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Abstract. The Beltrami image flow is an effective non-linear filter, often used in color image
processing. It was shown to be closely related to the median, total variation, and bilateral filters. It
treats the image as a 2D manifold embedded in a hybrid spatial-feature space. Minimization of the
image surface area yields the Beltrami flow. The corresponding diffusion operator is anisotropic and
strongly couples the spectral components. Thus, there is so far no implicit, nor operator-splitting-
based numerical scheme for the partial differential equation that describes the Beltrami flow in color.
Usually, this flow is implemented by explicit schemes, which are stable only for very small time steps
and therefore require many iterations. At the other end, vector extrapolation techniques accelerate
the convergence of vector sequences, without explicit knowledge of the sequence generator. In this
paper, we propose to use vector extrapolation techniques for accelerating the convergence of the
explicit schemes for the Beltrami flow. Experiments demonstrate fast convergence and efficiency
compared to explicit schemes.
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1. Introduction. The Beltrami framework, introduced in [38, 39, 44], is based
on a nonlinear flow that was applied as an edge preserving denoising and deblurring
algorithm for signals and especially multi-channel images, see for example [3]. Unlike
related nonlinear filters such as the total variation filter [23, 1, 8], which can be
computed efficiently using semi-implicit schemes [43], the Beltrami flow is usually
implemented by an explicit finite difference approximation of the characterizing partial
differential equation. Standard explicit finite difference schemes require small time-
steps for stability that lead to a large number of iterations required for convergence
to the desired solution. So far, there is no implicit scheme for the Beltrami flow, due
to the strong coupling of the color components and its anisotropic nature. Our goal
is to accelerate the slow convergence of the explicit schemes, for which we propose to
employ vector extrapolation techniques.

As an alternative to the explicit scheme, an approximation using the short time
kernel for the Beltrami operator was suggested in [40]. This method is still computa-
tionally demanding, since computing the kernel operation involves geodesic distance
computation around each pixel. A semi-implicit scheme has been devised in [11] for
an approximation of the Beltrami flow. This approximation is not, however, consis-
tent with the PDE characterizing the Beltrami flow. Rather, it discretizes a slightly
different PDE. The Beltrami flow is also strongly linked to similar diffusion processes
defined on non-flat manifolds [41], and formulations of it were solved on manifolds as
well as images [40, 36].

Strongly related to the Beltrami operator, the bilateral operator was studied in
different contexts (see for example [35], [42], [37], [14], [4]), and can be shown to be
an approximation of the Beltrami kernel. This filter has later been extended to the
the non-local means filter [6].
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In this paper, we propose to apply vector extrapolation methods to accelerate the
convergence rate of standard explicit schemes for the Beltrami flow in color. Specif-
ically, we use the minimal polynomial extrapolation (MPE) method of Cabay and
Jackson [7] and the reduced rank extrapolation (RRE) method of Mes̆ina and Eddy
[20, 13]. Because both MPE and RRE take as their input only a vector sequence
obtained from a fixed-point iterative procedure, they can be applied not only to lin-
early generated sequences, but also to nonlinear ones. This allows us to employ
them for accelerating the convergence of the vector sequences generated by the ex-
plicit finite-difference schemes for the Beltrami geometric flow. This approach for
efficient Beltrami filtering was introduced in [10], and we elaborate upon it in this
paper, further detailing the theory and practice of vector extrapolation methods. We
demonstrate the efficiency and accuracy of MPE and RRE in color image processing
applications, such as scale-space analysis, denoising, and deblurring.

This paper is organized as follows: Section 2 gives a brief summary of the Beltrami
framework. In Section 3, we review approximations based on standard explicit finite-
difference schemes. In Section 4, we present a detailed review of the MPE and RRE
methods, which were only briefly discussed before in the context of image processing
[10]. This review includes the derivation of the methods, computationally efficient
and stable algorithms for their implementation, their known convergence theory, and
a mode of application known as cycling. In Section 5, we apply RRE to our Beltrami
color flow and demonstrate the resulting speed-up. Section 6 concludes the paper.

2. The Beltrami Framework. Let us briefly review the Beltrami framework
for non-linear diffusion in computer vision [18, 38, 39, 44]. For a more complete
introduction to the Riemannian geometry tools used, henceforth, we refer the reader
to [12].

We represent images as embedding maps of Riemannian manifolds in a higher
dimensional space. Denote such a map by X : Σ → M , where Σ is a two-dimensional
surface, with (σ1, σ2) denoting coordinates on it. We denote by M the spatial-feature
manifold, embedded in Rd+2, where d is the number of image channels. For example,
a gray-level image can be represented as a 2D surface embedded in R3. The map X in
this case is X(σ1, σ2) = (σ1, σ2, I(σ1, σ2)), where I is the image intensity. For color
images, X is given by X(σ1, σ2) = (σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)), where
I1, I2, I3 are the three components of the color vector (for example, red, green, blue
for the RGB color space).

Next, we choose a Riemannian metric on this surface. Its components are denoted
by gij . The canonical choice of coordinates in image processing is Cartesian (we denote
them here by x1 and x2). For such a choice, which we follow for the rest of the paper,
we identify σ1 = x1 and σ2 = x2. In this case, σ1 and σ2 are the image coordinates.
We denote the elements of the inverse of the metric by superscripts gij , and the
determinant by g = det(gij). Once images are defined as embedding of Riemannian
manifolds, it is natural to look for a measure on this space of embedding maps.

Denote by (Σ, g) the image manifold and its metric, and by (M,h) the space-
feature manifold and its metric. Then, the functional S[X] attaches a real number to
a map X : Σ → M ,

S[X, gij , hab] =
∫

dmσ
√

g||dX||2g,h, (2.1)

where m is the dimension of Σ, g is the determinant of the image metric, and the range
of indices is i, j = 1, 2, ..., dim(Σ) and a, b = 1, 2, ..., dim(M). The integrand ||dX||2g,h
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is expressed in a local coordinate system, by ||dX||2g,h = (∂xi
Ia)gij(∂xj

Ib)hab. We
have used here Einstein summation convention: identical indices that appear up and
down are summed over. This functional, for dim(Σ) = 2 and hab = δab, was first
proposed by Polyakov [22] in the context of high energy physics, in the theory known
as string theory.

The elements of the induced metric for color images with Cartesian color coordi-
nates are

G = (gij) =
(

1 + β2
∑3

a=1(I
a
x1

)2 β2
∑3

a=1 Ia
x1

Ia
x2

β2
∑3

a=1 Ia
x1

Ia
x2

1 + β2
∑3

a=1(I
a
x2

)2

)
,

where a subscript of I denotes a partial derivative and the parameter β > 0 determines
the ratio between the spatial and spectral (color) distances. Using standard methods
in the calculus of variations, the Euler-Lagrange equations minimizing S with respect
to the embedding (assuming Euclidean embedding space) are

0 = − 1√
g
hab δS

δIb
=

1√
g
div (D∇Ia)

︸ ︷︷ ︸
∆gIa

, (2.2)

where the matrix D =
√

gG−1. See [38] for explicit derivation. The operator that
acts on Ia is the natural generalization of the Laplacian from flat spaces to manifolds,
it is called the Laplace-Beltrami operator, and is denoted by ∆g.

The parameter β, in the elements of the metric gij , determines the nature of the
flow. At the limits, where β → 0 and β →∞, we obtain respectively a linear diffusion
flow and a nonlinear flow, akin to the TV flow for the case of grey-level images (see
[39] for details).

The Beltrami scale-space emerges as a gradient descent minimization process

Ia
t = − 1√

g

δS

δIa
= ∆gI

a, (2.3)

with reflective boundary conditions and a smooth initial solution Ia|t=0 = Ia
0 . For

Euclidean embedding, the functional in Eq. 2.1 reduces to

S(X) =
∫ √

g dx1 dx2,

where

g = det(gij) = 1 + β2
3∑

a=1

|∇Ia|2 +
1
2
β4

3∑

a,b=1

|∇Ia ×∇Ib|2. (2.4)

The role of the cross product term
∑3

a,b=1 |∇Ia ×∇Ib|2 in the minimization was
explored in [18]. It enforces the Lambertian model of image formation by penalizing
misalignments of the gradient directions in the various color channels. Accordingly,
taking large values of β makes sense as we would expect

∑3
a,b=1 |∇Ia×∇Ib|2 to vanish

in natural images and
∑3

a=1 |∇Ia|2 to be small.
The geometric functional S can be used as a regularization term for color image

processing. In the variational framework, the reconstructed image is the minimizer
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of a cost-functional. Functionals using the Beltrami flow for regularization can be
written in the general form

Ψ =
α

2

3∑
a=1

||KIa − Ia
0 ||2 + S(X),

where K is a bounded linear operator. In the denoising case, K is the identity operator
Ku = u, and in the deblurring case, Ku = k∗u, k is the blurring kernel (often assumed
to be Gaussian), and k̄(x, y) = k(−x,−y). The parameter α controls the smoothness
of the solution.

The modified Euler-Lagrange equations as a gradient descent process for each
case are

i) for denoising:

Ia
t = − 1√

g

δΨ
δIa

= − α√
g
(Ia − Ia

0 ) + ∆gI
a. (2.5)

ii) for deblurring:

Ia
t = − 1√

g

δΨ
δIa

= − α√
g
k̄ ∗ (k ∗ Ia − Ia

0 ) + ∆gI
a. (2.6)

The Laplace-Beltrami operator in Eqs. (2.5) and (2.6) provides us with an adap-
tive smoothing mechanism. In areas with large gradients (edges), the fidelity term
is suppressed and the regularizing term becomes dominant. At homogenous regions
with low-gradient magnitude, the fidelity term takes over and controls the flow.

3. Standard Explicit Finite Difference Scheme. Our goal is to speed-up
the convergence of the explicit scheme in Beltrami color processing. In this section,
we detail the standard explicit scheme. The applications we address are the Beltrami-
based smoothing, Beltrami-based denoising, and Beltrami-based deblurring.

We work on a rectangular grid with step sizes ∆t in time and ∆x in space. The
spatial units are normalized such that ∆x = 1. For each channel Ia, a ∈ {1, 2, 3}, we
define the discrete approximation (Ia)n

ij by

(Ia)n
ij ≈ Ia(i∆x, j∆x, n∆t).

On the boundary of the image we impose the Neumann boundary condition.
The explicit finite difference scheme is written in a general form as

(Ia)n+1
ij = (Ia)n

ij + ∆tOn
ij(I

a), (3.1)

where On
ij is the discretization of the right hand side of the relevant continuous equa-

tion (2.3), (2.5), or (2.6). Below, we give the exact form of the operator On
ij for each

of the above cases.
• Beltrami-based smoothing.

The explicit scheme (3.1) for discretizing Equation 2.3 takes the form

(Ia)n+1
ij = (Ia)n

ij + ∆tLn
ij(I

a), (3.2)

where Ln
ij(U

a) denotes a discretization of the Laplace-Beltrami operator ∆gU
a,

for example, using a backward-forward approximation.
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• Beltrami-based denoising.
The explicit scheme (3.1) is given in this case by

(Ia)n+1
ij = (Ia)n

ij + ∆t

(
Ln

ij(I
a) +

α√
g
((Ia

0 )n
ij − (Ia)n

ij)
)

. (3.3)

• Beltrami-based deblurring.
Similarly, in the deblurring case, the explicit scheme (3.1) reads

(Ia)n+1
ij = (Ia)n

ij + ∆t

(
Ln

ij(I
a) +

α√
g
k̄n

ij ∗
(
(Ia

0 )n
ij − kn

ij ∗ (Ia)n
ij

))
. (3.4)

Due to stability requirements (see [9], [17]), explicit schemes limit the time-step
∆t and usually require a large number of iterations in order to converge. We propose
to use vector extrapolation techniques in order to accelerate the convergence of these
explicit schemes.

4. MPE/RRE Acceleration Techniques. The minimal polynomial extrapo-
lation (MPE) [7] and the reduced rank extrapolation (RRE) [20, 13] are two vector
extrapolation methods that have proved to be very efficient in accelerating the con-
vergence of vector sequences arising from fixed-point iteration schemes for nonlinear,
as well as linear, large and sparse systems of equations. For a review of these meth-
ods and others, covering the relevant developments until mid ’80s, see [34]. The brief
review we present here covers the various developments that have taken place since
the publication of [34].

Both methods are derived by considering vector sequences x0,x1, . . . , generated
via a linear fixed-point iteration process, namely,

xn+1 = Axn + b, n = 0, 1, . . . , (4.1)

where A is a fixed N × N matrix and b is a fixed N -dimensional vector and x0 is
an initial vector chosen by the user. Clearly, this sequence has a limit s that is the
unique solution to the linear system

x = Ax + b, (4.2)

provided ρ(A) < 1, where ρ(A) is the spectral radius of A. [Note that the system
in (4.2) can also be written as (I − A)x = b, and the uniqueness of the solution s
follows from our assumption that ρ(A) < 1, which guarantees that the matrix I−A
is nonsingular since 1 is not an eigenvalue of A.]

We now turn to simple derivations of MPE and RRE, that are based on those given
in [34]. Other derivations, based on the Shanks–Schmidt transformation [26, 25] have
been given in [30]. For a detailed treatment of this transformation, see [29, Chapter
16].

Given the sequence x0,x1, . . . , generated as in (4.1), let

un = ∆xn = xn+1 − xn, n = 0, 1, . . . ,

and define the error vectors εn as in

εn = xn − s, n = 0, 1, . . . . (4.3)
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Making also use of the fact that s = As + b, one can relate the error in step n to the
initial error via

εn = (Axn−1 + b)− (As + b) = A(xn−1 − s) = Aεn−1, (4.4)

which, by induction, gives

εn = Anε0, n = 0, 1, . . . . (4.5)

We now seek to approximate s by a “weighted average” of k + 1 consecutive xi’s
as in

sn,k =
k∑

i=0

γixn+i;
k∑

i=0

γi = 1. (4.6)

Substituting Equation (4.3) in Equation (4.6), and making use of the fact that
∑k

i=0 γi =
1, we obtain

sn,k =
k∑

i=0

γi(s + εn+i) = s +
k∑

i=0

γiεn+i (4.7)

which, by (4.5), becomes

sn,k = s +
k∑

i=0

γiAn+iε0. (4.8)

From this expression, it is clear that we must choose the scalars γi to make the vector∑k
i=0 γiAn+iε0, the weighted sum of the error vectors εn+i, i = 0, 1, . . . , k, as small

as possible. As we show next, we can actually make this vector vanish by choosing k
and the γi appropriately.

Now, given a nonzero N ×N matrix B and an arbitrary nonzero N -dimensional
vector u, it is known that there exists a unique monic polynomial P (z) of smallest
degree (that is at most N) that annihilates the vector u, that is, P (B)u = 0. This
polynomial is called the minimal polynomial of B with respect to the vector u. It is also
known that P (z) divides the minimal polynomial of B, which divides the characteristic
polynomial of B. Thus, the zeros of P (z) are some or all the eigenvalues of B.

Thus, if the minimal polynomial of A with respect to εn is

P (z) =
k∑

i=0

ciz
i; ck = 1,

then

P (A)εn = 0.

By (4.5), this means that

k∑

i=0

ciAiεn =
k∑

i=0

ciεn+i = 0. (4.9)
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This is a set of N linear equations in the k unknowns c0, c1, . . . , ck−1, with ck = 1.
In addition, these equations are consistent and have a unique solution because P (z)
is unique. From these equations, it seems, however, that we need to know the vector
εn = xn − s, hence the solution s. Fortunately, this is not the case, and we can
obtain the ci solely from our knowledge of the vectors xi. This is done as follows:
Multiplying Equation (4.9) by A, and recalling (4.4), we have

0 =
k∑

i=0

ciAεn+i =
k∑

i=0

ciεn+i+1.

Subtracting from this Equation (4.9), we obtain

0 =
k∑

i=0

ci(εn+i+1 − εn+i) =
k∑

i=0

ci(xn+i+1 − xn+i),

hence the linear system

k∑

i=0

ciun+i = 0. (4.10)

Once c0, c1, . . . , ck−1 have been determined from this linear system, we set ck = 1 and
let γi = ci/

∑k
j=0 cj , i = 0, 1, . . . , k. This is allowed because

∑k
j=0 cj = P (1) 6= 0 by

the fact that I − A is not singular and hence A does not have 1 as an eigenvalue.
Summing up, we have shown that if k is the degree of the minimal polynomial of A
with respect to εn, then there exist scalars γ0, γ1, . . . , γk, satisfying

∑k
i=0 γi = 1, such

that
∑k

i=0 γixn+i = s.
At this point, we note that, s is the solution to (I−A)x = b, whether ρ(A) < 1

or not. Thus, with the γi as determined above, s =
∑k

i=0 γixn+i, whether limn→∞ xn

exists or not.
In the sequel, we shall use the notation

U(j)
s = [uj |uj+1 | . . . |uj+s ]. (4.11)

Thus, U(j)
s is an N × (s + 1) matrix. In this notation, Equation (4.9) reads

U(n)
k c = 0; c = [c0, c1, . . . , ck]T. (4.12)

Of course, dividing Equation (4.12) by
∑k

i=0 ci, we also have

U(n)
k γ = 0; γ = [γ0, γ1 . . . , γk]T. (4.13)

4.1. Derivation of MPE. As we already know, the degree of the minimal
polynomial of A with respect to εn can be as large as N . This makes the process we
have just described a prohibitively expensive one, since we have to save all the vectors
xn+i i = 0, 1, . . . , k +1, which is a problem when N is very large. In addition, we also
do not have a way to know this degree. Given these facts, we modify the approach
we have just described as follows: We choose k to be an arbitrary positive integer
that is normally (much) smaller than the degree of the minimal polynomial of A with
respect to εn. With this k, the linear system in Equation (4.10) is not consistent,
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hence does not have a solution for c0, c1, . . . , ck−1, with ck = 1, in the ordinary sense.
Therefore, we solve this system in the least squares sense. Following that, we compute
γ0, γ1, . . . , γk precisely as described following Equation (4.10), and then compute the
vector sn,k =

∑k
i=0 γixn+i as our approximation to s. The resulting method is known

as the minimal polynomial extrapolation (MPE) method. Clearly, MPE takes as
its input only the integers k and n and the vectors xn,xn+1, . . . ,xn+k+1, hence can
be employed whether these vectors are generated by a linear or nonlinear iterative
process.

We can summarize the definition of MPE through the following steps:
1. Choose the integers k and n, and input the vectors xn,xn+1, . . . ,xn+k+1.

2. Form the N × k matrix U(n)
k .

3. Solve the overdetermined linear system U(n)
k−1c

′ = −un+k by least squares. Here
c′ = [c0, c1, . . . , ck−1]T.

Set ck = 1, and γi = ci/
∑k

i=0 ci, i = 0, 1, . . . , k.

4. Compute the vector sn,k =
∑k

i=0 γixn+i as approximation to limi→∞ xi = s.

4.2. Derivation of RRE. Again, we choose k to be an arbitrary positive integer
that is normally (much) smaller than the degree of the minimal polynomial of A with
respect to εn. With this k, the linear system in Equation (4.13) is not consistent,
hence does not have a solution for γ0, γ1, . . . , γk, in the ordinary sense. Therefore, we
solve this system in the least squares sense, subject to the constraint

∑k
i=0 γi = 1.

Following that, we compute the vector sn,k =
∑k

i=0 γixn+i as our approximation to
s. The resulting method is known as the reduced rank extrapolation (RRE) method.
Clearly, RRE, just as MPE, takes as its input only the integers k and n and the vectors
xn,xn+1, . . . ,xn+k+1, hence can be employed whether these vectors are generated by
a linear or nonlinear iterative process.

We can summarize the definition of RRE through the following steps:
1. Choose the integers k and n, and input the vectors xn,xn+1, . . . ,xn+k+1.

2. Form the N × k matrix U(n)
k .

3. Form the N × (k + 1) matrix U(n)
k , and solve the overdetermined linear system

U(n)
k γ = 0 by least squares, subject to the constraint

∑k
i=0 γi = 1. Here γ =

[γ0, γ1, . . . , γk]T.

4. Compute the vector sn,k =
∑k

i=0 γixn+i as approximation to limi→∞ xi = s.

4.3. Treatment of Nonlinear Equations. We now turn to the treatment
of nonlinear equations, such as those based on the Beltrami framework, by vector
extrapolation methods. Assume that the system of nonlinear equations in question
has been written in the (possibly preconditioned) form

x = F(x), (4.14)

where F(x) is an N -dimensional vector-valued function and x is the N -dimensional
vector of unknowns, such as the column-stacked vector form of the discretized image.
Let the sequence of approximations xn to the solution s be generated via

xn+1 = F(xn), n = 0, 1, . . . , (4.15)

and assume that this sequence converges to the solution vector s. In our case, F is
the right-hand side of the explicit discretization equation for the Beltrami color flow
(given in a general form in Equation 3.1).

F((Ia)ij) = (Ia)ij + ∆tOn
ij(I

a),
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For x close to s, F(x) can be expanded in a Taylor series in the form

F(x) = F(s) + F′(s)(x− s) + O(‖x− s‖2) as x → s.

Here F′(x) is the Jacobian matrix of the vector-valued function F(x). Recalling also
that F(s) = s, this expansion can be put in the form

F(x) = s + F′(s)(x− s) + O(‖x− s‖2) as x → s.

By the assumption that the sequence x0,x1, . . . , converges to s [which takes place
provided ρ(F′(s)) < 1], it follows that xn is close to s for all large n, and hence

xn+1 = s + F′(s)(xn − s) + O(‖xn − s‖2) as n →∞.

Rewriting this in the form

xn+1 − s = F′(s)(xn − s) + O(‖xn − s‖2) as n →∞,

we realize that, for all large n, the vectors xn behave as if they were generated by a
linear system of the form (I−A)x = b via

xn+1 = Axn + b, n = 0, 1, . . . , (4.16)

where A = F′(s) and b = [I− F′(s)]s. This suggests that the extrapolation methods
MPE and RRE [that were designed by considering vector sequences generated by a
linear fixed-point iterative process as in (4.1)] can be applied to sequences of vectors
obtained from nonlinear fixed-point iterative methods. Indeed, methods such as MPE
and RRE have been applied with success to the numerical solution of large and sparse
nonlinear systems of equations arising in various areas of science and engineering,
such as computational fluid dynamics, semiconductor research, and computerized
tomography.

4.4. Efficient Implementation of MPE and RRE. In subsections 4.1 and
4.2, we gave the definitions of MPE and RRE. These definitions actually form the
basis for the implementations of MPE and RRE that have been presented in [28]. The
most important aspect of these implementations is the accurate solution of the relevant
least-squares problems and minimization of computing time and storage requirements.
The implementations we give in the sequel, were developed in [28], where a FORTRAN
77 code is also included.

In these implementations, the least-squares problems are solved by using QR
factorizations of the matrices U(n)

k , as in

U(n)
k = QkRk.

Here Qk is an N × (k + 1) unitary matrix satisfying Q∗
kQk = I(k+1)×(k+1). Thus, Qk

has the columnwise partition

Qk = [q0 |q1 | · · · |qk ], (4.17)

such that the columns qi form an orthonormal set of N -dimensional vectors, that is,
q∗i qj = δij . The matrix Rk is a (k+1)×(k+1) upper triangular matrix with positive
diagonal elements. Thus,

Rk =




r00 r01 · · · r0k

r11 · · · r1k

. . .
...

rkk


 ; rii > 0, i = 0, 1, . . . , k. (4.18)
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This factorization can be carried out easily and accurately using the modified Gram–
Schmidt orthogonalization process (MGS). See, for example, [16] and [28]. For com-
pleteness, we give here the steps of MGS as applied to the matrix U(n)

k :
1. Compute r00 = ‖un‖ and q0 = un/r00.
2. For i = 1, . . . , k do

Set u(0)
i = un+i

For j = 0, . . . , i− 1 do
rjk = q∗ju

(j)
i and u(j+1)

i = u(j)
i − rjkqj

end
Compute rii = ‖u(i)

i ‖ and qi = u(i)
i /rii.

end

Here, ‖x‖ =
√

x∗x. In addition, the vector u(j+1)
i overwrites u(j)

i , so that the vectors
un+i, u(j)

i and qi all occupy the same storage location.
Note that Qk is obtained from Qk−1 by appending to the latter the vector qk

as the (k + 1)th column. Similarly, Rk is obtained from Rk−1 by appending to the
latter the 0 vector as the (k + 1)th row and then the vector [r0k, r1k, . . . , rkk]T as the
(k + 1)th column.

An important point we wish to emphasize is that, when forming the matrix U(n)
k ,

we overwrite the vector xn+i with un+i = ∆xn+i as soon as the latter is computed,
for i = 1, . . . , k. We save only xn. Next, when computing the matrix Qk, we overwrite
un+i with qi, i = 0, 1, . . . , k. This means that, at all stages of the computation of Qk

and Rk, we are keeping only k + 2 vectors in memory. The vectors xn+1, . . . ,xn+k+1

need not be saved.
With the QR factorization of U(n)

k (hence of U(n)
k−1) available we can give

algorithms for MPE and RRE within a unified framework as follows:

Algorithms for MPE and RRE
1. Input: k and n and the vectors xn,xn+1, . . . ,xn+k+1.
2. Compute the vectors un+i = ∆xn+i, i = 0, 1, . . . , k, and form the N × (k +1)

matrix

U(n)
k = [un |un+1 | · · · |un+k ],

and form its QR factorization, namely, U(n)
k = QkRk, with Qk and Rk as in

(4.17) and (4.18).
3. Determination of the γi:

• For MPE
With ρk = [r0k, r1k, . . . , rk−1,k]T, solve the k×k upper triangular system

Rk−1c′ = −ρk; c′ = [c0, c1, . . . , ck−1]T.

Set ck = 1, and γi = ci/
∑k

i=0 ci, i = 0, 1, . . . , k.
• For RRE

With e = [1, 1, . . . , 1]T, solve the (k + 1)× (k + 1) linear system

R∗
kRkd = e; d = [d0, d1, . . . , dk]T.

This amounts to solving two triangular systems: first R∗
ka = e for a,

and, following that, Rkd = a for d. Next, compute λ = 1/
∑k

i=0 di; λ is
always positive (it becomes zero only when sn,k = s in the linear case).
Next, set γ = λd, that is γi = λdi, i = 0, 1, . . . , k.
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4. With the γi computed, compute ξ = [ξ0, ξ1, . . . , ξk−1]T via

ξ0 = 1− γ0; ξj = ξj−1 − γj , j = 1, . . . , k − 1.

5. Compute

η = [η0, η1, . . . , ηk−1]T = Rk−1ξ.

Then compute

sn,k = xn + Qk−1η = xn +
k−1∑

i=0

ηiqi.

4.5. Residual Estimation. One common way of assessing the quality of the
approximation sn,k is by looking at the residual vector r(sn,k) associated with it.
When the xm are generated by the iterative process xm+1 = F(xm), we have r(x) =
F(x)− x, and

r(sn,k) = U(n)
k γ if F(x) is linear [F(x) = Ax + b],

r(sn,k) ≈ U(n)
k γ if F(x) is nonlinear.

Therefore,

‖r(sn,k)‖ = ‖U(n)
k γ‖ if F(x) is linear,

‖r(sn,k)‖ ≈ ‖U(n)
k γ‖ if F(x) is nonlinear.

In addition, no matter how the xm are generated, ‖U(n)
k γ‖ can be computed without

having to compute sn,k and F(sn,k) explicitly, and at no cost, via

‖U(n)
k γ‖ =

{
rkk|γk| for MPE,√

λ for RRE.

Here, rkk is the last diagonal element of the matrix Rk and λ is the parameter
computed in Step 3 of the algorithms in the preceding subsection. For details, see
[28].

4.6. Cycling with MPE and RRE. The convergence acceleration properties
of MPE and RRE have been studied in [27, 30, 32, 34, 35] as these methods are applied
to a linearly generated vector sequence {xm}. When the matrix A in F(x) = Ax+b
is diagonalizable, then the xm are necessarily of the form xm = s+

∑p
i=1 viλ

m
i , where

(λi,vi) are some or all of the eigenpairs of A, with distinct nonzero eigenvalues.
With λi ordered as |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · , the following important asymptotic
performance is achieved by both MPE and RRE when |λk| > |λk+1|:

sn,k − s = O(λn
k+1) as n →∞.

(This clearly shows that the sequence {sn,k}∞n=0 converges to s faster than the sequence
{xm}.) It can be shown that the same holds for RRE also when |λk| = |λk+1|.

This means that for large n, the fixed-point iterations reduce the contributions
of the smaller λi to the error sn,k − s, while MPE and RRE reduce the contributions
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of the k largest λi, that is, of λ1, . . . , λk. The end result is, of course, that sn,k − s is
smaller than each of xn+i − s, i = 0, 1, . . . , k, when n is large.

Obviously, there is no way of letting n go to infinity in practice. It also follows
from the asymptotic results just mentioned that increasing k generally makes MPE
and RRE converge faster. However, we have no way of increasing k indefinitely
either, because this would increase the storage requirements and also increase the
computational cost tremendously.

In case we are solving the system x = F(x) and the vectors xi are generated
via the fixed-point iterative procedure xn+1 = F(xn), we can employ a mode of
application called cycling or restarting in which n and k are held fixed. Here are the
steps of this mode.

C0. Choose integers n, k, and an initial vector x0.
C1. Compute the vectors xi, 1 ≤ i ≤ n + k + 1, [ via xn+1 = F(xn) ], and save

xn+i, 0 ≤ i ≤ k + 1.
C2. Apply MPE or RRE to the vectors xn+i, 0 ≤ i ≤ k+1, precisely as described

in subsection (4.4), with end result sn,k.
C3. If sn,k satisfies accuracy test, stop.

Otherwise, set x0 = sn,k, and go to Step C1.

We will call each application of Steps C1–C3 a cycle. We will also denote the sn,k

that is computed in the ith cycle s(i)
n,k.

A discussion of the error in this mode of usage – in case of linear F(x), i.e., when
F(x) = Ax + b – is given in [31] and [32]. The relevant errors can be shown to
have upper bounds that are expressible in terms of Jacobi polynomials for certain
types of spectra of the matrix A, and these bounds turn out to be quite tight. They
also indicate that, with even moderate n, s(i)

n,k can closely approximate the solution
s with small k, resulting in small storage requirements and few iterations. Another
advantage of applying MPE and RRE in this mode (that is, with n > 0) is that
it prevents stagnation in the cases where methods such as the generalized minimal
residuals (GMRES) stagnate. (See the numerical examples in [31, 32].) Numerical
experiments confirm that this is indeed the case. Furthermore, this is the case for
nonlinear systems of equations as well, even though the analysis of [31, 32] does not
apply to this case in a straightforward manner.

The analysis of MPE and RRE as these are applied to nonlinear systems in the
cycling mode has been considered in the works [33, 34]. What can be said heuristically
is that, when k in the ith cycle is chosen to be ki, the degree of the minimal polynomial
of the matrix F′(s) with respect to ε0 = x0 − s, the sequence {s(i)

n,ki
}∞i=0 converges

to s quadratically. However, we must add that, since the ki can be as large as N
and are not known exactly, this usage of cycling is not useful practically for the large-
scale problems we are interested in solving. In other words, trying to achieve quadratic
convergence from MPE and RRE via cycling may not be realistic. With even moderate
values of n and k, we may achieve linear but fast convergence nevertheless. This turns
out to be the case even when xn is far from the solution s.

4.7. Connection with Krylov Subspace Methods. When applied to
linearly generated sequences, MPE and RRE are very closely related to the method
of Arnoldi [2] and to GMRES [24], two well known Krylov subspace methods. The
following result is stated in [27].

Theorem 1. Consider the linear system (I−A)x = b. With x0 as the initial vector,
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let the vector sequence {xn} be generated via xn+1 = Axn + b, and let sMPE
0,k and

sRRE
0,k be obtained from this sequence by applying, respectively, MPE and RRE. Let

also the vectors sArnoldi
k and sGMRES

k be the vectors obtained by applying, respectively,
k steps of the method of Arnoldi and GMRES to (I − A)x = b, with x0 as the
starting vector. Then sMPE

0,k = sArnoldi
k and sRRE

0,k = sGMRES
k .

We also recall that the method of Arnoldi becomes the method of conjugate
gradients when A is a Hermitian matrix.

It must be noted that the equivalence of MPE and RRE to the method of Arnoldi
and to GMRES is mathematical and not algorithmic. The algorithms (computational
procedures) are different.

Note: Another method which exploits previous descent directions in order to
efficiently minimize a cost function is the sequential subspace optimization (SESOP)
[15] method. Also aimed at solving nonlinear problems, this method extends the
nonlinear conjugate gradients method [21], and can be highly efficient for problems
of a certain sparse structure. While this method can be applied to the discretization
of the functional S(X), along with additional terms, using SESOP in this context
raises several questions. Firstly, S(X) is relatively costly to compute, and cannot
be expressed in a relatively sparse manner as is often done in order to use SESOP
effectively [15]. Secondly, the discretization used in computing the gradient of S(X)
may not completely agree with that used to compute S(X). This can slow down
or halt convergence. We have experimented with SESOP and compared it to the
methods we suggest here. Specifically we have tried using SESOP with a truncated
Newton, using conjugate gradients for inverting the Hessian. We did not, however,
find SESOP as efficient for the problem of Beltrami-based denoising compared to the
methods considered in this paper, namely constant step size gradient descent with
extrapolation. Other variations on using SESOP for Beltrami-based image processing
remain a topic for future work.

5. Experimental Results. We have applied the MPE and the RRE to the
problems described in Section 2 of this work. In this section, we proceed to demon-
strate experimental results of the Beltrami scale-space and restoration of color images
processed by the explicit and the MPE- and RRE-accelerated schemes, specifying the
CPU runtime and the resulting speed-up. In all of the examples, an Intelr CoreTM2
Duo 1.83 GHz processor with 2GB of RAM was used. Although in each application
we display results with respect to a single image, the behavior exhibited is similar for
other input data.

We recall that the sequence of vectors x1,x2, ... that form the input for RRE are
generated according to

xn+1 = F(xn), n = 0, 1, ...

where F(x) are those vector-valued functions that result from the finite-difference
solution of the relevant Beltrami equations discussed in Section 2.

In our experiments, we apply the MPE and the RRE in the cycling mode. The
MPE- and RRE-accelerated schemes allow us to reduce the number of explicit it-
erations by at least a factor of 10, in order to reach the same residual norm value.
Experiments demonstrate that the MPE and RRE schemes remain stable as the num-
ber of iterations increases.

Figure 5.1 top row depicts the scale-space behavior of the Beltrami color flow,
obtained using Equation 3.2. At the bottom right, it shows the speed-up obtained
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by using the RRE scheme for the Beltrami-based scale-space analysis. The speed-up
gain is up to 40, as can be seen in the graph of the residual norm.

We have measured the approximation error of the accelerated sequence using
l2-norm values for the application of scale-space analysis. Comparison is done by
running the explicit scheme and the RRE scheme simultaneously. After each RRE
iteration, we advance the explicit sequence, starting from the previous result until
it diverges from the RRE result. l2-norm values indicate that the images obtained
by the explicit and RRE techniques are “numerically” the same. The maximum l2-
norm relative error value observed during scale-space evolution was 0.241%, with a
mean value of 0.122% and a standard deviation of 0.058%. The result for scale-space
analysis is specifically important because of the obvious existence of a continuum of
global minimizers for the functional without fidelity terms. Indeed, every constant
valued image is a global minimizer of S(X), while for scale-space analysis we wish to
follow a specific gradient descent process. In applications involving a fidelity term or a
deblurring term, the errors detected in the computed steady state solution were even
smaller. These results validate numerically the convergence of the scheme. For these
applications one would be more interested in the algebraic error of the solution with
respect to the steady-state solution. A graph measuring the l2-norm of the algebraic
error, relative to the energy of the image, is shown in Figure 5.2 for both the MPE
and the RRE methods, as well as for the explicit scheme. The steady-state solution
is approximated by the numerical solution using a small step-size explicit scheme, as
for natural images we do not have an analytical solution of Equation 2.5.
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Fig. 5.1. Top (left to right): RRE iterations: 50, 150, 300, 414. Bottom: left: Original picture.
right: Comparison of the residual norms versus CPU time. Parameters: β =

√
1000 ' 31.62,

∆t = 0.001.

5.1. Beltrami-based Denoising. Figure 5.3 displays the restoration of an im-
age from its noisy version, corrupted by additive Gaussian noise, by applying Equation
3.3. The speed-up factor in this case is about 10.
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Fig. 5.2. l2-norm error between the sequences generated using the explicit scheme without
acceleration, and the explicit scheme accelerated by MPE and RRE, with respect to the steady state
solution. The acceleration used k = 6, n = 0, which gave the fastest convergence. Parameters:
β =

√
200 ≈ 14.14, ∆t = 0.1.

5.2. Beltrami-based Deblurring. In the next example the original image was
blurred by a Gaussian kernel, as shown in Figure 5.4 top-left. The image was restored
using Equation 3.4. A significant speed-up is obtained in this case, as seen in Figure
5.4 bottom.

5.3. Denoising 3D images. Another application for the Beltrami flow is de-
noising of 3D images such as volume images found in medical application, or denoising
of movie sequences. In Figure 5.5 we show an example of denoising of a medical CT
image taken from the Stanford volume data archive [19]. While the data, being a
gray-level image, can be processed more efficiently using various methods such as
operator splitting schemes [43] or multigrid schemes, perhaps in combination with
extrapolation techniques [5], we will not go into detailing usage of such methods so
as to avoid deviating from the main topic of this paper.

5.4. Robustness to the Choice of Parameters. A natural question, regard-
ing accelerations of nonlinear processes, is how does the speedup obtained depend
on both parameters of the flow, and the parameter of the extrapolation algorithm.
In practice, the MPE and the RRE algorithms seem to be quite robust to various
choices of these parameters involved. For example, for relatively small time-steps,
such as those warranted by the CFL condition, one can find, in practice, an optimal
value of k, the length of the cycle. In our experiments, increasing n, the number of
preconditioning iterations, did not result in an increasing speedup for the parameters
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Fig. 5.3. Beltrami-based denoising. Top left: Noisy image. Middle: Denoised image obtained by
the RRE (901 iterations). Right: Denoised image obtained by the explicit scheme (11541 iterations).
Bottom: Comparison of the residual norms versus CPU time. Parameters: β =

√
1000 ≈ 31.63,

λ = 0.02, ∆t = 0.0021/β2.

we have tested. For larger time-steps, slightly below instability sets in, however, it is
harder to determine a clear trend in the speedup obtained as a function of n and k. We
note that the speedup is still clearly apparent, as can be seen in Figure 5.6. Looking
at the speedup obtained as a function of λ and β, we have noticed the speedup is
relatively stable with respect to changes in β and decreases as λ becomes larger. The
speedup remains significant for relevant values of λ, as can be seen in Figure 5.7.

6. Concluding Remarks. Due to its anisotropic nature and non-separability,
there is no implicit scheme, nor operator-splitting-based numerical scheme for the
PDE characterizing the Beltrami flow in color. This flow is usually performed by
means of explicit schemes. Low computational efficiency limits their use in practical
applications. We accelerated the convergence of the explicit scheme using vector
extrapolation methods. Experiments of denoising and deblurring of color images
based on RRE have demonstrated the efficiency of the method. This makes vector
extrapolation methods useful and attractive to the Beltrami filter and potentially
other image processing applications.
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tained by the RRE scheme (1301 iterations). Right: Deblurred image obtained by the explicit scheme
(196608 iterations). Bottom: Comparison of the residual norms versus CPU time. Parameters:
β =
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Fig. 5.5. Beltrami-based denoising of a 3D image. Left: A comparison of the explicit and
RRE-accelerated Beltrami schemes. Middle: A slice from the original volume image. Right: The
same slice, denoised using the accelerated Beltrami flow. Parameters: β = 0.1, ∆t = 0.02, λ = 1.5.
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