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Abstract. The Beltrami flow is an efficient non-linear filter, that was
shown to be effective for color image processing. The corresponding
anisotropic diffusion operator strongly couples the spectral components.
Usually, this flow is implemented by explicit schemes, that are stable only
for small time steps and therefore require many iterations. In this paper
we introduce a semi-implicit scheme based on the locally one-dimensional
(LOD) and additive operator splitting (AOS) schemes for implement-
ing the anisotropic Beltrami operator. The mixed spatial derivatives are
treated explicitly, while the non-mixed derivatives are approximated in a
semi-implicit manner. Numerical experiments demonstrate the stability
of the proposed scheme. Accuracy and efficiency of the splitting schemes
are tested in applications such as the scale-space analysis and denoising.
In order to further accelerate the convergence of the numerical scheme,
the reduced rank extrapolation (RRE) vector extrapolation technique is
employed.

1 Introduction

Nonlinear diffusion filters based on partial differential equations (PDEs) have
been extensively used in the last decade for different tasks in image processing.
Their efficient implementation requires designing numerical schemes in which
the issues of accuracy, stability, and computational cost all play important roles.

The Beltrami image flow is an example of a non-linear filter, that is efficient
for color image processing. It treats the image as a 2-D manifold embedded in a
hybrid spatial-feature space. Minimization of the image area surface yields the
Beltrami flow. The corresponding diffusion operator is anisotropic and strongly
couples the spectral components. Due to its anisotropy and non-separability, so
far there is no efficient implicit, nor operator-splitting-based numerical scheme
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for the partial differential equation that describes the Beltrami flow in color.
Usual discretizations of this filter are based on explicit schemes, that limit the
time step and therefore result in a large number of iterations. In [1] an accelera-
tion technique based on the reduced rank extrapolation (RRE) algorithm [2, 3]
was proposed in order to speed-up the slow convergence of the explicit scheme.

As an alternative to the explicit scheme, an approximation using the short
time kernel of the Beltrami operator was suggested in [4]. Although uncondition-
ally stable, this method is still computationally demanding, since computing the
kernel involves geodesic distance computation around each pixel.

The bilateral filter, which can be shown to be an Euclidean approximation
of the Beltrami kernel, was studied in different contexts (see [5], [6], [7], [8], [9],
[10]). Recently, a related filter, the nonlocal means filter, was proposed in [11]
and shown to be useful in denoising gray-scale and color images.

In this paper we propose to approximate the system of nonlinear coupled
equations given by the Beltrami flow using a semi-implicit finite difference scheme
based on operator splitting. Historically, additive operator splitting (AOS) schemes
were first developed for (nonlinear elliptic/parabolic) monotone equations and
Navier-Stokes equations [12, 13]. In image processing applications, the AOS scheme
was found to be an efficient way for approximating the Perona-Malik filter [14],
especially if symmetry in scale-space is required. The AOS scheme is first order
in time, semi-implicit, and unconditionally stable with respect to its time-step
[13, 14]. In the early 1950’s (see [15]) the alternating-direction method (ADI) was
introduced, and in [16] the LOD (locally one-dimensional) splitting method was
proposed. The LOD scheme and other multiplicative splitting methods were em-
ployed in the context of nonlinear diffusion image filtering in [17]. We stress that
the main characteristic of this class of equations, which allows splitting, is local
isotropy. However, in the case of the anisotropic Beltrami operator, the main
difficulty in splitting stems from the presence of the mixed derivatives. To over-
come this problem, we suggest to construct the following semi-implicit scheme;
the spatial mixed derivatives are discretized explicitly at the current time step
n∆t, while those that do not contain mixed derivatives are approximated us-
ing an average of two levels of time steps: n∆t and (n + 1)∆t (Crank-Nicolson
scheme). As our equations are nonlinear, a stability proof of the corresponding
finite difference scheme is a non-trivial task. We provide numerical experiments
which indicate that the LOD and the AOS splitting schemes for the nonlinear
Beltrami color filter are stable for a wide range of time steps. We demonstrate
the efficiency and stability of the splitting in applications such as: Beltrami-
based scale space and Beltrami-based denoising. In order to further expedite the
LOD/AOS splitting schemes, we show how to speed-up their convergence by
using the RRE (reduced rank extrapolation) technique. The RRE method was
introduced by Mes̆ina and Eddy [2, 3] to speed-up the convergence of general
sequences of vectors without explicit knowledge of the sequence generator. This
technique was applied in [1] in order to speed up the slow convergence of the stan-
dard explicit scheme for the Beltrami color flow. In this paper we show that in



3

applications such as scale-space and denoising of color images, the semi-implicit
LOD/AOS schemes can also be accelerated using the RRE technique.

This paper is organized as follows: In Section 2 we briefly summarize the
Beltrami framework. In Section 3 we briefly review general semi-implicit splitting
operator schemes. In Section 4 we propose a semi-implicit splitting scheme for
the anisotropic Beltrami operator, based on the LOD/AOS schemes. In Section
5 we demonstrate the efficiency and stability of the LOD/AOS splitting schemes
for Beltrami-based scale-space and Beltrami-based denoising. Furthermore, we
propose to accelerate the LOD/AOS schemes using the RRE technique. Section
6 concludes the paper.

2 The Beltrami Framework

Let us briefly review the Beltrami framework for non-linear diffusion in com-
puter vision [18–21]. We represent images as embedding maps of a Riemannian
manifold in a higher dimensional space. We denote the map by U : Σ → M ,
where Σ is a two-dimensional surface, with (σ1, σ2) denoting coordinates on it.
M is the spatial-feature manifold, embedded in R

d+2, where d is the number of
image channels. For example, a gray-level image can be represented as a 2D sur-
face embedded in R

3. The map U in this case is U(σ1, σ2) = (σ1, σ2, I(σ1, σ2)),
where I is the image intensity. For color images, U is given by U(σ1, σ2) =
(σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)), where I1, I2, I3 are the three compo-
nents of the color vector.

Next, we choose a Riemannian metric on this surface, g, with elements de-
noted by gij . The canonical choice of coordinates in image processing is Cartesian
(we denote them here by x1 and x2). For such a choice, which we follow in the
rest of the paper, we identify σ1 = x1 and σ2 = x2. In this case, σ1 and σ2 are
the image coordinates. We denote the elements of the inverse of the metric by
superscripts gij , and the determinant by g = det(gij). Once images are defined
as embedding of Riemannian manifolds, it is natural to look for a measure on
this space of embedding maps.

Denote by (Σ, g) the image manifold and its metric, and by (M, h) the space-
feature manifold and its metric. Then, the functional S[U ] assigns a real number
to a map U : Σ → M ,

S[U, gij , hab] =

∫

dsσ
√

g||dU ||2g,h, (1)

where s is the dimension of Σ, g is the determinant of the image metric, and
the range of indices is i, j = 1, 2, ... dim(Σ) and a, b = 1, 2, ... dim(M). The
integrand ||dU ||2g,h is expressed in a local coordinate system by ||dU ||2g,h =

(∂xi
Ua)gij(∂xj

U b)hab. This functional, for dim(Σ) = 2 and hab = δab, was first
proposed by Polyakov [22] in the context of high energy physics, in the theory
known as string theory. The elements of the induced metric for color images
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with Cartesian color coordinates are

G = (gij) =

(
1 + β2

∑3

a=1
(Ua

x1
)2 β2

∑3

a=1
Ua

x1
Ua

x2

β2
∑3

a=1
Ua

x1
Ua

x2
1 + β2

∑3

a=1
(Ua

x2
)2

)

, (2)

where a subscript of U denotes a partial derivative and the parameter β > 0
determines the ratio between the spatial and spectral (color) distances. Using
standard methods in calculus of variations, the Euler-Lagrange equations with
respect to the embedding (assuming Euclidean embedding space) are

0 = − 1√
g
hab δS

δU b
=

1√
g
div (D∇Ua)

︸ ︷︷ ︸

∆gUa

, (3)

where the diffusion matrix is D =
√

gG−1. Note that we can write

div(D∇U) =

2∑

q,r=1

∂xq
(dqr∂xr

U).

The operator that acts on U is the natural generalization of the Laplacian from
flat spaces to manifolds. It is called the Laplace-Beltrami operator, and denoted
by ∆g.

The parameter β, in the elements of the metric gij , determines the nature
of the flow. At the limits, where β → 0 and β → ∞, we obtain respectively a
linear diffusion flow and a nonlinear flow, akin to the TV flow [23] for the case
of grey-level images (see [20] for details).

The Beltrami scale-space emerges as a gradient descent minimization process

Ua
t = − 1√

g

δS

δUa
= ∆gU

a, a = 1, 2, 3. (4)

For Euclidean embedding, the functional in Eq. (1) reduces to

S(U) =

∫ √
g dx1 dx2. (5)

This geometric measure can be used as a regularization term for color image
processing. In the variational framework, the reconstructed image is the mini-
mizer of a cost-functional. This functional can be written in the following general
form,

Ψ(U) = λ

3∑

a=1

||Ua − F a||2 + S(U),

where the parameter λ controls the smoothness of the solution and F is the
given image.

The modified Euler-Lagrange equations as a gradient descent process are

Ua
t = − 1√

g

δΨ

δUa
= − 2λ√

g
(Ua − F a) + ∆gU

a, a = 1, 2, 3. (6)
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3 Operator splitting schemes

In this section we briefly review standard first order accurate splitting schemes
for diffusion equations. One of the main drawbacks of the semi-implicit schemes
for such equations in multiple dimensions is that the resulting inverted ma-
trix does not have an efficient algorithm for its inversion. In order to remedy
this shortcoming, splitting techniques are commonly employed in solving time-
dependent partial differential equations. They allow one to reduce problems in
multiple spatial dimensions to a sequence of problems in one dimension, which
are easier to solve.

One of the simplest splitting schemes belonging to the class of multiplicative

operator splitting schemes, is the locally one-dimensional (LOD) scheme [16].
The LOD scheme only needs to invert one three-diagonal matrix for each di-
rection. It is simple to implement, is unconditionally stable and it is first order
accurate. However, the system matrix is not axis symmetric, a property that may
be important in some cases. If such a property is required, one could use the
additive operator splitting scheme [13], which was actually invented for parallel
implementation of splitting methods.

Even for sequential implementations, the AOS is almost as efficient as the
LOD scheme; instead of multiplying the operators, one computes them indepen-
dently and then averages the sums of the inverse of the two matrices. We want
to emphasize that the matrices for AOS use 2∆t instead of ∆t.

It is not a trivial matter to apply dimensional splitting schemes for Beltrami
type of equations. Our goal is to construct a splitting scheme for the nonlinear
anisotropic Beltrami operator, which would amount to inverting tridiagonal ma-
trices, be unconditionally stable and preserve the time discretization accuracy
that was obtained without applying splitting techniques.

4 The proposed splitting scheme

In this section we present an operator splitting scheme for the Beltrami fil-
ter. Before splitting, we first introduce a semi-implicit approximation scheme to
our equations. A semi-implicit Crank-Nicolson scheme for an equation involving
mixed derivatives can rely on the following discretization of the spatial deriva-
tives operators: mixed derivatives are computed at time step n∆t, while the
non-mixed derivatives are computed as the average of the values at time steps
n∆t and (n+1)∆t. This approach for handling mixed derivatives in semi-implicit
schemes for approximating linear equations has been considered in several pre-
vious works (see [24–26] for example), including the context of image processing
[27], although it was not combined with the Crank-Nicolson method in the latter
case. We note that in numerical experiments we have found the introduction of
the Crank-Nicolson method into the splitting scheme necessary in order to main-
tain stability for large time steps. A simpler scheme, similar to the one used in
[27], did not seem to be sufficiently stable for this PDE and the applications
demonstrated in this paper. We now present the scheme we intend to use.
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First, we refine our grid notations. We work on the rectangle Ω = (0, 1) ×
(0, 1), which we discretize by a uniform grid of m × m pixels, such that xi =
i∆x, yj = j∆y, tn = n∆t, where 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ n ≤ J and
J∆t = T . Let the grid size be ∆x = ∆y = 1

m−1
.

For each channel Ua, a = 1, 2, 3 of the color vector, we define the discrete
approximation (Ua)n

ij by

(Ua)(i∆x, j∆y, n∆t) = (Ua)n
ij ≈ Ua(i∆x, j∆y, n∆t).

We impose von-Neumann boundary condition, and initially set Ua to be our
initial data image.

4.1 LOD/AOS scheme for the Beltrami scale-space

We approximate the Beltrami filter given in Eq. (4) by the following semi -
implicit Crank-Nicolson scheme:

(Ua)n+1 − (Ua)n

∆t
=

1√
gn

(1

2

2∑

l=1

An
ll(U

a)n+1 +
1

2

2∑

l=1

An
ll(U

a)n +

2∑

q=1

∑

r 6=q

An
qr(U

a)n
)

,

where Ua is the N -dimensional vector denoting one of the components of the
color vector, and An

qr is a central difference approximation of the operator
∂xq

(dqr∂xr
) at time step n.

Rearranging terms, we obtain

(Ua)n+1 =

(

I − ∆t

2
√

gn

2∑

l=1

An
ll

)−1



I +
∆t√
gn

2∑

q=1

∑

r 6=q

An
qr +

∆t

2
√

gn

2∑

l=1

An
ll



 (Ua)n,

which can also be written as

(Ua)n+1 =

(

I − ∆t

2

2∑

l=1

Ān
ll

)−1


I + ∆t

2∑

q=1

∑

r 6=q

Ān
qr +

∆t

2

2∑

l=1

Ān
ll



 (Ua)n,

where

Ā11 =
1√
g
∂x(A∂x), Ā22 =

1√
g
∂y(C∂y),

Ā12 =
1√
g
∂x(B∂y), Ā21 =

1√
g
∂y(B∂x),
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and the functions A, B, C are the corresponding elements of the diffusion matrix
associated with the Beltrami flow.

Again, this semi-implicit scheme still has a major drawback. At each itera-
tion one needs to solve a large linear system whose matrix of coefficients is not
tridiagonal and thus costly. Instead, we employ the LOD splitting scheme

(Ua)n+1 =
(

I − ∆t

2
Ā22

)−1(

I − ∆t

2
Ā11

)−1

[

(I +
∆t

2
Ā11)(I +

∆t

2
Ā22) + ∆t

2∑

q=1

∑

r 6=q

Ān
qr

]

(Ua)n,

or the AOS scheme, that reads,

(Ua)n+1 =
1

2

[ (
I − ∆tĀ22

)−1
+
(
I − ∆tĀ11

)−1
]

[

(I +
∆t

2
Ā11)(I +

∆t

2
Ā22) + ∆t

2∑

q=1

∑

r 6=q

Ān
qr

]

(Ua)n.

The above splitting schemes are efficient because at each time step a single
tridiagonal matrix inversion is performed for each spatial dimension.

The system of differential equations we deal with is nonlinear. The question
of theoretical stability of the LOD/AOS based nonlinear finite difference scheme
is a non-trivial challenge, with theory still lagging behind common practice. Our
numerical experiments indicate that the splitting is stable for a wide variety of
parameters, suitable for most applications, as will be shown in Section 5.

4.2 LOD/AOS scheme for the Beltrami-based denoising

The splitting scheme in the presence of a fidelity term requires a slight modifi-
cation that we detail below. In this case we solve for each channel the equation

Ua
t = − 2λ√

g
(Ua − F a) + ∆gU

a, (7)

with von-Neumann boundary condition and the initial condition

Ua(x, 0) = F a(x). (8)

The Crank-Nicolson scheme approximating Eq. (7) is

(Ua)n+1 =
(

I − ∆t

2

2∑

l=1

Ān
ll + 2∆t

λ√
gn

I
)−1

[(

(I +
∆t

2
Ān

11)(I +
∆t

2
Ān

22) + ∆t

2∑

q=1

∑

r 6=q

Ān
qr

)

(Ua)n +

+2∆tF a λ√
gn

]

.
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It is possible to use LOD/AOS approximations for the inverse of the matrix in
the above scheme. However, we would like to treat the fidelity term in a special
way. When λ/

√
gn is big, we find that the scheme proposed below possesses

better stability properties.
We now describe the details for treating the fidelity term for our Crank-

Nicolson scheme. Dividing the nominator and the denominator by the matrix

Sn =
(

1 + 2∆t λ√
gn

)

I, and rearranging terms, we get

(Ua)n+1 =
(

I − ∆t

2
(Sn)−1

2∑

l=1

Ān
ll

)−1

[

(Sn)−1

(

(I +
∆t

2
Ān

11)(I +
∆t

2
Ān

22) + ∆t

2∑

q=1

∑

r 6=q

Ān
qr

)

(Ua)n

+2(Sn)−1∆tF a λ√
gn

]

.

Approximating the semi-implicit scheme based on the LOD-splitting, we have

(Ua)n+1 =
(

I − 1

2
∆t(Sn)−1Ān

22

)−1(

I − 1

2
∆t(Sn)−1Ān

11

)−1

[

(Sn)−1

(

(I +
∆t

2
Ān

11)(I +
∆t

2
Ān

22) + ∆t

2∑

q=1

∑

r 6=q

Ān
qr

)

(Ua)n +

+2(Sn)−1∆tF a λ√
gn

]

.

A similar splitting scheme can be developed using AOS.

5 Experimental results

We proceed to demonstrate experimentally the stability, accuracy, and efficiency
of the LOD and AOS splitting schemes for the Beltrami color flow. In Figure 1
we show the results of the Beltrami flow, implemented by employing the LOD
splitting scheme for approximating Eq. (4).

Next we illustrate the use of the splitting schemes in the case where the func-
tional involves a fidelity term. A noisy image as well as the reference denoising
result, based on the explicit scheme, are shown in Figure 3, next to the result of
the AOS and LOD splitting schemes. Note that the visual results obtained by
the two schemes are similar to the reference image.

5.1 RRE extrapolation technique for acceleration of the LOD
splitting scheme

In [28, 1] vector extrapolation was applied in order to speed up the slow con-
vergence of the explicit schemes for the Beltrami color flow. In the experiments
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Fig. 1. Top row, left: The original image which contains JPEG artifacts. Middle: Re-
sults of the LOD splitting scheme with ∆t = 1, after 1 iteration, β =

√
103, λ = 0.

Right: Results of the LOD splitting scheme with after 2 iterations. Bottom row, left:
Results of the LOD splitting scheme with after 4 iterations. Middle: a close-up of the
original image. Right: a close-up of the resulting image after 4 iterations.

Fig. 2. The different image channels of an image patch taken from the images in
Figure 1. Left to right: An image patch before denoising, its different color channels,
the denoised image, and the denoised color channels. The color arrows indicate the
direction of the gradient in the various color channels.
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Fig. 3. Large image at the right: An image with artifacts resulting from lossy compres-
sion.. Smaller images – a close-up on a section of the image. Top row, left: The image
with JPEG artifacts. Right: Beltrami-based denoising by explicit scheme, run with
4000 explicit iterations, ∆t = 0.0005. Bottom row, left: Denoising by LOD, ∆t = 0.02.
Right: Denoising by AOS, ∆t = 0.02. λ = 1, β =

√
2000.

below we demonstrate how the RRE extrapolation technique can also be used
to accelerate the convergence of implicit schemes. Figure 4 shows that the RRE
method accelerates the LOD scheme. A comparison is also given to the conver-
gence rate achieved by the method of [28, 1]. Extrapolation techniques also allow
us to obtain a more accurate rate, if one takes a smaller time step.

6 Conclusions

Due to its anisotropy and non-separability nature, no implicit scheme, nor op-
erator splitting based scheme was so far introduced for the partial differential
equations that describe the Beltrami color flow. In this paper we propose a
semi-implicit splitting scheme based on LOD/AOS for the anisotropic Beltrami
operator. The spatial mixed derivatives are discretized explicitly at time step
n∆t , while the non-mixed derivatives are approximated using the average of
the two time levels n∆t and (n + 1)∆t.

The stability of the splitting is empirically tested in applications such as
Beltrami-based scale-space and Beltrami-based denoising, which display a stable
behavior. In order to further accelerate the convergence of the splitting schemes,
the RRE vector extrapolation technique is employed.
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