. Thus, the configu-
ration bears some similarity to machines with a vector co-
processor that is controlled by a scalar unit.

The DCAE architecture performs best when there is
full decoupling between the control, access, and exe-
cute instruction streams. Any dependencies that disrupt
the decoupling and cause the instruction streams to re-
synchronize will adversely affect performance. There have
been several studies that investigate these loss of decou-
pling events, termed LODs [14, 36, 17, 27]. The LODs
can be characterized as shown in Figure 5. They are sum-
marized in Table 1, and described further in [27]. Paths are
provided in the architecture to resolve commonly encoun-
tered LODs, such as a condition bit sent from the EP to
the CP; otherwise, the data must be communicated through
memory.

The designers of the ACRI also include a separate pa-
rameter queue as an additional input queue to the AP and
DP in order to efficiently pass parameters (such as function
arguments) without the need of going through memory.

In order to avoid memory inconsistencies, the addresses
of the CP memory accesses are compared with those in
the pending store address queue (SAQ). The compiler is
responsible for ensuring that the CP doesn’t slip ahead and
access memory before the AP puts potentially conflicting
addresses in this queue.

5 Decoupled versus Superscalar

Superscalar and decoupled architectures employ differ-
ent mechanisms to obtain some of the same performance
advantages. Studies comparing these architectures include
the decoupled references above, as well as [24, 16, 21].
Comparisons can be made in how these architectures han-
dle:

� Memory Latency

Superscalar machines hide memory latency by main-
taining large reorder windows to keep track of out-
standing loads and the instructions which depend on
them while other instructions are executed. Data
prefetching can also be implemented either in hard-

4



ware or software. Increasing the latency hiding re-
quires more independent instructions [21]. Data value
speculation is another technique targeted at hiding
memory latency.

Decoupled architectures hide memory latency by exe-
cuting the access instruction stream in advance of the
execution stream. Increasing the latency hiding can
be accomplished by further decoupling these streams.

� Control Latency

Because control instructions are resolved many cycles
after instruction fetch, superscalar processors must
employ accurate branch prediction combined with
speculation to maintain performance.

By determining control dependencies outside of the
execution processor, decoupled architectures can ef-
fectively hide this latency. This decoupling essentially
allows dynamic loop unrolling when loop conditions
can be determined ahead of time.

� Resource Allocation

Superscalar architectures allocate explicit resources
for every outstanding instruction through the use of
complex register renaming structures. In general, all
instructions use the same pool of resources. How-
ever, clustered superscalar architectures partition the
resources.

The queues in a decoupled machine provide a cheap
form of register renaming, where the queue elements
themselves provide the resources for outstanding in-
structions, and the architecturally visible queue head
takes the place of complicated naming schemes. Ad-
ditionally, resources are partitioned between the de-
coupled processors.

� Dynamic Scheduling and ILP

A superscalar architecture uses dynamic scheduling
to extract ILP by implementing dependency analysis
in hardware.

Decoupled machines achieve dynamic scheduling
when the separate instruction streams slip with re-
spect to each other. Additionally, the three separate
instruction streams provide an immediate source of
ILP.

Thus, to achieve performance, superscalar architectures
must expend a great proportion of area and complexity on
issue and decode logic, including the instruction window,
reorder buffer, register renaming logic, and bypass logic. It
is widely accepted that the issue logic of superscalar archi-
tectures is becoming increasingly expensive to implement
in terms of area, delay, and power consumption [26, 8].

Large structures such as issue windows that require as-
sociative dependency-checking are rapidly becoming the
limiting factor in scaling the issue rate of superscalar ma-
chines [1]. Additionally, superscalar architectures rely on
speculation and prediction which incurs a large amount of
overhead.

Decoupled architectures provide mechanisms for forms
of dynamic out-of-orderexecution, loop unrolling, and reg-
ister renaming without the associated complexity as imple-
mented in superscalar processors. Thus, in addition to the
inherent memory latency toleration that decoupled archi-
tectures provide, they can also exploit ILP with much sim-
pler issue logic than superscalar processors. Since a decou-
pled machine alleviates the need for centralized resources,
it is inherently more scalable than corresponding super-
scalar processors. Additionally, the queue-based designs
of decoupled architectures are amenable to being incorpo-
rated in scalable tiled architectures with on-chip networks
[11]. This is a logical extension to the standard decoupled
architecture in which independent decoupled streams can
be run on separate tiles of the architecture.

Given the performance advantages of decoupled archi-
tectures, a relevant question to ask is why they have not
come into the mainstream for general purpose computing.
One main reason is that decoupling may not always be pos-
sible in general. Decoupled architectures have tradition-
ally been targeted at scientific code which is not control
intensive. As described earlier, the Achilles heel of decou-
pled architectures come from the LOD events, so programs
with complicated control flow can suffer from severe per-
formance degradation on decouple architectures. Another
possible limitation of decoupled machines is the complex-
ity involved in compiling programs to separated instruction
streams. More research will be necessary in this area, al-
though compilers have been developed for decoupled ar-
chitectures [37, 14, 15].

6 Empty Decay

It seems evident that aside from the performance degra-
dation resulting from LOD events, decoupled architectures
can be a viable general purpose architectural platform that
is both complexity-effective and scalable. Thus, since
LODs represent the primary performance limitation for de-
coupled architectures, it is crucial to remove the effects
of these dependencies in order to enable general purpose
computing. LODs trigger synchronization events between
program streams in a single thread of control. Potentially,
this latency can be hidden if we have multiple threads exe-
cuting concurrently.

Traditionally, multithreading is used to hide long la-
tency events such as memory accesses, as well as increase

5



ILP by avoiding instruction dependencies. As discussed
earlier, Parcerisa and Gonzalez proposed that multithread-
ing be used in conjunction with a DAE architecture in order
to hide functional unit latencies within the execute proces-
sor [30]. We propose to extend this idea and provide multi-
threading on a DCAE architecture. A MT-DCAE architec-
ture realizes the benefits of full control/access/execute de-
coupling while hiding the effects of LOD events that must
necessarily occur in programs.

For the MT-DCAE architecture, we can leverage much
of the design from the ACRI architecture [5] and the mul-
tithreaded DAE design [30]. Multithreading on the MT-
DCAE processor can improve performance on two levels
by handling both LOD dependencies and instruction de-
pendencies within a thread. Since the primary function
of the multithreading is not to hide memory latency (pro-
vided by the decoupling itself), but to hide LOD events,
we anticipate that a few threads will be adequate to achieve
large performance gains. The multithreading can be imple-
mented by replicating the instruction fetch block (IFB) and
parameter queues of the ACRI architecture (one for each
thread). The address and execute processors themselves
would have state for multiple contexts (i.e., instruction
queues and register files) to allow for fast context switches
between threads. These design issues can be leveraged
from existing SMT studies. A block diagram of our pro-
posed MT-DCAE architecture is shown in Figure 6.

6.1 Enabling Multithreading

To enable multithreading, the AP and EP must be sup-
plied with instruction streams from multiple threads. One
implementation of this is to provide the CP with relatively
fast context switching capabilities, and have it switch con-
trol threads whenever it encounters a long latency event
such as a LOD. In this way, the control processor can
switch to processing another thread while the address and
data processors continue to process instructions from the
fist one. Later when the LOD event from the original thread
is resolved, it again becomes a ready thread for the CP. In
this way, contexts can be pipelined through the CP, AP, and
EP to efficiently utilize these resources.

An important design issue is how the control proces-
sor should schedule threads to fully take advantage of the
MT-DCAE architecture to hide LOD latency. We note that
maximum performance occurs when the execute processor
is fully utilized. The main function of the CP and AP is
to allow prefetch of instructions and data such that the ex-
ecution processor is constantly running. Since the control
processor’s instruction streams are ideally processed sig-
nificantly faster than those of the execution processor, it
can possibly afford not to have extremely efficient thread
context switching. Thus, it may not be necessary to add ad-

Figure 5: Loss of decoupling events corresponding to Figure
4. The bold arrows represent decoupled execution, while each
numbered arrow depicts an LOD event. Taken from [27].

Figure 6: MT-DCAE multithreaded decoupled control/acc-
ess/execute architecture.

Figure 7: MARS multithreaded decoupled control/acc-
ess/execute architecture. Taken from [39].

6



ditional context state on a per thread basis to the CP. This is
in contrast to the multithreading on the AP and EP, which
must be able to switch between threads quickly in order
to maintain performance. Another design issue is keeping
multiple threads’ fetch blocks available in the input queues
for the AP and EP, so that there is always at least one thread
available to run. Accomplishing this might require thread
execution balancing on the CP to make sure that the AP
and EP are provided with ample thread parallelism. [23]
discusses various context switching techniques for multi-
threaded decoupled architectures.

6.2 Speculative Multithreading

Another technique that may improve performance on
MT-DCAE is speculative multithreading [25]. This allows
the multithreading hardware to be beneficial even when
only a single thread of control is available. This can be
implemented as an extension to the specialconditionalor
speculativeexecution modes for dispatch blocks discussed
in [27]. In this description, blocks conditionally dispatched
to the AP wait for a condition from the EP to determine
whether or not they should be discarded. Blocks can also
execute in the AP speculatively, and if it is later determined
that they are invalid the updates to the queues from that
block are discarded.

With multithreading, the control processor can spawn a
speculative thread at predictable branches such as proce-
dure calls. In this case the speculative thread would keep
executing code beyond the procedure call with the hope
that there will be no dependencies. This sort of specula-
tion is a natural fit for the decoupled architectures because
all the memory addresses are put in queues. Therefore,
misspeculation detection can be accomplished by dynami-
cally comparing the addresses accessed by the two threads,
and a speculative thread can be nullified by flushing its ad-
dresses from the queues and destroying its context. Spec-
ulative multithreading can also be used to hide the latency
of predictable LOD events.

6.3 DCAE with Superscalar

Superscalar processors will probably always be better
than decoupled architectures at processing code which is
extremely control intensive. To get the best out of both
architectures, we can consider implementing the control
processor in a DCAE design as a more capable high-
performance microprocessor. Then, the compiler can
choose to avoid decoupling when running control inten-
sive code that would result in an overabundance of LOD
events. When decoupling is possible, the decoupled ac-
cess/execute hardware provides a high-performance and
complexity-effective computation engine. The decoupled

architecture is a better fit for streaming code such as multi-
media; but such code is often mixed with control intensive
portions of computation, so the hybrid architecture can be
a good choice. This type of computational model is similar
to that used for vector or SIMD array coprocessors [2, 19].
Decoupled access/execute engines are more flexible than
these alternatives, but a comparison of performance and
complexity would be interesting.

6.4 More Related Work

It is noteworthy that Dorojevets, et. al. [10, 39] imple-
mented a MT-DCAE architecture, the MARS-M (Modu-
lar, Asynchronous, Extensible Systems) computer, shown
in Figure 7. This architecture supports simultaneous ex-
ecution of up to four address, four data, and one control
thread, with communication provided by various queues.
The control processor is responsible for splitting a thread’s
unified instruction stream and passing code fragment calls
(analogous to the IFBs of the ACRI) to either address or
execution processors. These processors are implemented
as VLIW processors which support simultaneous multi-
threading. Both the address and execution processors and
the communication queues are dynamically assigned. In a
follow up study, [9] makes the observation that control de-
pendencies hinder parallel execution, and proposes specu-
lative multithreading.

7 Summary

It seems that in recent years, interest in decoupled ma-
chines has waned. Still, there exist some attractive fea-
tures of decoupled machines that for the most part have
not been exploited or utilized. Since their inception, de-
coupled architectures have been touted as a complexity-
effective and scalable way to provide provide memory and
control latency hiding, parallel instruction exection, dy-
namic scheduling, and efficient resource utilization.

In the paper, we have attempted to present a compre-
hensive survey of the major research and industrial work
on decoupled architectures. From our survey, we can con-
clude that the limitations of using decoupled architectures
in general purpose processing are derived primarily from
the inability for these machines to tolerate LOD latencies.
To enable decoupled architectures to effectively perform
general purpose computation, we propose to augment de-
coupling with multithreading to hide the latency of LODs
assuming that sufficient thread level parallelism exists. Al-
though previous work proposed the use of multithreading
in conjunction with decoupling, they do so only in the con-
text of hiding functional unit latencies and not as a general

7



solution to the problem of LOD latencies on decoupled ma-
chines.

Of course, much more research is needed to determine
whether such a scheme is viable for general-purpose com-
puting. It may not be trivial to efficiently decouple pro-
grams or find enough thread-level parallelism to be able to
cover LOD events. Also, there is a large design space of
possible multithreading implementations that can fit into a
MT-DCAE framework. We simply provide the high-level
concept of using multithreading as a potential solution to
the LODs that can hinder decoupled architectures. We do
not attempt to propose any specific implementation as it is
beyond the scope of this project to be able to provide any
meaningful simulation results. Thus, it remains an open-
ended question as to what is the best combination of tech-
niques to fully unlock the synergy between decoupling and
multithreading for general purpose computer architectures.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger.
Clock rate versus ipc: The end of the road for conventional
microarchitectures. InISCA 27, May 2000.

[2] K. Asanović. Vectorizing SPECint95. Unpublished
manuscript extracted from PhD Thesis, March 1998.

[3] Wm. A.Wulf. The WM computer architecture.Computer
Architecture News, 16(1), March 1988.

[4] Wm. A.Wulf. Evaluation of the WM computer architecture.
In ISCA 19, pages 382–390, Gold Coast, Australia, May
1992.

[5] P. Bird, A. Rawsthorne, and N. Topham. The effectiveness
of decoupling. InInt. Conf. on Supercomputing, pages 47–
56, 1993.

[6] W. C. Brantley and J. Weiss. Organization and architecture
tradeoffs in fom. InIEEE Int. Workshop Comput. Syst. Or-
ganization, New Orleans, LA, March 1983.

[7] E. U. Cohler and J. E. Storer. Functionally parallel architec-
tures for array processors.IEEE Computer, 14(9):28–36,
September 1.

[8] S. Cotofana and S. Vasiliadis. On the design complexity of
the issue logic of superscalar machines, 1998.

[9] M. N. Dorojevets and V. Oklobdzija. Multithreaded decou-
pled architecture.Int. J. High Speed Computing, 7(3):465–
480, 1995.

[10] M. N. Dorozhevets and Peter Wolcott. The el’brus-3 and
MARS-M: Recent advances in russian high-performance
computing. The Journal of Supercomputing, 6(1), March
1992.

[11] E. Waingoldet. al. Baring it all to software: Raw machines.
IEEE Computer, pages 86–93, September 1997.

[12] James E. Smithet. al. The astronautics zs-1 processor. In
1988 IEEE International Conference on Computer Design,
pages 307–310, October 1988.

[13] J.R. Goodmanet. al. Pipe: A vlsi decoupled architecture.
In ISCA 12, pages 20–27, Boston, MA, June 1985.

[14] N. Tophamet. al. Compiling and optimizing for decoupled
architectures. In1995 ACM/IEEE Supercomputing Confer-
ence, San Diego, CA, December 1995.

[15] W. Lee et. al. Space-time scheduling of instruction-level
parallelism on a raw machine. InASPLOS 8, pages 4–7,
San Jose, CA, October 1998.

[16] M. Farrens, P. Ng, and P. Nico. A comparison of superscalar
and decoupled access/execute architectures. InMicro-26,
Austin, Texas, December 1993.

[17] A. Gonzalez, T. Jerez, J. Llosa, J.M. Parcerisa, and
M. Valero. Performance diagnostics of the acri-1. Tech-
nical Report UPC-DAC-1996-1, UPC-DAC Technical Re-
ports, Universitat Politecnica de Catalunya, 1996.

[18] L. Gwennap. Mips r10000 uses decoupled architecture.Mi-
croprocessor Report, October 1994.

[19] J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor
with a reconfigurable coprocessor. InProceedings FCCM,
pages 24–33, April 1997.

[20] http://www.paralogos.com/DeadSuper/ACRI/.

[21] G.P. Jones and N.P. Topham. A comparison of data
prefetching on an access decoupled and superscalar ma-
chine. InMicro-30, pages 65–70, December 1997.

[22] R. E. Kessler. The Alpha 21264 microprocessor.IEEE Mi-
cro, 19(2):24–36, March/April 1999.

[23] J. Kreuzinger and T. Ungerer. Context-switching techniques
for decoupled multithreaded processors, 1999.

[24] W. Mangione-Smith, S.G. Abraham, E.S. Davidson, and
J. E. Smith. A performance comparison of the ibm rs/6000
and the astronautics zs-1.IEEE Computer, 24(1):39–46,
January 1991.

[25] P. Marcuello, A. Gonzales, and J. Tubella. Speculative mul-
tithreaded processors, July 1998.

[26] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processors. InISCA 24, pages 206–218, Denver,
CO, 1997.

[27] Joan M. Parcerisa, Antonio Gonzalez, Josep Llosa, Toni
Jerez, and Mateo Valero. The performance of decou-
pled architectures. Technical Report UPC-DAC-1996-23,
UPC-DAC Technical Reports, Universitat Politecnica de
Catalunya, 1996.

[28] Joan-Manuel Parcerisa and Antonio Gonzalez. Multi-
threaded decoupled access/execute processors. Technical
Report UPC-DAC-1997-83, UPC-DAC Technical Reports,
Universitat Politecnica de Catalunya, 1997.

[29] Joan-Manuel Parcerisa and Antonio Gonzalez. Improv-
ing latency tolerance of multithreading through decoupling.
Technical Report UPC-DAC-1999-28, UPC-DAC Techni-
cal Reports, Universitat Politecnica de Catalunya, 1999.

8



[30] Joan-Manuel Parcerisa and Antonio Gonzalez. The synergy
of multithreading and access/execute decoupling. InHPCA
5, pages 59–63, January 1999.

[31] A. R. Pleszkun. A structured memory access architecture.
Technical Report CSG-10, Coord. Sci. Lab., Univ. Illinois,
Urbana, Comput. Syst. Group Rep, October 1982.

[32] R. R. Shively. Architecture of a programmable digital signal
processor.IEEE Trans. on Computers, C-31, January 1982.

[33] J. E. Smith. Dynamic instruction scheduling and the astro-
nautics zs-1.IEEE Computer, 22(7):21–35, July 1989.

[34] J. E. Smith, S. Weiss, and N.Y. Pang. A simulation study
of decoupled architecture computers.IEEE Computer, C-
35(8):692–702, August 1986.

[35] James E. Smith. Decoupled access/execute computer archi-
tecture. InISCA 9, 1982.

[36] N. Topham and K. McDougall. Performance of the acri
decoupled architecture: the perfect club. InHPCN - Europe,
pages 472–480, May 1995.

[37] G. Tyson and M. Farrens. Code scheduling for multiple
instruction stream architectures.International Journal of
Parallel Processing, 22(3), 1994.

[38] G. Tyson, M. Farrens, and A. R. Pleszkun. Misc: A multiple
instruction stream computer. InMicro-25, pages 193–196,
Portland, Oregon, December 1992.

[39] Peter Wolcott. Soviet Advanced Technology: The Case of
High-Performance Computing. University Microfilms, Inc.,
Ann Arbor, MI, 1993.

9


