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Abstract

Shape-from-X is a generic type of inverse problems in
computer vision, in which a shape is reconstructed from
some measurements. A specially challenging setting of this
problem is the case in which the reconstructed shapes are
non-rigid. In this paper, we propose a framework for in-
trinsic regularization of such problems. The assumption is
that we have the geometric structure of a shape which is
intrinsically (up to bending) similar to the one we would
like to reconstruct. For that goal, we formulate a variation
with respect to vertex coordinates of a triangulated mesh
approximating the continuous shape. The numerical core
of the proposed method is based on differentiating the fast
marching update step for geodesic distance computation.

1. Introduction
In many tasks, both in human and computer vision, one

tries to deduce the shape of an object given an observa-
tion or a measurement thereof. For example, in a shadow
theater (Fig. 1) we recognize shapes of objects from sil-
houettes projected on a screen. Another example is shape

Figure 1. Shadow theater example - a shadow of a bird and a
camel being cast by two hands.

from stereo, where a three-dimensional (3D) object is re-
constructed from a pair of two-dimensional (2D) images
of the object taken from different viewpoints. These and

many other problems, in which an object is reconstructed
based on some measurement, are known as shape recon-
struction problems. They are a subset of what is called
inverse problems. Most such inverse problems are under-
determined, in the sense that measuring different objects
may yield similar measurements. Thus, in the above illus-
tration, the essence of the shadow theater is that it is hard to
distinguish between shadows cast by an animal and shad-
ows cast by hands. Therefore prior knowledge about the
unknown object is needed.

Of particular interest are reconstruction problems involv-
ing non-rigid shapes. The world surrounding us is full with
objects such as live bodies, paper products, plants, clothes
etc., which may be deformed to different postures. These
objects may be deformed to an infinite number of different
postures. While bending, though, objects tends to preserve
their internal geometric structure. Two objects differing by
a bending are said to be intrinsically similar. In many cases,
while we do not know the measured object, we have a prior
on its intrinsic geometry. For example, in the shadow the-
ater, though we do not know which exact posture of the hand
casts the shadow, we know that the unknown object is a de-
formation of a hand. In other words, our prior is a shape of
the hand, and the variability of the reconstructed object is
the bending of the hand.

Many methods of shape-from-X reconstruct the shape by
minimizing some functional. In shape from shading (SFS)
[23], a 3D shape is recovered from one or more 2D light re-
flectance images. In bundle adjustment [21], a 3D shape is
reconstructed from a set of point matches between 2D im-
ages of the shape from different viewpoints taken by possi-
bly non-calibrated cameras. Certain functionals can be min-
imized by solving the corresponding Euler-Lagrange equa-
tions, for example, by a gradient descent. Using a functional
measuring intrinsic similarity, knowledge about the intrin-
sic structure of the shape can be incorporated into shape
reconstruction methods.

There are many papers that model distortion between an
object and a known shape by means of local deformations or



use local shape properties as shape priors. Eckstein et al. [8]
and Kilian et al. [12] use the local distortion of the mesh
edges to define a global one. Salzmann et al. [18] propose a
method for modeling deformations of planar surfaces with
no holes from 2D images based on preserving the lengths
of edges in the mesh. Local deformations functionals, even
though usually contained in global deformations ones, may
be deceiving. For example consider a plane, along with a
corresponding second plane in which all internal samples
were moved in random tangent directions. Locally, there is
a strong distortion, although globally, the planes are very
similar.

A few methods such as [15, 9] measure global intrinsic
similarity by mapping the metric structure of 3D shapes to
a simpler space. Those methods are difficult to incorporate
into an optimization process which alters the shape, beside
of their inherent inaccuracy due to the limitation of the em-
bedding space to represent the intrinsic geometry.

This limitation can be solved by using the Gromov-
Hausdorff (GH) distance as was suggested by Mémoli and
Sapiro [16]. Bronstein et al. [5] proposed a method formu-
lating the GH distance as a multidimensional scaling prob-
lem and embedding one surface into another while reducing
the intrinsic dissimilarity between the surfaces. Since this
method limits one surface to be embedded into another, it
cannot be adopted for finding a general shape embedded in
R3.

In a prior work [1], Anguelov et al. studied the problem
of non-rigid shapes reconstruction from a small set of mark-
ers located on the shapes. This work is limited to a specific
class of shapes (human bodies in [1]) and requires complex
learning from many prior examples. In this work we use a
much simpler model of a single body in a single position.

In this paper we use the stress [4] between a known prior
shape and a given shape as an intrinsic similarity functional.
In order to make this functional consistent and robust to tri-
angulation, we calculate it using the fast marching method
(FMM) [13]. The numerical core of our method is based
on an extension to the FMM that enables us to calculate the
derivatives of pairwise geodesic distances w.r.t. the spatial
coordinates of the mesh vertices .

Our approach is similar in spirit to Bronstein et al. [6]
who showed a combination of intrinsic and extrinsic sim-
ilarities criteria. Their method is based on calculating the
geodesic distances on a shape using Dijkstra’s algorithm (as
opposed to FMM used here), it is sensitive to the shape tri-
angulation and is affected by metrication errors.

Benmansour et al. [3] proposed a method for differenti-
ating geodesic distances calculated by FMM w.r.t. the Rie-
mannian metric defined on a rectangular Cartesian mesh.
They did not, however, explorer the link between the intrin-
sic geometry and the extrinsic geometry of an embedded
surface. Our work uses a more general framework defined

for triangulated surfaces in order to explorer this very rela-
tion.

The rest of the paper is organized as follows: Section 2
introduces the mathematical background. Section 3 re-
views methods of calculating geodesic distances. Section 4
presents the proposed reconstruction framework. Section 5
demonstrates the proposed method on some examples. Fi-
nally, we provide concluding remarks in Section 6.

For implementation details and derivations, the reader is
referred to [7].

2. Mathematical background
2.1. Shape space

We model a shape X as a metric space - a pair (X, dX)
where X is a 2D smooth, compact, connected and complete
Riemannian manifold embedded into the Euclidean space
R3, and dX : X × X → R+ ∪ {0} is the geodesic metric
measuring the length of the minimal curve contained in the
surface connecting two points. We denote by X the shape
space in which each element is a shape.

Given two shapes Z,X ∈ X, we define the correspon-
dence between them as C ⊂ X×Z such that ∀x ∈ X, ∃z ∈
Z : (x, z) ∈ C and ∀z ∈ Z, ∃x ∈ X : (x, z) ∈ C. We say
x ∈ X and z ∈ Z are in correspondence if (x, z) ∈ C. The
distortion of a correspondence is given by

dis C = max
(x,z)∈C

(x′,z′)∈C

|dX(x, x′)− dZ(z, z′)|, (1)

which measures how different the corresponding metric
structures in X and Z are.

A subset X ′ ⊆ X is said to be an ε-net in (or ε-covering
of) X if

max
x∈X

min
x′∈X′

dX(x, x′) ≤ ε. (2)

If a correspondence C has dis C ≤ ε and the set X ′ = {x :
∃z, (x, z) ∈ C} of all points in X having correspondence
in Z is an ε-net, then X and Z are ε-isometric.

The similarity of two shapes in X is formalized using
a metric dX on the shape space. Since the elements of X
are metric spaces we can use the Gromov-Hausdorff [11]
distance as dX,

dGH = min
C

dis C (3)

If dGH(X, Z) ≤ ε, then X and Z are 2ε-isometric, and if
X and Z are ε-isometric, dGH(X, Z) < 2ε. In particular,
dGH(X,Z) = 0 iff X and Z are isometric. 1

1 Most polyhedral shapes without boundaries are in fact rigid, i.e. do
not have incongruent isometries. Moreover, small wrinkles that appear in
real world non-rigid objects are not represented in limited resolution mod-
els. As a result, two meshes approximating two isometric deformations of
a non-rigid shape are only approximately isometric.



2.2. Measurement space

Let Y be a measurement space, and dY : Y × Y →
R+ ∪ {0} be a distance on Y. The operator P : X → Y
creates a measurement of a shape X . For example, in the
SFS inverse problem, Y is the space of gray scale images,
P is an operator assigning a patch on the shape to a pixel
in the image whose intensity is determined by the average
dot product between the surface normal at each point in this
patch and the illumination direction.

2.3. Reconstruction problems

Given a measurement Y = P (X̃) of an unknown shape
X̃ , and a prior shape X0 such that dX(X̃, X0) is small, we
formulate a generic problem of shape reconstruction as fol-
lows:

X̂ = argmin
X∈X

dX(X, X0) + λdY(P (X), Y ), (4)

where λ > 0 is some parameter.
We look for a shape X which is intrinsically similar to

the prior X0 and whose measurement is similar to Y . Our
way of solving Problem ( 4) consists of deforming an initial
shape and evaluating the result of this deformation (X) on
dX(X, X0) and dY(P (X), Y ).

Calculating dX(X,X0) requires computation of all
geodesic distances in both X and X0.

3. Geodesic distance computation

In the discrete settings we use triangulated mesh as an
approximation to our shapes. Two common and simple
ways of approximating the geodesic distances on a trian-
gulated mesh are using Dijkstra’s shortest paths algorithm,
and using the FMM ([13, 19, 22]). Other algorithms such
as of Surazhsky et al. [20] yields much accurate results, but
are more complicated to implement, and make the deriva-
tive computation impractical.

Given a mesh X and a source vertex xs on it as the input,
a distance computation algorithm returns the distance map
d(xi) ≈ dX(xi, xs), an approximation of the geodesic dis-
tance from all vertices xi to xs. For simplicity of notation,
we use di as a shortening of d(xi).

In Dijkstra’s algorithm, the shape is approximated as
an undirected graph, and geodesics as shortest paths in it.
Thus, the distance dX(xs, xi) is expressed as the minimum
of dX(xs, xj)+Eij over all xj adjacent to xi, and the com-
putation is performed using a dynamic programming-based
successive approximation procedure, in which distance val-
ues are propagated to adjacent vertices. While being easy to
implement, the main disadvantage of Dijkstra’s algorithm
is its inconsistent to triangulation. Under general condi-
tions, increasing the mesh resolution does not decrease the

approximation error, a phenomenon known as metrication
error.

A family of continuous variants of shortest path Dijk-
stra’s algorithm known as fast marching methods (FMM) is
virtually free of metrication errors. The major difference
constitutes in the fact that the surface is approximated as
a continuous two-dimensional structure (usually, a triangu-
lar mesh), and paths are allowed to pass anywhere on its
faces rather than being restricted to the edges. The com-
putation differs mainly in the update step, according to
which distances are propagated. Given an acute triangle
x1, x2, x3 in which the current approximation of the dis-
tances dX(x1, xs) and dX(x2, xs) are d1 and d2, respec-
tively, the approximation of d3 of dX(x3, xs) is computed
according to

d3 = FFMM (d1, d2, a, b, c)

=





d1 + rv
c + s

c

√
c2 − v2 some condition

holds
min{d1 + b, d2 + a} otherwise

(5)

where a, b and c are the length of the triangle edges, v =
d2 − d1, r = b2+c2−a2

2c and s =
√

b2 − r2.
Obtuse triangles are replaced by two new acute triangles,

x1x0x3 and x2x0x3 contained in a flattening of x0x1x2 and
some of its adjacent triangles to a plane. We denote those
triangles as virtual triangles.

4. Implementation Considerations

In order to solve Eq. 4 we first define a measure of the
intrinsic dissimilarity. In the discrete case, we use the L2

version of the stress to measure the intrinsic similarity be-
tween two surfaces Z and X , both with N samples, which
is defined as

σ (X,Z) = min
C

∑

j,k
(xj ,zj)∈C
(xk,zk)∈C

(dX (xj , xk)− dZ (zj , zk))2 ,

(6)

where C is a correspondence between X and Z. In case the
correspondence C is predetermined, we denote the stress
given a correspondence C by σ(X,Z; C).

In this work, we assume the correspondence C to be
known, which is reasonable in many cases. In those cases
where C is unknown, an initial correspondence can usually
be found from local shape descriptors (see [17, 14, 10] and
references therein), and one can alternate optimization for
shape deformation with fixed correspondence and optimiza-
tion for optimal correspondence with fixed deformation.

Using σ as a version of the intrinsic dissimilarity and as-
suming the correspondence to be known, problem 4 reduces



to

X̂ = argmin
X∈X

σ(X,X0; C) + λdY(P (X), Y ). (7)

Given the derivatives of dY(P (X), Y0) w.r.t. the coordinates
of X’s vertices, Eq. 7 can be solved as an optimization prob-
lem where the optimization variables are the coordinates of
X’s vertices. The initialization is the prior X0 if no bet-
ter guess is available. In order to find X̂ of Eq. 7 using
gradient-descent type optimization techniques, we need to
differentiate σ(X, X0) w.r.t. the coordinates of the samples
of X . Due to the ill-conditioning of σ(X, X0), analytic
derivatives are needed.

Vertex-wise, the optimization has the form of

xi ← xi + αi, (8)

where αi = (αx
i , αy

i , αz
i ) is the distance xi moves in each

coordinate direction.
Since the analysis is similar for all coordinates, we omit

the superscript index for notation simplicity.

4.1. Gradient of the stress

Given two shapes X and X0, and a bijective correspon-
dence C, the stress between X and X0 can be written as

σ (X, X0;C) =
∑

j,k
(xj ,x0j)∈C
(xk,x0k)∈C

(dX (xj , xk)− dX0 (x0j , x0k))2 .

(9)

Differentiating the stress w.r.t. αi, we obtain

∂σ (X,X0; C)
∂αi

= 2
∑

j,k

δjk · ∂dX (xj , xk)
∂αi

(10)

where δjk = dX (xj , xk) − dX0 (x0j , x0k). The pairwise
distances dX(xj , xk) are computed after every iteration of
the optimization by running the FMM algorithm N times,
each time with a different source vertex. The pairwise dis-
tances in X0 are pre-computed once in a similar way. The
derivatives of the geodesic distances ∂dX(xj ,xk)

∂αi
are calcu-

lated as follows.
Consider a vertex x0, and a source vertex xs. We de-

note the triangle used for the calculation of the dX(xs, x0)
as x0x1x2, whose edges lengths are{a, b, c}. Calculating
∂a
∂αi

, ∂b
∂αi

and ∂c
∂αi

is straightforward if x0x1x2 is an acute
non-virtual triangle. If x0x1x2 is a virtual triangle, the
calculation of those derivatives is based on calculating the
derivatives for every intermediate value along the unfolding
process.

Also given dX(xs, x1) and dX(xs, x2) the distances
of x1 and x2 from the source and the derivatives of

these estimated distances w.r.t. the X’s vertices locations,
(∂dX(xs,x1)

∂αi
, ∂dX(xs,x2)

∂αi
). ∂

∂αi
dX(xs, x0), can be calculated

by differentiating Eq. 5 using the chain rule. Note that the
derivatives of the triangle edges’ length are calculated only
once for all source vertices.

In order to calculate the derivatives of all pairwise dis-
tances we run this modified FMM algorithm N times, once
for every source vertex. In the initialization step, we set
∂dX(xs,xs)

∂αi
= 0, i ∈ [1 . . . N ]. Next, in every FMM itera-

tion, we calculate the ∂dX(xs,xi)
∂αj

, j ∈ [1 . . . N ] immediately
after calculating dX(xs, xi).

4.2. Path fixing

Consider a vertex x0 for which there are more than one
shortest paths connecting it to the source. The gradient of
the distance function at x0 is not defined and dX(xs, x) is
not differentiable. If w.l.o.g. d(x0, xs) is calculated in trian-
gle x0x1x2, increasing d1 or d2 will not lead to the increase
of d0, since d0 will be updated through another path and
another triangle. In order to overcome this, we calculate a
pairwise distance map on the prior and then fix the order of
vertices updated and also fix the triangles used for updating
each vertex.

4.3. Smoothing the transition between calculations

dX(x0, xs) may be calculated according to triangle
x0x1x2 in a couple of different ways. If ∠x1x0x2 is
acute, it will be updated using Eq. 5 in triangle x0x1x2.
If ∠x1x0x2 is obtuse, it will be updated using Eq. 5 in the
virtual triangle x0x1x̂3 or x0x2x̂3. As a consequence, a
small perturbation in the mesh changing ∠x1x0x2 from an
acute angle to obtuse angle (or vice versa), results in differ-
ent update schemes which cause non-differentiability of the
geodesic distance function. Such scenario is demonstrated
in Fig. 2 (left).

Moreover, since ∠x1x0x̂3 and ∠x2x0x̂3 must be non-
obtuse, if a small perturbation changes ∠x1x0x̂3 and / or
∠x2x0x̂3 from being acute angle to obtuse angle, more un-
folding are needed resulting in different virtual triangles and
thus different calculation scheme of dX(x0, xs). Such sce-
nario is demonstrated in Fig. 2 (middle).

A combination of more than one such scenario is also
possible as is demonstrated in Fig. 2 (right).

The discontinuities are treated using the following no-
tion. In all of those scenarios, there is an angle (denoted
by β) for which if a perturbation causes it to rise above a
threshold L1, a different calculation is performed. There-
fore, for each such scenario we denote by dβ<L1

X (xs, x0)
the distance of x0 from xs calculated using the current value
of β and by dβ≥L1

X (xs, x0) we denote a second value calcu-
lated as if β exceeded the threshold. We denote these calcu-
lations as speculative calculations.
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Figure 2. The cases in which the method of calculation is chang-
ing. In all images - updating x0 comes from x0x1x2 triangle. Left:
The angle of the update triangle changes from acute to obtuse.
Middle: A change of the virtual triangles. Right: A combination
of the scenarios on the left and the middle.

Next, we set

dX(xs, x0) = H · h(β, L0, L1)d
β≥L1
X (xs, x0)

+ (1−H · h(β, L0, L1))d
β<L1
X (xs, x0),(11)

where L0 is a parameter, and h(β, L0, L1) is a differentiable
monotone increasing function for which h(β, L0, L1) =
0∀β < L0 and h(β, L0, L1) = 1 ∀β ≥ L1, and H is
h( θ

2 , L0, L1) if both ∠x̂3x0x1 > L0 and ∠x̂3x0x2 > L0

and 1 otherwise.
If min{∠x̂3x0x1, ∠x̂3x0x2} > L0, dβ≥L1

X (xs, x0) is
calculated as a weighted sum between the case assuming
∠x̂3x0x2 > L1 and the case where ∠x̂3x0x1 > L1. The
weight is calculated in a similar manner according to the
value of ∠x̂3x0x2.

Another case is that a vertex is updated using Dijkstra
scheme (the second case in Eq. 5), and d1 + b = d2 + a.
This is treated by replacing min{d1 + b, d2 + a} in Eq. 5
with

d0 = hε(K)(d2 + a) + (1− hε(K))(d1 + b) (12)

where K = (d1 + b) − (d2 + a), ε is some small constant
and hε is a monotone increasing differentiable function for
which hε(e) = 0 ∀e ≤ −ε, hε(e) = 1 ∀e ≥ ε.

Theoretically, since a speculative calculation may be
based on another speculative calculation, there can be a
O(2N ) speculative calculations where N is the number of
vertices in the mesh. However, in our experiments, for small
values of L1 in non-pathological meshes, we found in most
cases less than 25 speculative calculations.

Derivatives of h are calculated by the chain rule using
the derivatives of the edges forming the triangles affecting
the weighted sum.

It should be noted that by implementing the modifica-
tions described here and in Sec. 4.2, we replace the stress
with a similar smooth concave function.

4.4. Limiting the paths affecting the stress

According to Eq. 6, a relative distortion in a single long
distance has more effect on the stress than a few relatively

similar distortions in short distances. In most applications,
making local patches intrinsically similar to the correspond-
ing local patches in a second shape is more important than
keeping all pairwise distances similar. Therefore we ignore
distances between pairs of vertices whose geodesic distance
in the prior shape is above a predetermined threshold.

5. Results
In this section, we show a few examples of using the

gradient of the metric for synthesizing a shape from a mea-
surement given a prior of a non-rigid deformation of that
shape. The animals and human body models were taken
from TOSCA database. 2

The values of weight variables λ shoud be set accord-
ing to desired tradeoff between instrinsic similarity and the
other criteria. In the following experiments these parame-
ters were set experimentally.

5.1. Shape-preserving denoising

In the first experiment, two corresponding models of a
palm are used. A prior model Xp and an unknown model
Xu for which a random Gaussian noise was added to every
vertex’s coordinate yielding a noisy model Xn. The cost
function used in this example is

cost(X) = σ(X, Xp; C) + λ1dext(X, Xn)
+ λ2Dvol(X, Xp, rv) (13)

where Dvol(X,X ′, r) = (|vol(X) − vol(X ′)| − r)2 if
|vol(X) − vol(X ′)| > r where vol(X) is the volume of
X , and 0 otherwise. dext(X,Xn) =

∑
i ‖xi− (Xn)i‖2 for

all corresponding vertices in X and Xn.
The volume penalty term is added to prevent the shape

from being flattened, since a flatten shape and a non-flatten
one are intrinsically nearly identical. This term is needed
since due to the high magnitude of the noise, the extrinsic
term will not keep the volume of the shape.

The results are shown in Figure. 3.
The reason that the stress between the prior and the un-

known shape is higher than the stress between the prior and
the final result is that current shape deformation tools do not
fully preserve the internal structure.

5.2. Sparse model fitting

In the second experiment, we show how the stress can
be reduced as a postprocessing of an arbitrary pair of nearly
isometric shapes. Here we demonstrate it as a postprocess-
ing for a shape completion. The inputs we use in this ex-
periment are an initial shape X0 (Fig. 4 left) and a set of 12
markers marked both on X0 and on a target model (Fig. 4

2 Data available from http://tosca.cs.technion.ac.il.



Figure 3. Shape denoising. From left to right: the given prior, the unknown shape, the measurement - a noisy shape, denoising using the
prior’s volume only, denoising using the prior’s intrinsic geometry and volume. Stress value of a shape is the stress between this shape and
the prior.

second from left). The deformation was made using the al-
gorithm of [2] (Fig. 4 third from left), we denote its result
as Xd.

We minimize the following cost function

cost(X) = σ(X,X0;C) + λ1

∑

xi∈X

dR3(xi, Xd)2

+ λ2Dvol(X, X0, rv). (14)

where dR3(xi, Xd) is the minimal Euclidean distance from
xi to a point on the faces of Xd.

The stress between the prior and the unknown shape is
1.11 × 104. The stress between the prior and the deforma-
tion’s result is 1.08×104. After 800 iterations, the stress be-
tween the prior and the optimization’s result was 2.4× 103.
It should be noted that although the result is not visually
better, it is less distorted, while still visually pleasing.

5.3. Bundle adjustment

In the bundle adjustment problem, an unknown object
Xu is viewed by K ≥ 2 cameras. The image posi-
tions of points projected unto these views are used to re-
construct the object geometry, and possibly, camera loca-
tions. Let {s(k)

i }N
i=1 ⊆ R2, k ∈ 1, . . . , K denote a set

of projected coordinates obtained by projecting the points
(xi)N

i=1 ⊆ R3 into a set of cameras with projection matri-
ces Pk, k = 1, ..,K, Pk (x̃i) = s̃

(k)
i , where x̃i and s̃

(k)
i

are homogenous coordinates representation of xi and s
(k)
i

respectively. We ignore in this experiment occlusions and
mismatches as well as the estimation of camera parameters.

Next, let {r(k)
i }N

i=1 ⊆ R2, k ∈ 1, . . . , K denote a set of
noisy projected coordinates, r

(k)
i = s

(k)
i + n, where n ∼

N(0, σ) is Gaussian noise.
In this example, we reconstruct the unknown object

X given a intrinsically similar prior shape Xp, assum-
ing a known correspondences between vertices of Xp and
{s(k)

i }N
i=1.

The cost function we minimize is

cost(X) = σ(X,Xp; C) + λ

K∑

k=1

N∑

i=1

‖r(k)
i − Pk(xi)‖22.

(15)

Results for the case of K = 2 are shown in Fig. 5.3.

6. Conclusions
We proposed a framework for regularization of inverse

problems involving non-rigid shapes. Our approach as-
sumes knowledge of a prior shape intrinsically similar to
the unknown shape we try to reconstruct. At the numerical
core of our method we compute the gradient of the geodesic
distances matrix w.r.t. the coordinates of the shapes vertices.
This computation is based on differentiating the update step
of the fast marching method. It has been demonstrated on
various applications.
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Figure 4. Stress reduction after sparse model fitting. From left to right: the prior shape, the unknown shape for which only the spatial
locations of the markers are given, the result of a deformation applied to the prior shape in order to fit the marker points of the unknown
shape, the result after reducing the stress. It can be noted that the final result is more intrinsically similar to the prior while preserving the
deformation.
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cated by the blue pyramids. Xp (middle row, right). Reconstruc-
tion result without the intrinsic prior (bottom row, left), and with
the intrinsic prior (bottom row, right). Stress values are relative to
Xp.
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