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Abstract. The Beltrami image flow is an effective non-linear filter, often
used in color image processing. It was shown to be closely related to the
median, total variation, and bilateral filters. It treats the image as a 2D
manifold embedded in a hybrid spatial-feature space. Minimization of the
image area surface yields the Beltrami flow. The corresponding diffusion
operator is anisotropic and strongly couples the spectral components.
Thus, there is so far no implicit nor operator splitting based numerical
scheme for the PDE that describes Beltrami flow in color. Usually, this
flow is implemented by explicit schemes, which are stable only for very
small time steps and therefore require many iterations. At the other
end, vector extrapolation techniques accelerate the convergence of vector
sequences, without explicit knowledge of the sequence generator. In this
paper, we propose to use the minimum polynomial extrapolation (MPE)
and reduced rank extrapolation (RRE) vector extrapolation methods for
accelerating the convergence of the explicit schemes for the Beltrami
flow. Experiments demonstrate their stability and efficiency compared
to explicit schemes.
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1 Introduction

Nonlinear partial differential diffusion equations are used extensively for various
image processing applications. The Beltrami framework was first introduced in
[20], then in [21], followed by [26]. This filter was applied for edge preserving
denoising and deblurring for signals and especially multi-channel images, see for
example [1]. In this paper we demonstrate an efficient scheme for computing the
Beltrami color flow. This flow is usually implemented by a discrete approxima-
tion of a partial differential equation (PDE). Standard explicit finite difference
schemes for heat equations require small time-steps for stability, that lead to a
large number of iterations required for convergence to the desired solution.

The additive operator splitting (AOS) scheme was first developed for solving
the Navier-Stokes equations [10, 11]. It was later used in [24] for implementing
the regularized Perona-Malik filter [4]. The AOS scheme is first order in time,
semi-implicit, and unconditionally stable with respect to its time step. It can
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be used for single channel diffusion filters, like the Perona-Malik [12], the Total
variation (TV) [14], or the anisotropic diffusion filter for grey-level images [25].
Unfortunately, due to the strong coupling and its anisotropic nature, splitting is
difficult for the Beltrami color operator. In fact, so far, there is no PDE based
implicit scheme for Beltrami flow in color.

In [22] the short time kernel for the Beltrami operator was computed in order
to approximate the Beltrami flow. This method is still computationally demand-
ing, as computing the kernel operation involves geodesic distance computation
around each pixel. The bilateral operator was studied in different contexts (see
for example [18], [23], [19], [7], [2]), and can be shown to be an approximation
of the Beltrami kernel.

In this paper we propose to apply vector extrapolation methods to acceler-
ate the convergence rate of standard explicit schemes for the Beltrami flow in
color. The minimum polynomial extrapolation algorithm (MPE) of Cabay and
Jackson [3] and the reduced rank extrapolation algorithm (RRE) of Eddy [6] are
two vector extrapolation methods derived in order to accelerate the convergence
of vector sequences. They are obtained from an iterative solution of linear and
nonlinear systems of equations. Both MPE and RRE algorithms are detailed in
Section 4 with their respective definitions as solutions for least squares prob-
lems. An efficient solution is achieved by the modified Gram-Schmidt algorithm
[16]. These vector extrapolation methods can be computed directly from the el-
ements of the sequence. Furthermore, unlike alternative acceleration techniques,
they can be applied not only to linearly generated sequences, but also to non-
linear ones. This allows us to apply the RRE/MPE methods for accelerating
the convergence of the vector sequence generated in the explicit scheme for the
Beltrami geometric flow.

We demonstrate the efficiency and accuracy of the vector extrapolation meth-
ods in color image processing applications such as: scale-space analysis, denois-
ing, and deblurring.

This paper is organized as follows: Section 2 gives a brief summary of the
Beltrami framework. In Section 3 we review approximations based on standard
explicit finite difference schemes. Section 4 describes the minimal polynomial
extrapolation (MPE) and the reduced rank extrapolation (RRE) algorithms,
the two methods we use for accelerating the convergence of the standard explicit
scheme. In Section 5 we apply the RRE algorithm to our Beltrami color flow
and demonstrate the resulting speed-up. Section 6 concludes the paper.

2 The Beltrami Framework

Let us briefly review the Beltrami framework for non-linear diffusion in computer
vision [9, 20, 21, 26]. We represent images as embedding maps of a Riemannian
manifold in a higher dimensional space. We denote the map by U : Σ → M ,
where Σ is a two-dimensional surface, with (σ1, σ2) denoting coordinates on it.
M is the spatial-feature manifold, embedded in Rd+2, where d is the number of
image channels. For example, a gray-level image can be represented as a 2D sur-
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face embedded in R3. The map U in this case is U(σ1, σ2) = (σ1, σ2, I(σ1, σ2)),
where I is the image intensity. For color images, U is given by U(σ1, σ2) =
(σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)), where I1, I2, I3 are the three compo-
nents of the color vector.

Next, we choose a Riemannian metric on this surface. The canonical choice of
coordinates in image processing is Cartesian (we denote them here by x1 and x2).
For such a choice, which we follow in the rest of the paper, we identify σ1 = x1

and σ2 = x2. In this case, σ1 and σ2 are the image coordinates. We denote the
elements of the inverse of the metric by superscripts gij , and the determinant by
g = det(gij). Once images are defined as embedding of Riemannian manifolds,
it is natural to look for a measure on this space of embedding maps.

Denote by (Σ, g) the image manifold and its metric, and by (M, h) the space-
feature manifold and its metric. Then, the functional S[U ] attaches a real number
to a map U : Σ → M ,

S[U, gij , hab] =
∫

dmσ
√

g||dU ||2g,h, (1)

where m is the dimension of Σ, g is the determinant of the image metric,
and the range of indices is i, j = 1, 2, ... dim(Σ) and a, b = 1, 2, ... dim(M).
The integrand ||dU ||2g,h is expressed in a local coordinate system by ||dU ||2g,h =
(∂xiU

a)gij(∂xj U
b)hab. This functional, for dim(Σ) = 2 and hab = δab, was first

proposed by Polyakov [13] in the context of high energy physics, in the theory
known as string theory. The elements of the induced metric for color images
with Cartesian color coordinates are

G = (gij) =
(

1 + β2
∑3

a=1(U
a
x1

)2 β2
∑3

a=1 Ua
x1

Ua
x2

β2
∑3

a=1 Ua
x1

Ua
x2

1 + β2
∑3

a=1(U
a
x2

)2

)
,

where a subscript of U denotes partial derivation and the parameter β > 0
determines the ratio between the spatial and spectral (color) distances. Using
standard methods in the calculus of variations, the Euler-Lagrange equations
with respect to the embedding (assuming Euclidean embedding space) are

0 = − 1√
g
hab δS

δU b
=

1√
g
div (D∇Ua)

︸ ︷︷ ︸
∆gUa

, (2)

where the matrix D =
√

gG−1. See [20] for explicit derivation. The operator
that acts on Ua is the natural generalization of the Laplacian from flat spaces
to manifolds, it is called the Laplace-Beltrami operator, and is denoted by ∆g.

The parameter β, in the elements of the metric gij , determines the nature of
the flow. At the limits, where β → 0 and β →∞, we obtain respectively a linear
diffusion flow and a nonlinear flow, akin to the TV flow for the case of grey-level
images (see [21] for details).

The Beltrami scale-space emerges as a gradient descent minimization process

Ua
t = − 1√

g

δS

δUa
= ∆gU

a. (3)
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For Euclidean embedding, the functional in Eq. (1) reduces to

S(U) =
∫ √

g dx1 dx2

=
∫ √√√√1 + β2

3∑
a=1

|∇Ua|2 +
1
2
β4

3∑

a,b=1

|∇Ua ×∇U b|2 dx1 dx2.

This geometric measure can be used as a regularization term for color image
processing. In the variational framework, the reconstructed image is the mini-
mizer of a cost-functional. This functional can be written in the following general
form,

Ψ =
α

2

3∑
a=1

||KUa − Ua
0 ||2 + S(U),

where K is a bounded linear operator. In the denoising case, K is the identity
operator and in the deblurring case, K is a convolution operator of Ua with a
given filter. The parameter α controls the smoothness of the solution.

The modified Euler-Lagrange equations as a gradient descent process for each
case are

Ua
t = − 1√

g

δΨ

δUa
= − α√

g
(Ua − Ua

0 ) + ∆gU
a (denoising), (4)

Ua
t = − 1√

g

δΨ

δUa
= − α√

g
k(−x,−y) ∗ (k ∗ Ua − Ua

0 ) + ∆gU
a (deblurring), (5)

where Ku = k ∗ u and k is often approximated by the Gaussian blurring kernel.
The above equations provide an adaptive smoothing mechanism. In areas

with large gradients (edges), the fidelity term is suppressed and the regularizing
term becomes dominant. At homogenous regions with low-gradient magnitude,
the fidelity term takes over and controls the flow.

3 Standard Explicit Finite Difference Scheme

Our goal is to speed-up the convergence of the explicit scheme in Beltrami color
processing. In this section, we detail the common explicit scheme. The applica-
tions we address are the Beltrami based smoothing, Beltrami based denoising,
and Beltrami based deblurring.

We work on a rectangular grid with step sizes ∆t in time and h in space. The
spatial units are normalized such that h = 1. For each channel Ua, a ∈ {1, 2, 3},
we define the discrete approximation (Ua)n

ij by

(Ua)n
ij ≈ Ua(ih, jh, n∆t).

On the boundary of the image we impose the Neumann boundary condition.
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The explicit finite difference scheme is written in a general form as

(Ua)n+1
ij = (Ua)n

ij + ∆tOn
ij(U

a), (6)

where On
ij is the discretization of the right hand side of the relevant continuous

equation (3), (4), or (5). Below, we give the exact form of the operator On
ij for

each of the above cases.

– Beltrami-based smoothing.
The explicit scheme (6) for discretizing Eq. (3) takes the form

(Ua)n+1
ij = (Ua)n

ij + ∆tLn
ij(U

a), (7)

where Ln
ij(U

a) denotes a discretization of the Laplace-Beltrami operator
∆gU

a, for example, using a backward-forward approximation.
– Beltrami-based denoising.

The explicit scheme (6) is given in this case by

(Ua)n+1
ij = (Ua)n

ij + ∆t
[
Ln

ij(U
a) +

α√
g
((Ua

0 )n
ij − (Ua)n

ij)
]
. (8)

– Beltrami-based deblurring.
Similarly, in the deblurring case, the explicit scheme (6) reads

(Ua)n+1
ij = (Ua)n

ij + ∆t
[
Ln

ij(U
a) +

α√
g
k̄n

ij ∗
(
(Ua

0 )n
ij − kn

ij ∗ (Ua)n
ij

)]
, (9)

where k̄ = k(−x,−y).

Due to stability requirements (see [5], [8]), explicit schemes limit the time-
step ∆t and usually require a large number of iterations in order to converge.
We propose to use vector extrapolation techniques in order to accelerate the
convergence of these explicit schemes.

4 MPE/RRE Acceleration Techniques

Let us start by describing extrapolation methods for accelerating convergence of
vector sequences. These techniques do not require information on the sequence
generator, but are computed directly from the elements of the sequence. Follow-
ing [16], we review the Minimal Polynomial Extrapolation (MPE) and Reduced
Rank Extrapolation (RRE) methods.

These methods were first introduced for the case of linearly generated vector
sequences (see [3], [6]) and were analyzed from the point of view of convergence,
rate of convergence, and stability in [15]. In [17] these methods’ convergence
behavior was analyzed in the case of nonlinear problems . It is important to note
that various related methods such as Krylov subspace methods and generalized
conjugate residuals can be applied only to linear systems. Unlike these methods,
the MPE and RRE techniques are applicable to nonlinearly generated sequences.
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Let xn, ...,xn+k be a given sequence of N dimensional column vectors, and
denote by sn,k its limit. These vectors are usually taken to be the last k+1 vectors
of an iterative process. The vector xn is not necessarily the initial solution,
but rather can be taken at an arbitrary position in the sequence. In practice,
after applying the acceleration technique and obtaining an approximate solution
vector, this vector can be considered as the new xn.

The extrapolation methods have been derived based on differences, and below
we use the abbreviated notation for first and second differences of the sequence of
vectors. Denote by uj and wj the first and the second differences of the vectors
xi.

uj = xj+1 − xj , wj = uj+1 − uj , j = 0, 1, 2, .... (10)

Define the N × (j + 1) matrices U(n)
j and W(n)

j by

U(n)
j = [un|un+1| · · · |un+j ] (11)

and

W(n)
j = [wn|wn+1| · · · |wn+j ], (12)

respectively.

4.1 MPE Definition

Let k be a positive integer number. The approximation sn,k to the desired limit
s is given by

sn,k =
k∑

j=0

γjxn+j , (13)

where the coefficients γj are determined as follows:

1. Obtain the least squares solution c for the overdetermined linear system

U(n)
k−1c = −un+k,

using the modified Gram-Schmidt algorithm [16].
2. Denote c = (c0, c1, ..., ck−1)T . Set ck = 1 and compute the coefficients γj

γj =
cj∑k
i=0 ci

, 0 ≤ j ≤ k, (14)

assuming that
∑k

i=0 ci 6= 0. When this condition is violated, sn,k does not
exist.
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4.2 RRE Definition

For the RRE method, the approximation sn,k of s is defined as

sn,k = xn +
k−1∑

i=0

ξiun+i. (15)

The coefficients ξi are determined by solving the overdetermined linear system

W(n)
k−1ξ = −un, (16)

with coefficients ξ = (ξ0, ξ1, ..., ξk−1)T .
Since there always exists a solution to the least square problem (16), sn,k

always exists. In particular, sn,k exists uniquely when the matrix W(n)
k−1, has a

full rank.
The essential difference between MPE and RRE is the way of determining

the coefficients of the extrapolation. In our experiments, the MPE algorithm
leads to visual results similar to the RRE, but converges more slowly than the
RRE. Thus for the experiments displayed in the next section we chose the RRE
as the extrapolation method.

Next, we describe the way of applying the vector extrapolation method in
the context of the Beltrami framework. Assume the vector sequence generated
by an explicit scheme is given by

xn+1 = F(xn), (17)

where the nonlinear operator F is

F = I + ∆tO, (18)

and O is given in Section 3 by either Eq. (7),(8), or (9).
The vector extrapolation method is then applied as follows:

1. We start with n = 0 and an initial guess x0, which is, in fact, the starting
vector for the sequence to be generated. A few iterations of the explicit
scheme (17) can be used as a preconditioner.

2. We use the explicit scheme (17) and xn to generate a sequence of vectors
xn,..., xn+k.

3. A vector extrapolation method (MPE/RRE) is used in order to extrapolate
the approximation sn,k of s from the last k + 1 vectors, xn,..., xn+k.

4. The approximation sn,k is used as a new starting point xn′ , n
′ = n + k + 1

for a new sequence.
5. The procedure is repeated from Step 2 until convergence.

Sidi [16] used the term cycling to refer to this kind of scheme.
Note that the nonlinear eqs. (17), (18) describe the discretization of the

Beltrami flow in the same form used by Smith et al. in the convergence analysis
of nonlinearly generated sequences ([17], Section 6).
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5 Experimental Results

We proceed to demonstrate experimental results of the Beltrami scale-space and
restoration of color images processed by the explicit and the RRE accelerated
schemes, specifying the CPU runtime and the resulting speed-up. Although in
each application we display results with respect to a single image, the behavior
exhibited is similar to other input data.

Let the sequence of vectors x1,x2, ... be generated according to

xn+1 = F(xn), n = 0, 1, ...

where F is given in (18). The residual for xn is defined as

Res(xn) = F(xn)− xn. (19)

In our experiments we apply the RRE algorithm in the cycling mode (20
initial explicit iterations, and unless specified otherwise, k = 10). The RRE
accelerated scheme allows us to reduce the number of explicit iterations by at
least a factor of 10, in order to reach the same residual norm value. Experiments
demonstrate that the RRE scheme remains stable as the number of iterations
increases.

Figure 1 top row depicts the scale-space behavior of the Beltrami color flow,
obtained using Eq. (7). At the bottom right it shows the speed-up obtained by
using the RRE scheme for the Beltrami-based scale-space analysis. The speed-up
gain is up to 40, as can be seen in the graph of the residual norm.

We measure the approximation error using l2-norm values. Figure 2 shows
the l2-norm values of the images generated by the explicit and the RRE schemes
during the scale-space evolution. Comparison is done by running the explicit
scheme and the RRE scheme simultaneously. After each RRE iteration, we ad-
vance the explicit sequence, starting from the previous result until it diverges
from the RRE result. l2-norm values indicate that the images obtained by the
explicit and RRE techniques are “numerically” the same. The maximum l2-norm
value observed during scale-space evolution was 0.194%. This validates numeri-
cally the convergence of the scheme.

5.1 Beltrami-based Denoising

Figure 3 displays the restoration of an image from its noisy version by applying
Eq. (8). The speed-up in this case is about 10.

5.2 Beltrami-based Deblurring

In the next example the original image was blurred by a Gaussian kernel, as
shown in Figure 4 top-left. The image was restored using Eq. (9). A significant
speed-up is obtained in this case, as seen in Figure 4 bottom.
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Fig. 1. Top (left to right): RRE iterations: 50, 150, 300, 450. Bottom: left: Original
picture. right: Comparison of the residual norms versus CPU time. Parameters: β =√

1/0.0005 ' 44, ∆t = 0.0042/β2.

6 Concluding Remarks

Due to its anisotropic nature and non-separability, Beltrami color flow discretiza-
tions are usually performed with explicit schemes. Low computational efficiency
limits their use in practical applications. We accelerated the convergence of the
explicit scheme using vector extrapolation methods. Experiments of denoising
and deblurring color images based on the RRE algorithm have demonstrated the
efficiency of the method. This makes vector extrapolation methods useful and
attractive to the Beltrami filter and potentially other image processing applica-
tions.
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