
GRAPE: Genetic Routing And Placement Engine

Ronny Krashinsky
ronny@mit.edu

MIT Laboratory for Computer Science, Cambridge, MA 02139
Embodied Intelligence (6.836) Term Project

5-10-2000

Abstract

Traditional VLSI systems automatically place and route
circuits using two independent steps; first an optimal
placement is determined by using wire length estimates,
then an optimal routing is attempted for the given place-
ment. In actuality, placement and routing can have
complicated interactions, and separating them can lead
to conservative and un-optimal solutions. GRAPE, a
Genetic Routing And Placement Engine, leverages the
power of genetic algorithms to simultaneously optimize
the placement and routing of a circuit. Using GRAPE,
a population of individual placement and routing solu-
tions evolve to maximize connectedness and minimize
area.

1 Introduction

The design of modern VLSI (Very Large Scale Integra-
tion) circuits depends on an increasing amount of au-
tomation. As circuits become more complex, design-
ers must rely on computer aided design (CAD) tools to
provide a higher level of abstraction than the collection
of rectangles which define an interconnected network of
transistors. One task that has been delegated away from
today’s circuit designers is the placement and routing of
components in a circuit layout.

From a bird’s-eye view, a VLSI circuit is com-
posed of various blocks1 which are connected together
with nets2. The complexity of the blocks may vary
greatly, and some blocks may themselves be composed
of smaller blocks. Additionally, the same type of block
may be instantiated multiple times in a given circuit. At
a high level, a circuit design consists of a netlist of com-
ponents and the connections between them, for example
Figure 1. To realize such a circuit, a designer constructs

1componentsandblocksare used interchangeably in this paper
2netsandwiresare used interchangeably in this paper

a transistor-level implementation for each component.
Then, during thelayout process, a designer places all
the components on a two-dimensional grid along with
the wires that connect them, for example Figure 2.

The layout process can be tedious and very difficult,
especially for a certain class of irregular circuits. Such
circuits are amenable toautomatic placement and rout-
ing. In this process, a designer specifies the netlist of
components along with a structural description of each
component, and a software package automatically gen-
erates the circuit layout. Often, the level of abstraction is
raised even higher, and asynthesistool is used to trans-
late a functional circuit description into a netlist of pre-
defined circuit components calledstandard cells. For
example, in the design of a CPU the datapath may be
custom designed and manually laid out; however, the
control circuitry would usually be specified as a collec-
tion of logical equations. This description is then syn-
thesized and automatically placed and routed to achieve
the final representation which goes alongside the datap-
ath in the chip.

The standard goal of a placement and routing pack-
age is to minimize the total area used by the circuit.
The constraints include the two-dimensional nature of a
chip, and limited wiring resources. Traditionally, place-
ment and routing are performed as separate steps due to
the computational complexity. However, because place-
ment and routing may have complicated interactions, the
results may be conservative and un-optimal. In GRAPE,
I leverage the power of genetic algorithms to simultane-
ously optimize placement and routing.

Below, I introduce placement and routing, and ge-
netic algorithms in more detail. Section 2 states the de-
tails of the placement and routing problem that I con-
sider. Section 3 describes the genetic algorithm used in
GRAPE. Section 4 presents some results and optimiza-
tions, and finally section 5 concludes.

1

Figure 1:Example netlist. A graphical schematic of the cir-
cuit is shown along with the corresponding textual description.
This figure was taken from [6].

Figure 2:A placement and routing of the example circuit of
Figure 1. The text shows the coordinates for each component
resulting from the placement, and the figure includes the wires
generated by the router. This figure was taken from [6].

1.1 Placement and Routing

The input to the placement problem is a netlist describ-
ing the connections between a set of components, for
example Figure 1, along with a description of the struc-
ture of each component. The output is a set of coordi-
nates providing a placement for each component in the
x-y plane; Figure 2 shows a placement for the example
netlist. The task of a placement algorithm is to mini-
mize the total area and the estimated wire length. The
method used for wire length estimation depends on the
routing algorithm to be used, but a simple example is
to use the Cartesian distance between connected com-
ponents. There may be various additional constraints
governing the placement of components depending on
the requirements of the VLSI system.

Once the placement for a circuit has been deter-
mined, a routing algorithm determines the wiring for
all nets between components; Figure 2 also shows the
wires used to route the example circuit. The wiring
constraints depend on the VLSI process parameters, but
usually only horizontal and vertical wires are allowed.
Typically, one layer of metal is reserved for horizontal
wires, and one for vertical. In this case, perpendicu-
lar wires do not conflict with each other, unlessviasare
used to connect the wires together. Wires of the same
orientation can not overlap, and there is a minimum dis-
tance requirement between parallel wires. A router must
determine paths for all connections in a netlist descrip-
tion while minimizing wire length and area, and satis-
fying resource constraints. Typically, a router attempts
to minimize the wire length when the output net of one
component connects to several other components by us-
ing a tree structure.

Both the placement and routing problems are known
to be NP-Complete [6]. Thus, it is impossible to find
optimal solutions in practice, and various heuristics are
used. There has been a lot of work on optimization for
placement and routing, including simulated annealing
algorithms, and genetic algorithms for both placement
[5, 1, 4] and routing [2]. These problems are almost
always solved independently, using various methods to
estimate wire length during placement [6]. A simultane-
ous placement and global routing algorithm for FPGAs
is described in [7]. To my knowledge, no simultaneous
placement and routing algorithms have been proposed
for VLSI circuits, and none have been proposed using
genetic algorithms.

Placement algorithms are often conservative to al-
low sufficient resources for routing. However, there
is usually no guarantee that a given placement will be
routable; and even if it is, there is often no guarantee
that a given routing algorithm will succeed. Thus, due

2

to the complicated interactions between placement and
routing, they are often performed several times in an it-
erative manner to achieve an adequate solution. Some-
times a designer must assist the tools if automation fails.

1.2 Genetic Algorithms

Genetic algorithms [3] provide an effective means of op-
timization for many complex problems. Based on bio-
logical evolution, they encode a solution to a problem
as a sequence of bits, or agenome. An initial popula-
tion of genomes is established, perhaps by generating
random strings of bits. This population evolves over
many generations. During each generation, the indi-
vidual are tested on the target task and ranked by per-
formance. The top individuals are chosen to survive,
while the rest of the population is replaced by newly
constructed genomes. The key to genetic algorithms is
that these new genomes are constructed by combining
the genomes of the top individuals. Under the right con-
ditions, individuals in each generation will improve by
combining the beneficial properties of multiple parents,
and the performance of the population at large will be-
come more optimal.

2 Problem Statement

GRAPE uses a simplified circuit model designed to en-
able easy parsing and graphical display. A component
is represented as a unit square with four possible ports,
one at each edge. One port is designated as the output,
and the other three may or may not receive inputs from
other components. The output of one component may
connect to any number of components, but each input
port has only one connection. A circuit is placed and
routed on a two-dimensional square grid.

There are no restrictions on the placement of com-
ponents, except that two components can not be at the
same location. The wires which connect components
must be either horizontal or vertical, and perpendicular
wires can overlap. There is a maximum of one horizon-
tal and one vertical wire per unit square. A via also uses
one unit square, and vias are assumed to occur in the
middle of the square so that there is no interference with
neighboring wires.

Figure 3 shows GRAPE placement and routing out-
put for the example circuit of Figure 1. As the GRAPE
output can be difficult to visualize, Figure 4 shows a
stylized version of the same information. The simpli-
fied circuit model used by GRAPE increases the ratio
of wire density to component size (1:1). A compari-
son between the GRAPE diagrams and Figure 2 demon-

..................................
31: : Legend
30: : ------
29: : # = component
28: o-o : - = horiz. wire
27: o---+-#-------o : | = vert. wire
26: | o---------+o : + = h & v wires
25: | | o#oo----o : o = via
24: | #o----oo-----+#o | :
23: | | ||o----o | | :
22: | | o++#-----#| | : Placement
21: | oo ||| | | : ---------
20: o---+#-o||| o#----+-o | : 1 (17,15)
19: #o---+--#o|| | o#| | : 2 (13,13)
18: | o+-o o#oo+-o | | : 3 (13,17)
17: o--++-#-+--+oo#-----+o| : 4 (14,14)
16: | #o+-oo+-o| | ||| : 5 (18,14)
15: o---+-+++-#o | ||| : 6 (19,10)
14: o---+-+#o o#o| ||| : 7 (20,20)
13: o---+-#---o || ||| : 8 (21,17)
12: | || o#o : 9 (28,12)
11: | || : 10 (16,18)
10: o-------#o : 11 (13,27)

9: : 12 (12,20)
8: : 13 (22,25)
7: : 14 (14,19)
6: : 15 (24,24)
5: : 16 (18,22)
4: : A (9,16)
3: : B (6,19)
2: : C (10,24)
1: : D (26,19)
0: : E (24,22)

..................................
01234567890123456789012345678901

1 2 3

Figure 3:GRAPE placement and routing for example circuit
of Figure 1. It is assumed that all components have outputs on
the right side and inputs on the left and top sides.

B 14

12

10

3 8

A
1

4

2

5

6

9

D

7

16 E

15C

13

11

Figure 4: A stylized version of the placement and routing
shown in Figure 3.

3

strates that this increases the wiring congestion, and thus
makes placement and routing more challenging. There-
fore, the circuit and routing problem solved by GRAPE
can be considered a conservative approximation of that
for more realistic circuits models.

3 GRAPE Genetic Algorithm

The genetic encoding used in GRAPE is shown in Fig-
ure 5. A gene consists of x and y placement coordi-
nates, a routing algorithm specifier, and a routing order-
ing number. A genome is comprised of one gene for
each component in a circuit. The initial population in
GRAPE is constructed by generating a random genome
for each individual in the population. The size of the
workspace grid is configurable; in general a larger grid
will enable GRAPE to achieve a complete routing faster,
but optimizing for circuit area will be slower.

To determine the fitness of each individual during
genetic evolution, GRAPE places and routes the input
netlist based on the information in the genome. Place-
ment is performed first by simply locating each block at
the coordinates specified in its gene. If two blocks have
the same coordinates, one of them is moved by increas-
ing its x and y coordinates until a free location is found.

Once the circuit has been placed, routing is per-
formed in the order of the components’ routing num-
bers. For each component, all output connections are
routed one at a time. The simple algorithms consid-
ered for routing a wire include using straight lines to
route horizontally first, then vertically; and alternatively
vertical first followed by horizontal; these are demon-
strated in Figure 6. The routing algorithm specifier in
the component’s gene determines which routing algo-
rithm to try first, and if that fails the other method is
attempted. GRAPE also makes use of a breadth first
search (BFS) algorithm; this is described in detail in the
next section.

����
����
��
��
��
��

Block 0

Block 1

Block N

X Coord.
Routing

Algorithm
Routing
Number

X Coord.Y Coord.
Routing

Algorithm
Routing
Number

X Coord.Y Coord.
Routing

Algorithm
Routing
Number

Y Coord.

Figure 5:The genetic encoding used in GRAPE for a circuit
with N blocks. The genome consists of N genes, each of which
contain four parameters.

Figure 6: A comparison of horizontal-vertical and vertical-
horizontal routing.

Figure 7: The scoring function used to approximate circuit
density. Darker colors indicate a higher (better) score.

3

6

8

3

6

8

3

8

6

3

8

6

Parent 1 Parent 2

Figure 8: Genetic combination in GRAPE. A random rect-
angle in the placement grid of one parent is transfered to a
random location in the other parent. The actual gene transfer
is shown as well.

4

The motivation for routing all of the connections at
a component’s output sequentially is that the wires used
can be shared. For example, in Figure 4 we can see that
the output wire of component A is shared by compo-
nents 1, 2, and 4. An interesting aspect of GRAPE is
that it doesn’t need to use special algorithms to route a
net with multiple connections. When necessary, a rout-
ing naturally evolves to minimize the wiring congestion.

After placement and routing, each individual is as-
signed a score to determine a ranking. The most impor-
tant constituent of this score is the number of connec-
tions which were successfully routed; a component is
always ranked above one with a smaller routing success
rate. For components with the same number of routed
connections, the area and wire length used by the cir-
cuit are considered as secondary scoring metrics. For
area, the actual number calculated is something more
analogous to density. A certain score is given for each
component, based on the function shown in Figure 7.
This encourages a square placement in the center of the
workspace. Wire length is calculated by summing the
total number of wire segments, and this number is sub-
tracted from an individual’s total score.

After determining the top individuals in a population,
offspring must be generated using genetic combination.
It is important that the offspring obtain beneficial ge-
netic material from both parents with a minimal amount
of interference. Combining the genomes of two parents
gene by gene in a linear manner (from top to bottom in
Figure 5) proved to be insufficient for this requirement.
Instead, combination in GRAPE is performed in a simi-
lar manner to [1], as shown in Figure 8. A random rect-
angle of the placement grid is chosen in one parent and
transfered to a random location in the second parent; this
involves copying the genes corresponding to any block
which lies in the chosen rectangle. As described above,
if two components end up being placed in the same lo-
cation, one of them will be displaced. Additionally, ran-
dom mutation is used to provide more variability and
opportunity for optimization.

4 Results and Analysis

Figure 9 shows an example GRAPE run for a netlist of
30 components with 60 random interconnections placed
and routed on a 64x64 grid. The total number of routed
nets are shown along with the total wire length and den-
sity score. The wire length and density are scaled to
fit on the graph. The test was run with a population of
10,000 individuals through a total of 100 generations.
Each generation, 100 individuals survived and the top
10 individuals were used to produce offspring. The mu-

tation rate was 0.2% per bit.

At the beginning of the run, the genomes evolve to
create a fully connected routing of the circuit; this in-
volves sacrificing circuit density and wire length. While
attempting to route a circuit, there may be interference
from components and wiring congestion. Here, the ge-
netic combination method is critical; by using areas of
the placement grid to govern inheritance, blocks of com-
ponents can be moved while still maintaining relative
positions for routing. Additionally, the routing order-
ing number and routing algorithm specifier (Figure 5)
can evolve to eliminate complicated routing interactions
between components. This happens largely through ge-
netic mutation.

After the 15th generation, the circuit is fully routed
and remains so for the rest of the run. During the re-
maining generations, the density of the circuit contin-
ues to increase while the wire length decreases. Here,
the density scoring function (Figure 7) is key. A simple
overall area metric would only encourage the outermost
components to move inwards. The density function, in
contrast, encourages all components to move towards
the center of the grid. This allows the circuit to grad-
ually compact over several generations.

With more congestion, the simple horizontal-vertical
and vertical-horizontal algorithms have a difficult time
routing the nets. Figure 10 shows a run where the num-
ber of components is increased to 40 with 80 random
interconnections, and a decreased population of 1000.
GRAPE is unable to achieve a complete routing within
100 generations.

To enable routing with more congestion, I added
a breadth first search (BFS) algorithm to route nets.
BFS starts at the source of a net and searches the grid
for available routes, visiting each square in the grid
at most once until it finds the destination component.
BFS will find a shortest path if one exists, and is thus
much more versatile than simple horizontal-vertical or
vertical-horizontal routing. Figure 11 shows the results
of using GRAPE with BFS enabled on the same circuit
of 40 components and 80 random interconnections. In
this run, BFS was used to route nets whenever the sim-
pler algorithms failed; as shown in the graph this was
about half the time for the best individual. A problem
with using BFS is that complex routes cause more con-
gestion; and if a circuit is fully routed, it is difficult for
it to evolve into a configuration with less wiring den-
sity. Also, the running time of BFS routing can be pro-
hibitive; the system was about 100 times slower in this
example.

To make better use of BFS routing, I considered
a version of GRAPE which first placed and routed

5

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

routed
density
wire length

Figure 9: GRAPE placement and routing results. Com-
ponents=30; Random Nets=60; Grid=64x64; Popula-
tion=10,000; Generations=100; Survival rate=1%; Reproduc-
tion pool=0.1%; Mutation rate=0.2%.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90
routed
density
wire lengthcp

Figure 10:GRAPE placement and routing results using no
BFS. Components=40; Random Nets=80; Grid=64x64; Pop-
ulation=1,000; Generations=100; Survival rate=10%; Repro-
duction pool=1%; Mutation rate=1%.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

routed
bfs routed
density
wire length

Figure 11: GRAPE placement and routing results using
BFS. Components=40; Random Nets=80; Grid=64x64; Pop-
ulation=1,000; Generations=100; Survival rate=10%; Repro-
duction pool=1%; Mutation rate=1%.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

routed
bfs routed
density
wire length

Figure 12: GRAPE placement and routing using limited
BFS. Components=40; Random Nets=80; Grid=64x64; Pop-
ulation=1,000; Generations=100; Survival rate=10%; Repro-
duction pool=1%; Mutation rate=1%.

6

all genomes using only simple horizontal-vertical and
vertical-horizontal routing paths. Then the population
was ordered by performance, and only the top perform-
ing individuals were routed with BFS enabled. Figure
12 shows an example run in which BFS was enabled
for 10% of the individuals. Additionally, in determin-
ing a final ranking for the population, the number of
routes obtained using BFS was used as a negative com-
ponent of the score. The figure shows that the popula-
tion quickly achieves a complete routing through the use
of BFS. However, as the population evolves, the num-
ber of nets routed using BFS decreases while the com-
plete routing is still maintained; the total wire length
and density also continue to improve. This version of
GRAPE benefits from the BFS algorithm, but still can
run at speeds comparable to runs which use only simple
routing algorithms.

5 Conclusion

This paper presented GRAPE, a Genetic Routing And
Placement Engine. Through the use of evolutionary
genetic algorithms, GRAPE simultaneously optimizes
both the placement and routing of a netlist of intercon-
nected components. The genetic encoding consists of a
location for each component along with routing ordering
and algorithm numbers. The routing algorithms used for
each net include finding strictly horizontal-vertical and
vertical-horizontal paths as well as a breadth first search
shortest path algorithm. The genetic system is carefully
constructed to allow gradual optimization and benefi-
cial inheritance during combination. Using GRAPE, a
placement and routing for a circuit evolves to become
more fully connected, have a smaller total wire length,
and use less area.

References

[1] J. P. Cohoon and W. D. Paris. ”Genetic Placement”.
In Proceedings of the IEEE International Confer-
ence on Computer-Aided Design, pages 422–425,
1986.

[2] H. Esbensen. ”A Macro-Cell Global Router Based
on Two Genetic Algorithms”. InProc. of European
Design Automation Conf. Euro-DAC, pages 428–
433, Grenoble, France, September 1994.

[3] J. H. Holland. ”Adaptation in Natural and Artificial
Systems”. InUniv. of Michigan Press, Ann Arbor,
Mich, 1975.

[4] R. M. Kling. ”Placement by simulated evolu-
tion. Master’s thesis”. InCoordinated Science
Lab, College of Engr. Univ. of Illinois at Urbana-
Champaign, 1987.

[5] K. Shahookar and P. Mazumder. ”A genetic
approach to standard cell placement using meta-
genetic parameter optimization”. InIEEE Transac-
tions on Computer-Aided Design, volume 9, pages
500–511, May 1990.

[6] K. Shahookar and P. Mazumder. ”VLSI Cell Place-
ment Techniques”. InACM Computing Surveys,
volume 23, pages 143–220, June 1991.

[7] N. Togawa, M. Sato, and T. Ohtsuki. ”A
Performance-Oriented Simultaneous Placement and
Global Routing Algorithm for Transport-Processing
FPGAs”. In IEEE Trans. Fundamentals, volume
E80-A, pages 1795–1806, October 1997.

7

