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Abstract

Minimizing the energy consumption of wireless net-
work interfaces is crucial in the design of battery-powered
mobile computing devices. The IEEE 802.11 wireless
LAN specification describes a power-saving mode which
allows the network interface on the mobile device to en-
ter a sleep mode when the link is idle; periodically, the
mobile device must wake up to listen to beacons from the
access point which indicate if it has any buffered data. This
work first presents detailed measurements which show that
when TCP is run over existing implementations of the
802.11 power-saving mode, performance suffers because
otherwise fast round-trip-times are rounded up to 100 ms.
The proposed solution is the Stay-Awake scheme which
delays entering sleep mode for a short period of time af-
ter the link is active. This work also determines that
in typical web browsing traffic scenarios existing 802.11
power-saving mode implementations will spend most of
their energy sleeping and listening to beacons during rel-
atively long idle periods. The proposed improvement is
ListenInterval-Backoff which allows the network interface
to sleep for longer periods of time when the link remains
idle. The combination of these proposed power-saving en-
hancements is shown to reduce the additional per-page de-
lay incurred by the power-saving mode from a mean of
around 70% to 3% with negligible change in the overall en-
ergy consumption, or to reduce the per-page delay to 10%
while reducing the overall energy by 20%.

1 Introduction

The capabilities of mobile computing devices are lim-
ited by their battery weight and lifetime. As such, minimiz-
ing the energy usage of every component is a crucial goal
in designing mobile systems. Wireless network access is
a fundamental enabling feature for many portable comput-
ers, but if not optimized for power consumption this com-

ponent can quickly drain a device’s batteries. This work
seeks to minimize the energy of the wireless network inter-
face for a mobile device generating request/response traffic
(e.g. web browsing) without significantly harming network
performance.

A wireless network interface consumes a great deal of
power when it is sending and receiving data, but it also can
have significant power consumption when it is idle with its
radio powered up and able to communicate. Since devices
typically only access the network infrequently, the network
interface can be disabled when it is not in use to save en-
ergy. In this sleep mode, the radio is turned off and the
device has no way to determine when data is being sent to
it over the wireless network link. This clearly breaks the
typical transport model that data can arrive from the net-
work at any time and a node should be able to receive it.

The IEEE 802.11 wireless LAN specification [6] de-
scribes a power-saving mode (PSM1) designed to preserve
network traffic while allowing the mobile device (MD2)
to disable its network interface. In an infrastructure net-
work (as opposed to an ad hoc network), a wireless device
communicates with a wired access point (AP). When the
power saving mode is enabled, the AP buffers data destined
for the MD. Once every BeaconPeriod (typically 100 ms),
the AP sends a beacon which contains a traffic indication
map (TIM) that indicates whether or not the MD has any
buffered data. The MD wakes up to listen to these beacons
every ListenInterval (typically it listens to every beacon)
and polls the AP to receive any buffered data. Whenever
the AP sends data to the MD, it indicates whether or not
there is more data outstanding, and the MD only goes to
sleep once it has retrieved all pending data from the AP.
When the MD itself has data to send, it can wake up to
send the data without waiting for a beacon.

The 802.11 power saving mode can have a significant
effect on network performance. In particular, round-trip-

1Standard 802.11 terminology uses the abbreviation PS.
2Standard 802.11 terminology uses the abbreviation STA which stands

for ’station’.
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times (RTTs) are rounded up to the nearest 100 ms. In Sec-
tion 2, I present measurements which show that this espe-
cially impacts short TCP connections which are the norm
in typical web browsing traffic. Once the power saving
mode is enabled, the power consumed sleeping and listen-
ing for beacons will dominate the total energy consumption
if the network is accessed only sporadically. In Section 3, I
present analyses of client HTTP traces which suggest that
long idle periods are most important in terms of energy us-
age. In Section 4 I suggest improvements to the 802.11
power saving mode. Stay-Awake delays going to sleep af-
ter the mobile device sends data so that short RTTs are not
lengthened. ListenInterval-Backoff lets the network inter-
face sleep for longer periods of time when there is no net-
work activity. This reduces the energy consumed listening
to beacons, and could potentially allow the network inter-
face to go into a deeper sleep mode. I present a simula-
tion study which evaluates the effectiveness of these PSM
enhancements under typical web browsing conditions. Fi-
nally, Section 5 discusses some related work, and Section
6 concludes.

2 TCP Performance over 802.11 PSM

TCP is the transport layer of choice for a majority of
network applications. Its performance is therefore a criti-
cal consideration in the design of any network component.
This section evaluates the impact of the 802.11 power-
saving mode (PSM) on TCP performance.

During the initial slow-start phase of a TCP connec-
tion, round-trip-times (RTTs) dominate the transfer rate.
The network bandwidth will only begin to dominate trans-
fer rates when the connection saturates the available band-
width. For example, if a 5 Mbps 802.11 wireless link is
the bottleneck for a connection with a 40 ms RTT, this
won’t happen until around 25 KB of data is in transit (the
bandwidth-delay product). Considering that most HTTP
responses are less than a few tens of kilobytes [9, 13] and
TCP packets are typically 1500 bytes, RTTs are critical for
web-browsing performance.

When TCP is run over an 802.11 link with power saving
mode enabled, the effective RTTs will initially be rounded
up to the nearest 100 ms. This is because when the MD
sends data (i.e., a TCPsyn or ack packet, or a TCP data
packet containing a request) to the server at the other end of
the TCP connection, it will go to sleep as soon as this data
has been transmitted to the AP. When the response data
arrives from the server after some delay, it must be buffered
at the AP until the next beacon occurs. Figure 1 shows
estimated RTT times and slowdowns with PSM enabled;
the slowdown depends on how much less the original RTT
is than a multiple of 100 ms.

At the beginning of a beacon period the amount of data
buffered at the AP is equal to the TCP window size (assum-
ing sufficient bandwidth between the server and the access
point). As soon as the MD receives the first TCP packet
it will send an acknowledgement, prompting the server to
send more data. If the new data arrives from the server be-
fore the AP finishes sending the buffered window of data
to the client, the 802.11 network interface will stay awake;
otherwise it will enter sleep mode until the next beacon
time. The new data arrives from the server approximately
one RTT after the start of the beacon period, during which
time the wireless 802.11 link continually transmits data at
maximum bandwidth. For example, with a 5Mbps 802.11
link and a 40 ms RTT, the window size must be around
25 KB in order to keep the wireless link busy until the new
window of data begins to arrive from the server; until the
window size reaches this point, the transmission of each
TCP window will take 100 ms. This problem becomes
worse as the bandwidth of the 802.11 link increases —
counter-intuitively, TCP transmission times may be shorter
over a lower bandwidth 802.11 link because the link will
become saturated sooner and prevent the network interface
from entering sleep mode.

Figure 2 shows the evolution of a TCP connection both
with and without PSM enabled. For this test, the mobile
client opened a TCP connection with a server and sent a re-
quest for 40 kB of data; the server responded with the data.
The client used for this test was a Compaq iPAQ H3600
series hand-held computer running Familiar Linux version
0.4 with an Enterasys Networks RoamAbout 802.11 DS
High Rate network interface card (NIC); the card was op-
erating at 11 Mbps, but the maximum effective bandwidth
achieved was around 5 Mbps. The server was in the same
building as the 802.11 access point; the RTT was around
5 ms, and the bandwidth between the server and AP was at
least 10 Mbps. Shown are the times at which data packets
were sent from the server, where time zero is the time that
the server saw the initialsyn packet.

With PSM off, the connection quickly saturates the
available bandwidth of the network—the maximum is
around 5 Mbps, limited by the 802.11 wireless link. How-
ever, with PSM on, the initial RTTs are effectively in-
creased to 100 ms. With an actual RTT of around 5 ms,
only around 3 KB of buffered data should be required to
keep the 5 Mbps link busy for long enough to allow the next
window of data to begin arriving from the server and pre-
vent the network interface from going to sleep. As shown
in Figure 2, this happens after the TCP window grows to
4 packets (about 6000 bytes). Since the RTT of this con-
nection is so short, it can almost be considered a best-case
scenario for the 802.11 PSM.

In another test of the 802.11 PSM, the mobile client

2



0 50 100 150 200 250 300
0

100

200

300

RTT (ms)

P
S

M
 R

T
T

 (
m

s)

5ms 
80ms
50ms

0 50 100 150 200 250 300
1

10

100

RTT (ms)

P
S

M
 s

lo
w

do
w

n 5ms 
80ms
50ms

Figure 1: Estimated RTT slowdown due to 802.11 PSM.
The upper graph shows the effective RTTs with PSM en-
abled, and the lower graph shows the slowdown.
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Figure 2: Measured evolution of a TCP connection with
and without PSM enabled.

opens a TCP connection to a server and sends a request
for some number of bytes; the server responds by sending
the requested block of data. By doing this repeatedly for
various data block sizes, I determined the relationship be-
tween data block size and transfer time. The client used
was the same iPAQ device. The server was run on vari-
ous machines to evaluate different network characteristics.
The first server was in the same building as the 802.11
access point; the RTT was 5 ms, and the bandwidth was
at least 10 Mbps. The second server was located around
3000 miles away and had a high bandwidth internet con-
nection; the RTT was 80 ms and the bandwidth was at least
10 Mbps. The third server was 3 miles away and behind a
DSL internet connection; it had a 50 ms RTT and outgoing
bandwidth of 70 Kbps. The performance test measured the
transfer time for power-of-two data block sizes between
1 B and 4 MB. It was run ten times alternating between
PSM on and PSM off (five tests each). The results showed
no significant variations between the runs, and the mean
values are presented.

Figure 3 shows the relationship between data block size
and total transfer time (including the request and response)
for each server both with PSM on and PSM off. Figure 4
presents another view of the same data; it shows the slow-
down incurred using PSM. For small data block sizes the
entire response fits in one or two TCP data packets, and
the total time for the transaction is equal to two RTTs –
during the first RTT the client sends asyn packet to the
server, and the server responds with asyn+ack packet;
during the second RTT the client sends the request to the
server and it responds with up to two data packets. With
PSM off, the transfer time is determined by the RTT to
each server; however, with PSM on the transfer times are
200 ms regardless of the server. The observed slowdowns
match those predicted by Figure 1.

The transfer times for the low-bandwidth (70 Kbps)
server become bandwidth-limited even before the trans-
fer requires more than one RTT. For the high-bandwidth
servers, the transfer times begin to take multiple RTTs
as the data block size increases and eventually become
bandwidth-limited; the maximum bandwidth achieved was
about 4.9 Mbps. With PSM on, the maximum bandwidth
achieved was about 3.4 Mbps. Apparently, the maximum
bandwidth is limited by the overhead incurred by the PSM
signalling; a close look at Figure 2 reveals that the data
packet spacing in steady state is slightly increased with
PSM on.

In some cases, the MD sends data to a remote machine
rather than vice-versa; for example, this occurs if a user is
editing a remote document. In this case, the 802.11 PSM
causes the TCPacks to be delayed instead of the data
packets. I ran the same performance test with the mobile
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Figure 3: Measured data block size vs. transfer time for re-
quest/response transactions over TCP with various servers
and PSM on and off.
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Figure 4: PSM slowdown from Figure 3.

device configured as the server, and a machine on the 5 ms,
10 Mbps network configured as the client. The results were
essentially identical to those obtained when the mobile de-
vice was the client.

The basic finding from these measurements is that the
100 ms sleep interval used in the 802.11 PSM istoo coarse-
grain to maintain network performance.

3 Client Network Usage Characteristics

In optimizing a network interface to minimize power
consumption, it is important to consider how clients use
the network. For example, the 802.11 PSM allows the net-
work interface to sleep for periods of 100 ms. Since there
is a basic tradeoff between the extent to which power con-
sumption is minimized in sleep mode and how long it takes
to wakeup (and also how much energy the transition takes)
[1, 14], the sleep period determines how deep the network
interface sleep mode can be. Additionally, waking up to
listen to beacons is costly in terms of power consumption;
the sleep period determines the significance of this over-
head when the network interface is continuously sleeping.

To evaluate the characteristics of client network usage, I
analyzed client web traffic from the UC Berkeley Home IP
dialup service traced for 18 days in November, 1996 [9].
The network activity for these traces is dominated by long
transfer times over the slow modem links, but certain as-
pects can be relevant to general client usage patterns. In
particular, the time that clients spend idle or waiting for
responses from servers present opportunities for the net-
work interface to enter a sleep mode, and these times are
probably not critically dependent on the bandwidth of the
client’s network link.

For each HTTP transaction, the traces provide the client
ID (anonymized IP address), the time at which the client
made the request, and the start and end times for the re-
sponse from the server. To analyze the traces, I first sorted
the HTTP transactions by client ID. I then ordered the re-
quest, response start, and response end events for each
client. Some transactions are never completed and have
invalid timestamps; I excluded these from my analysis. I
processed the ordered event lists and tracked the client state
as one of:

wait: one or more outstanding requests and not
receiving any responses

recv: receiving one or more responses

idle: no outstanding requests and not receiving
any responses (note that this will include
both user ’think time’ and browser process-
ing time)
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Figure 5 shows the cumulative distribution function
(CDF) for the client wait times. The solid line shows
the cumulative distribution for the duration of all the wait
events (each time a client enters the wait state). The dashed
line shows the percentage of the total wait time that these
wait events account for. For example, 45% of all wait
events take less than 0.1 s, and these events account for 3%
of the total wait time; 88% take less than 1 s and account
for 19% of the total; 99% take less than 10 s and account
for 60% of the total.

Figure 6 shows the CDF for the client idle times. The
solid and dashed lines are as in Figure 5. However, in the
traces many clients have no activity over a period of several
days; if this data is included these idle times completely
dominate the total idle time (as shown by the dotted line).
Therefore, idle events longer than 1000 s (around 2% of all
idle events) were excluded from the total idle time repre-
sented by the dashed line. The figure indicates that 6.7% of
all idle events take less than 0.1 s, and these events account
for 0.01% of the total idle time; 26% take less than 1 s and
account for 0.5% of the total; 66% take less than 10 s and
account for 7.5% of the total; 93% take less than 100 s and
account for 48% of the total. For reference, if only idle
events less than 100 s are included, the idle events less than
1 s account for 1.1% of the total; and if only idle events less
than 10 s are included, the idle events less than 1 s account
for 6.8% of the total.

The important point about these results is that although
most wait and idle events are of short duration, most of the
total wait and idle times are spent in long latency events.
For example, over 80% of the total wait time and virtu-
ally all of the total idle time is spent in events longer than
1 s. Since the energy spent in sleep mode is directly pro-
portional to the sleep duration, this means that long wait
and idle periods will account for most of the sleep energy.
The conclusion is that the 100 ms sleep interval used in the
802.11 PSM istoo fine-grainto minimize energy effec-
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Figure 5: CDF for client wait events and total wait time.

tively.

4 Proposed Improvements to 802.11 PSM

Section 2 demonstrated that the 802.11 PSM is too
coarse-grain to maintain performance, and Section 3
demonstrated that it is too fine-grain to minimize en-
ergy. This section presents simple alternatives to the basic
802.11 PSM which can maintain performance while mini-
mizing the energy for a wireless network link.

Figure 7 diagrams the behavior of the basic 802.11 PSM
and several proposed alternatives. After sending data over
the wireless link (e.g. an HTTP request, or a TCPack ),
a basic PSM implementation goes to sleep and then wakes
up to listen to beacons every 100 ms. The main perfor-
mance problem is that fast response times will be rounded
up to 100 ms. A simple solution to this problem is the Stay-
Awake scheme which delays going into sleep mode for a
short period of time after the link is active (100 ms in the
example). The power consumption problem with the basic
PSM occurs if the link is idle for a long period of time;
the network interface must wake up every 100 ms to lis-
ten to beacons. A simple solution to this problem is the
ListenInterval-Backoff scheme which allows the network
interface to sleep for longer periods of time when there is
no activity (twice as long as the previous interval in the
example). In this work, the maximum sleep duration is
set to 0.9 s to avoid TCP timeouts. Of course the Stay-
Awake and ListenInterval-Backoff schemes can be com-
bined; Max-Delay is a PSM scheme that never sleeps for
longer than some percentage of the total elapsed time since
the last activity on the wireless link (20% in the example).

Table 1 summarizes the effect that the proposed PSM
schemes have on the latency and energy consumption of
the wireless network link. For example, the Max-Delay
scheme exhibits desirable overall properties. Very fast re-
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Figure 6: CDF for client idle events and total idle time.
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Backoff (2x):

PSM basic:

Max−Delay (20%):

Stay−Awake (0.1s):

request

time:
1s 2s 3s0s

ListenInterval−
max = 0.9s

Figure 7: The behavior of various PSM alternatives. The arrow at time 0 indicates activity on the wireless link, and the
shaded bars indicate when the network interface wakes up to listen to beacons.

Latency Energy
(vs. no PSM) (vs. PSM basic)

short medium long active listening
(awake) to beacons

PSM basic Increased by up to 100 ms
Stay-Awake Unchanged Increased by Increased Unchanged

up to 100 ms
ListenInterval- Increased by Increased by Increased by Unchanged Decreased
Backoff (2x) up to 100 ms up to 2x up to 0.9 s
Max-Delay (20%) Unchanged Increased by Increased by Increased Decreased

up to 20% up to 0.9 s

Table 1: Comparison of the latency and energy implications for various PSM alternatives.
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sponse times are not delayed, while longer ones are in-
creased by up to a certain percentage with a set maxi-
mum limit. The active energy is increased since the tran-
sition into sleep mode is delayed with Stay-Awake, but
the energy spent listening to beacons is decreased by the
ListenInterval-Backoff.

Although Figure 7 shows the PSM schemes starting
when request data is sent from the MD, the implementa-
tions considered in this work take effect whenever the wire-
less link is active in either direction. This is simple, and
probably the desired behavior if data being sent to the MD
indicates a higher probability that there will be more activ-
ity in the near future. Additionally, the PSM schemes start
over when there is any new activity on the link. It is impor-
tant to point out that the ListenInterval-Backoff is designed
for a MD which initiates request/response network traffic.
In general, it is not appropriate for real-time communica-
tion, or for a MD which acts as a server and responds to
external requests.

Updating the existing 802.11 MAC to support Stay-
Awake and ListenInterval-Backoff should be fairly trivial.
The access point could be informed of the MD’s Stay-
Awake time, and could forward data to the MD without
delay during this time. Or, it could notify the device as
soon as data arrived from the network instead of waiting
for the next beacon; in this case the device could retrieve
the data if awake. The 802.11 specification already allows
for a ListenInterval which is different than the BeaconPe-
riod; the only enhancement is to enable the ListenInterval
to change more dynamically.

4.1 Simulation Methodology

To analyze the performance and energy impact of the
basic 802.11 PSM, and to evaluate the proposed PSM en-
hancements, I simulated a mobile client browsing the Web
over a wireless network link.

Using the network simulatorns-2 [16], I modeled a
mobile client communicating with an access point over a
wireless link with PSM. Since I was not concerned with
many of the complications which the 802.11 protocols ac-
counts for—such as signal strength, channel contention,
node movement, and multicast—I chose not to model the
detailed MAC protocol, but instead made some simple
modifications to the basic link object inns-2 . First, I
modified the C++ queue element of a link to support a
sleep mode in which it does not forward any packets, and in
which it alerts its corresponding OTcl object when a new
packet arrives. I also modified the C++ delay element of
a link to alert its corresponding OTcl object when it goes
idle. I modeled the wireless link as an OTcl object which
controls AP to MD and MD to AP links. The beaconing
is implemented using a timer which expires every 100 ms.

During each beacon, I determine whether the MD listens to
the beacon based on its ListenInterval-Backoff algorithm.
If it does, and there is data buffered in the queue for the
AP to MD link, the MD wakes up (the queues are acti-
vated). When both links are idle for longer than the Stay-
Awake parameter, the MD goes to sleep (the queues are
deactivated). Whenever a packet arrives at the queue for
the MD to AP link, the MD wakes up immediately. Based
on the experiments described in Section 2, I modeled the
AP to MD and MD to AP links as 5 Mbps with a latency of
100�s.

To model a client browsing the web, I used the HTTP
traffic generator present in thens-2 distribution (inns-
2.1b8a/tcl/http/ ). In the model, the retrieval of a
web page begins with a client opening a TCP connection
with the server and sending a request. The model uses one-
way TCP connections, but I updated it to use FullTcp con-
nections. The server sends a response, and then the client
retrieves some number of embedded images. To get these,
the client opens up to four parallel TCP connections with
the server. After the web page retrieval is complete, the
client waits for some amount of think time before retriev-
ing the next page. The various parameters in this model
are randomized based on empirical data [13]. As in Sec-
tion 3, I limited the user think time to 1000 seconds be-
cause otherwise think times as long as an entire day would
completely dominate the total think time. I also added a
server response time which was not present in the origi-
nal model. I based this on the data in Figure 5, except I
subtracted 100 ms from these times since they include the
network delay; so, in the model 45% of the time the server
responds with no delay.

To test the 802.11 PSM and the proposed enhancements,
I modeled a network consisting of a mobile client, an ac-
cess point, and a server. Admittedly, using a single server
with a set bandwidth and RTT is a simplification and sig-
nificantly effects the performance impact of the PSM. For
each of various PSM settings, I simulated a client retrieving
10,000 web pages; these comprised a total of 38,428 HTTP
request/response transactions, and around 541,000 seconds
of client web browsing time. The random number genera-
tor was seeded with the same value for each test; further-
more, since the various PSM modes can in certain cases
change the order of events in retrieving a web page, all of
the necessary random variables for a page were generated
before starting to retrieve it. Figure 8 shows the CDFs for
the actual randomized parameters used in the simulations.

To simulate the power consumption of the 802.11 net-
work interface card, I used a very simple model inspired
by various reported measurements [3, 5, 8]. I modeled the
power usage as 1 W while awake (sending data, receiving
data, or idle), and 50 mW while asleep. In reality, 802.11
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cards consume somewhat more power while sending and
receiving data; but, as demonstrated below, the power con-
sumed while actually transmitting data in the web brows-
ing simulations tends to be insignificant. I modeled the en-
ergy consumed in waking up and listening to a beacon as
5 mJ, based on an approximation of 1 W being consumed
for 5 ms. I believe that these estimates are reasonable ap-
proximations; but, since the values can vary, I present the
raw data below in addition to computed energy estimates.

4.2 Performance and Energy Results

Figure 9 shows the mean and median page retrieval
times and the mean slowdown per page when PSM is en-
abled for various AP to server RTTs. The mean slowdown
per page values were obtained by dividing the retrieval
time for each page without PSM enabled by the retrieval
time for the same page with the basic 802.11 PSM enabled,
and taking the mean. Thus, each page is given equal weight
independent of how long its retrieval time is. As expected,
the PSM has the most impact when the connection between
the AP and server is very fast.

For the following analyses, I use an AP to server RTT
of 40 ms. This is a somewhat arbitrary choice, but since
clients will in general communicate with servers that have
both shorter and longer RTTs, using a single server with a
40 ms RTT should provide a meaningful data point.

Figure 10 compares the performance of the basic PSM
with two alternatives. Each marker on the figure repre-
sents the retrieval of a single web page; the x-coordinate
is the retrieval time with PSM off, and the y-coordinate
is the slowdown when PSM is on. The figure shows that
PSM has the greatest negative impact on pages with fast
retrieval times. These are slowed down by up to about
2.5 times which is the penalty for extending a 40 ms RTT
to 100 ms. On average, page retrieval times are increased
by 70%. The Stay-Awake (0.1 s) scheme drastically im-
proves the retrieval times; the mean slowdown is decreased
to around 3%. The Max-Delay (20%) scheme also reduces
the mean slowdown to around 3%; in this scheme pages
with retrieval times less than 1 s are not delayed at all, and
pages with retrieval times between 1 s and 10 s tend to be
delayed by less than 20%.

Figure 11 compares the mean per-page energy and per-
formance of various PSM alternatives, and Table 2 shows
the data used to compute the energy estimates. The first
column in the figure shows the basic 802.11 PSM. It uses
around 10 times less energy per page than 802.11 with
PSM off, but suffers from a slowdown of around 70% ad-
ditional delay per page. Based on the estimates, the energy
spent while awake is negligible since the network inter-
face is in sleep mode for around 1000 times longer than it
is awake. Also, the total energy used is equally split be-
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traffic simulations.
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to server RTTs.
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Figure 11: Mean per-page energy and slowdown compar-
isons for various PSM alternatives. The PSMs are de-
scribed by a pair consisting of the Stay-Awake time in sec-
onds, and the ListenInterval-Backoff algorithm. The esti-
mated energy per page with PSM off is 54 J.

(Stay-Awake, awake sleep beacons
ListenInterval time (s) time (s) listened to
-Backoff)
(0, 0) 0.05 54.54 545.85
(0.1, 0) 1.07 53.04 530.84
(1.0, 0) 4.63 49.45 494.86
(0, 2x) 0.05 55.06 82.83
(0.1, 2x) 1.02 53.36 68.80
(0.2, 50%) 1.46 52.81 72.45
(0.5, 20%) 2.66 51.50 88.37
(1.0, 10%) 4.52 49.58 108.38

Table 2: Simulation data used to compute energy values in
Figure 11.

tween sleep mode power consumption and waking to lis-
ten to beacons. The second two columns show the results
when the Stay-Awake scheme is implemented with times
of 0.1 s and 1.0 s respectively. These almost completely
eliminate the performance slowdown, but have the draw-
back of successively increasing the awake energy. The
next two columns show the results when the ListenInterval-
Backoff scheme of doubling the ListenInterval is imple-
mented with Stay-Awake of 0 s and 0.1 s respectively. The
ListenInterval-Backoff reduces the energy spent listening
to beacons by about 8 times, but without Stay-Awake it in-
creases the PSM slowdown to around 130% per page. With
Stay-Awake, it is better than the basic 802.11 PSM in terms
of both energy and performance. The final three columns
show the Max-Delay scheme with maximum delays of
50%, 20%, and 10% respectively. These schemes succes-
sively tradeoff better performance for increased awake en-
ergy.

5 Related Work

A survey of energy efficient network protocols for wire-
less networks is provided in [10]. Although there have
been many studies on the performance and energy con-
sumption of ad hoc wireless networks (e.g. [3, 8, 15, 17]),
very few have investigated infrastructure networks. Infras-
tructure networks have fundamentally different require-
ments than ad hoc networks because the access point is a
centralized controller and is not constrained by power con-
sumption. However, the basic concepts behind the Stay-
Awake and ListenInterval-Backoff schemes could still po-
tentially improve the performance and energy consumption
of these networks.

In [4], Chenet. al. evaluate the energy consumption
of various access protocols for wireless infrastructure net-
works. In contrast to this work, the study focuses on the
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active energy consumption and the impact of contention
for the wireless channel. These factors are certainly im-
portant for some environments, but with sporadic network
activity the idle energy consumption dominates the active
energy.

Kravets and Krishnan investigate the energy and delay
impact of a power-aware transport protocol which exposes
power management to applications [11]. This approach can
be very effective, but it increases overall system complex-
ity. In contrast, the approach taken in this work operates
completely at the MAC level and does not require high-
level information.

Chandra investigates using history-based strategies for
setting the sleep interval to minimize the network power
consumption when accessing streaming media [2]. This
approach is only applicable for regular access patterns, in
contrast to the adaptive algorithms presented in this work.

Another area of related work is power management of
hard disks [12, 7]. Like the network interface, hard disks
can be disabled to save energy. However, a fundamental
difference with the network interface is that the informa-
tion for determining when to reactivate the component may
not be local to the mobile device; a packet can arrive from
the external network, and the mobile device must wake up
to receive it.

6 Conclusion

The existing 802.11 power-saving mode causes network
round-trip-times to be rounded up to the nearest 100 ms.
This adversely affects short TCP connections which are
limited by the round-trip-time and which are the norm in
typical web browsing scenarios. A viable solution is the
Stay-Awake scheme in which the network interface stays
awake for a short period of time after the link is active.
Additionally, with the existing 802.11 power-saving mode
implementations, almost all energy consumption is due
to sleep power and listening to beacons. ListenInterval-
Backoff can reduce the energy spent listening to beacons.
Furthermore, it leads to longer sleep intervals which have
the potential to enable deeper sleep modes.
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