
Diversity-Aware Vehicle Motion Prediction via
Latent Semantic Sampling

Xin Huang1,2, Stephen G. McGill1, Jonathan A. DeCastro1,
Brian C. Williams2, Luke Fletcher1, John J. Leonard1,2, Guy Rosman1

Abstract—Vehicle trajectory prediction is crucial for
autonomous driving and advanced driver assistant systems.
While existing approaches may sample from a predicted
distribution of vehicle trajectories, they lack the ability to
explore it – a key ability for evaluating safety from a plan-
ning and verification perspective. In this work, we devise a
novel approach for generating realistic and diverse vehicle
trajectories. We extend the generative adversarial network
(GAN) framework with a low-dimensional approximate
semantic space, and shape that space to capture semantics
such as merging and turning. We sample from this space
in a way that mimics the predicted distribution, but allows
us to control coverage of semantically distinct outcomes.
We validate our approach on a publicly available dataset
and show results that achieve state of the art prediction
performance, while providing improved coverage of the
space of predicted trajectory semantics.

Index Terms—Autonomous Driving, Motion Prediction,
Adversarial Learning, Metric Learning, Explainable AI

I. INTRODUCTION

Vehicle trajectory prediction is crucial for autonomous
driving and advanced driver assistant systems. While
existing literature relates to improving the accuracy of
prediction [1]–[5], the diversity of the predicted trajec-
tories [6], [7] must be explored. High accuracy implies
good approximation of the true distribution according
to some performance metric, but emphasizing diversity
allows prediction approaches to access low-probability
but high-importance parts of the state space. Diverse
trajectory sampling provides coverage of possible actions
for surrounding vehicles and facilitates safe motion plan-
ning and accurate behavior modeling for nearby vehicles
in simulation. For instance, at an intersection, sampling
distinct outcomes, such as left or right turns, rather
than simply predicting going forward, provides benefits
in verification. Different maneuvers can have radically
different outcomes, and missing one of them can be
catastrophic. Sampling efficiently proves difficult in such
scenarios, as neither the distribution of trajectories nor
the definition of semantically distinct outcomes has an

This work was part of X. Huang’s internship at Toyota Research
Institute (TRI). However, this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.

1Toyota Research Institute, Cambridge, MA 02139, USA
2Computer Science and Artificial Intelligence Lab, Massachusetts

Institute of Technology, Cambridge, MA 01239, USA
{xhuang}@csail.mit.edu

Direct sampling

Latent semantic sampling

Fig. 1: Top to bottom: direct vs. latent semantic sam-
pling. In latent semantic sampling, representative sam-
ples are taken in the latent space, with weights associated
from the distribution. In this way, a few samples can
capture relevant semantic aspects, while ensuring con-
sistency with the true prediction distribution.

analytical form. Additionally, expensive roll-outs of a
future trajectory are required to define its utility, which
considers environment of the car and nearby agents.

In this paper, we propose a model that handles both
accuracy and diversity by incorporating a latent semantic
layer into the trajectory generation step. This layer
should represent approximate high-level vehicle behav-
iors, matching semantic distinctions when they exist.
We expect it to be effectively low-dimensional, since a
driver can perform only a few distinct maneuvers at any
given moment. Therefore, enumerating low dimensional
samples should be feasible; however, we wish to do so
without matching the driver’s behaviors into a fixed tax-
onomy. We illustrate this idea in Figure 1, where the goal
is to produce diverse trajectory predictions and cover dis-
tinct outcomes. The top row shows traditional sampling,
which fail to sample diverse behaviors efficiently. The
bottom row demonstrates our latent semantic sampling
technique, which is able to capture both maneuvers in
the intersection.

We do so by shaping the notion of similarity in the
intermediate layer activation via metric learning [8]. We
train the latent semantic layer activations to match anno-

ar
X

iv
:1

91
1.

12
73

6v
1

 [
cs

.R
O

]
 2

8
N

ov
 2

01
9

tations of high-level labels where these exist. Distances
between two trajectories should be large if they represent
different semantic labels, and should be small otherwise.

In addition to prediction, our model can produce
behavior samples for simulation and verification. Verifi-
cation of safety properties for a given driving strategy is
challenging, since it requires numerous simulations using
predictive models instantiated over a large sampling
space of initial agent conditions, road configurations,
etc. A semantically-meaningful, low-dimensional latent
space provides the advantage of efficient sampling of all
possible behaviors, requiring fewer simulations to find
rare events that affect safety (e.g. collisions between
cars).

Finally, our proposed latent state affords some in-
terpretation of the network, which is crucial in safety-
critical tasks such as autonomous driving. By tuning
the high-level latent state, our samples better cover the
human intuition about diverse outcomes.

Our work has three main contributions. i) We extend
a generative adversarial network to produce diverse and
realistic future vehicle trajectories. We process the noise
samples into two independent latent vectors, utilizing
loss functions to disentangle them. The high-level vector
captures semantic properties of trajectories, while the
low-level layer maintains spatial and social context. ii)
We describe an efficient sampling method to cover the
possible future actions, which is important for safe mo-
tion planning and realistic behavior modeling in simula-
tion. iii) We validate our approach on a publicly available
dataset with vehicle trajectories collected in urban driv-
ing. Quantitative results show our method outperforming
state-of-the-art approaches, while in qualitative scenarios
it efficiently generates diversified trajectories.

The remainder of the paper is organized as follows.
We introduce relevant work in Section I-A, and our
problem formulation and proposed method in Section II.
We demonstrate results in vehicle motion prediction in
Section III, followed by a summary and a discussion of
future work in Section IV.

A. Related Works

Our work relates to several topics in probabilistic
trajectory prediction. Unlike deterministic alternatives
[1], it allows us reason about the uncertainty of driver’s
behaviors. There are several representations that underlie
reasoning about trajectories. [2], [3], [9]–[11] predict
future vehicle trajectories as Gaussian mixture models,
whereas [12] utilizes a grid-based map. In our work,
we focus on generating trajectory samples directly from
an approximated distribution space, using a sequential
network, similar to [6], [7].

For longer term prediction horizons, additional context
cues are needed from the driving environment. Spatial

context, including as mapped lanes, not only indicates
the possible options a vehicle may take (especially at
intersections), but also improves the prediction accuracy,
as vehicles usually follow lane centers closely [4], [13].
Another important cue is social context based on nearby
agents, affording reasoning about interaction among
agents [5], [7], [9], [14]. Our method takes advantage of
these two cues by feeding map data and nearby agent
positions into our model, improving the accuracy of
predictions over a few seconds.

Recently proposed generative adversarial networks
(GANs) can sample trajectories by utilizing a generator
of vehicle trajectories and a discriminator that distin-
guishes real trajectories and trajectories produced by the
generator [7], [14]–[16]. Despite their success, efficiently
producing unlikely events, such as lane changes and
turns, remains a challenge. These events are important
to consider as they can pose a significant risk and affect
driving decisions.

Hybrid maneuver-based models [17] are effective in
producing distinct vehicle behaviors. They first classify
maneuvers based on vehicle trajectories, and then predict
future positions conditioned on a maneuver. As such,
they are restricted to cases where pre-defined maneuvers
are well defined. Similar to [10], our method allows
more general cases dealing with undefined semantics,
including multi-vehicle interactions.

Beyond prediction, recent learning models use an in-
termediate representation in probabilistic network mod-
els to improve sample efficiency and coverage. [10]
utilizes a set of discrete latent variables to represent
different driver intentions and behaviors. [18] has shown
that there exist semantics in the latent space of genera-
tive adverserial networks (GANs), and [19] successfully
decomposes the latent factor in a GAN into structured
semantic parts. In addition to GANs, [20] has learned
disentangled latent representations in a variational au-
toencoder (VAE) framework to ground spatial relations
between objects. Unlike the information bottleneck mo-
tivation of [19], we use metric learning [8] to capture
information such as maneuvers and interactions. The
low dimensionality of the semantics space allows us to
obtain distinct vehicle behaviors efficiently. In a relevant
work, [21] proposes to generate samples in a potential
field learned by the discriminator to approximate the real
probability distribution of data accurately, and to ensure
sample diversity.

Finally, our work has applications to sampling and
estimation of rare events for verification, which is its
own active field, see [22]–[26] and references therein.
The closest work to ours is [24], [26], which also propose
sample-based estimation of probabilities. As opposed to
probability estimation under standard driving, our work
focuses explicitly on sampling from diverse modes of

Fig. 2: Architecture diagram of prediction model. We shape the space of the intermediate vector zH to resemble a
human’s concept of distances and then use it to modify the samples that are fed to the decoder.

behaviors.

II. MODEL

Here, we present the problem formulation and de-
scribe the model underlying our work, including loss
functions and our proposed sampling procedure.

A. Problem Formulation

The input to the trajectory prediction problem in-
cludes a sequence of observed vehicle trajectories X =
X1, X2, . . . , Xtobs , as well as the surrounding lanes,
given as their centerline coordinates, denoted as M .
The goal is to predict a set of possible future tra-
jectories Ŷ = Ŷtobs+1, Ŷtobs+2, . . . , Ŷtobs+tpred , where
the acausal future trajectories are denoted as Y =
Ytobs+1, Ytobs+2, . . . , Ytobs+tpred .

In the probabilistic setting, since multiple future tra-
jectory sets are possible, the goal is to estimate the
predicted probability distribution P (Y|X,M). Many of
the modern approaches sample from P (Y|X,M) in
the lack of a closed-form expression for it, requiring
some form of sample generation approaches, such as
traditional ones such as MCMC and particle filters [27],
planning based approaches such as RRTs [28], and
GANs and other probabilistic generative networks [5],
[6].

B. Model Overview

We now describe the network structure and sampling
approach, as illustrated in Figure 2. The trajectory gen-
erator takes the past trajectory of target vehicles, a map
of lane centerlines and a noise sample, before producing
samples of future trajectories. The discriminator identi-
fies whether the generated trajectory is realistic.

In addition to the generator and discriminator net-
works, we require a source of semantic labels about
trajectories. These labels can include maneuvers such as
merging, turning or slowing down, or interaction patterns

such as giving right of way or turning at a four-way-stop
junction. For simplicity, these labels may be boolean or
unknown values, and they are arranged into a vector c
with elements cl ∈ {−1, 1, φ}, where φ denotes that cl is
unknown or undefined. We stress that for some values of
c, in some instances the any choice does not make sense.
For example, a labels of ”the vehicle is next on a stop
sign intersection” and ”is vehicle waiting on a red line
or not” do not co-exist. This motivates a representation
that avoids a single taxonomy of all road situations with
definite semantic values.

C. Trajectory Generator

The trajectory generator predicts realistic future vehi-
cle trajectories given inputs of the past trajectories and
the map information. It embeds the two inputs before
sending them into a long short-term memory (LSTM)
network encoder that captures both the spatial and tem-
poral aspect from the inputs. The encoder output is
combined with a noise vector generated from a standard
normal distribution, and fed into a latent network that
separates the information into a high-level vector and a
low-level vector. The decoder, taking these two vectors,
produces the trajectory samples.

1) Trajectory Network: A series of fully connected
layers that embed spatial coordinates into a trajectory
embedding vector [5].

2) Map Network: In order to simplify the task of
learning to interact with the map, we using the following
representation for the lanes. First, we find the nearest
point to the vehicle from each lane at the predicting
time. Second, we traverse each lane starting at its near-
est point to generate an arclength-parameterized curve
before computing polynomial coefficients up to second
order. Third, we create monomials for the coefficients
of the target vehicle using the vehicle velocity and 1,2
sampling time steps – (vδt)d and (2vδt)d for d = 0, 1, 2.

Last, we feed the products to allow the encoder and
discriminator to learn lane behavior.

3) Encoder: A series of LSTM units process the
spatial and map embedding vectors from time steps 1
to tobs. The output is a hidden vector that stores the
relevant information up to the current time step.

4) Latent Network: A series of fully connected layers
takes the encoder’s hidden vector and a noise sample
from a standard normal distribution. The outputs are two
activation vectors: a vector zH ∈ RdH that represents
high level information such as maneuvers, and a vector
zL ∈ RdL that represents low level information such as
vehicle dynamics. To sample efficiently from zH at test
time, dH is designed to be much smaller than dL. We
train the vectors to be uncorrelated, with zH matching
semantic labels in terms of distances between samples
This representation disentangles semantic concepts from
low-level trajectory information, in a fashion resembling
information bottlenecks [19], but driven by human no-
tions of semantic similarity as learned from the labels.

5) RNN-based decoder: A series of LSTM units takes
zH , zL, and a map embedding vector, to output a
sequence of future vehicle positions.

D. Trajectory Discriminator

An LSTM-based encoder converts the past trajectory
and future predictions into a label L = {fake, real},
where fake means a trajectory is generated by our
predictor, while real means the trajectory is from data.
The structure of the discriminator mirrors that of the
trajectory encoder, except in its output dimensionality.

E. Losses

Similar to [7], we measure the performance of our
model using the average displacement error (ADE) of
Equation 1 and the final displacement error (FDE) of
Equation 2.

LADE(Ŷ) =
1

tpred

tobs+tpred∑
t=tobs+1

||Yt − Ŷt||2 (1)

LFDE(Ŷ) = ||Ytobs+tpred − Ŷtobs+tpred ||2 (2)

1) Best prediction displacement loss: Also as in [7],
we compute the Minimum over N (MoN) losses to
encourage the model to cover groundtruth options while
maintaining diversity in its predictions:

LMoN = min
n

(
LADE

(
Ŷ (n)

))
, (3)

where Ŷ (1), . . . , Ŷ (N) are samples generated by our
model. The loss, over N samples from the generator,
is computed as the average distance between the best
predicted trajectories and acausal trajectories. Although
minimizing MoN loss leads to a diluted probability

density function compared to the groundtruth [29], we
use it to show that our method can estimate an approx-
imate distribution efficiently. We defer a different, more
accurate, supervisory cue to future work.

2) Adversarial loss: We use standard binary cross
entropy losses, LGAN,G,LGAN,D, to compute the loss
between outputs from the discriminator and the labels.
This loss is used to encourage diversity in predictions
and is assigned with a higher weight once best prediction
displacement loss is reduced to a reasonable scale.

3) Independence loss: The independence loss en-
forces that the cross-covariance between the two latent
vectors zH and zL remain small, encouraging zL to
hold only low-level information. While this does not
guarantee independence of the two, we found this to
suffice as regularization.

Lind =

 dH∑
i=1

dL∑
j=1

ziHz
j
L

2

. (4)

4) Latent space regularization loss: The latent loss
regularizes zH and zL in terms of their mean and
variance and helps to avoid degenerate solutions.

Llat =
‖ΣzH − Id‖2F + ‖µzH‖2F +
‖ΣzL − Id‖2 + ‖µzL‖2

, (5)

where ‖ · ‖2F denotes the Frobenius norm.
5) Embedding loss: After enforcing zH and zL are

independent vectors, we introduce an embedding loss to
enforce the correlation between high-level latent vector
zH and prediction coding c. Similar to [30], if two data
samples have the same answer element for label l, we
expect the differences in their high-level latent vectors
to be small. On the other hand, if two predictions have
different codings, we want to encourage the difference
to be large. This can be written as

Lemb =

B∑
m=1

B∑
n=1

s∑
l=1

sign
(
c
(m)
l , c

(n)
l

)
||v(m) − v(n)||2,

(6)
where B is batch size, c(m)

l , c
(n)
l denote the label l an-

swers on examples m,n respectively, and sign(·, ·) = 0
if either argument is φ.

6) Total loss: In total, we combine the losses listed
above together with appropriate coefficients that are
adjusted dynamically during training.

L,D = LGAN,D (7)
L,G = λ1LMoN + λ2LGAN,G + λ3Lind + λ4Llat + λ5Lemb (8)

F. Sampling Approach

We now describe how we sample from the space of zH
in Alg. 1. We generate a set of latent samples, selecting
from them a subset of representatives using the Farthest
Point Sampling (FPS) algorithm [31], [32]. We store
the nearest representative identity as we compute the
distances, to augment the FPS representatives with a
weight proportional to their Voronoi cell. This gives us
a weighted set of samples that converges to the original
distribution, but favors samples from distinct regions of
space. FPS allows us to emphasize samples that represent
distinct high level maneuvers encoded in zH .

Algorithm 1 Semantic Sampling

1: for all i = 1..Nall do
2: Sample from z(i) ∼ Z.
3: Generate latent sample (zH,(i), zL,(i)).
4: end for
5: Perform Farthest Point Sampling on {zH,(i)} to ob-

tain N representative samples, (zH,(j), zL,(j)), j =
1..N , where (j) denotes a sample of N .

6: Compute Voronoi weights wj for each sample (j)
based on the N samples.

7: Decode from (zH,(j), zL,(j)) a full prediction Y(j),
store along with weights wj .

8: Return {(Y(j), wj)}Nj=1

The samples cover (in the sense of an ε-covering)
the space of possible high-level choices. The high
level latent space is shaped according to human labels
of similarity. With this similarity metric shaping, FPS
techniques can leverage its 2-optimal distance coverage
property in order to capture the majority of semantically
different roll-outs in just a few samples.1

III. RESULTS

In this section, we describe the details of our model
and dataset, followed by a set of quantitative results
against state-of-the-art baselines and qualitative results
on diverse prediction.

A. Model Details

The Trajectory Network utilizes two stacked linear
layers with dimensions of (32, 32). The Map Network
uses four stacked linear layers with dimensions of (64,
32, 16, 32). An LSTM with one layer and a hidden
dimension of 64 forms both the Encoder and Decoder
in the Trajectory Generator. The Latent Network takes
inputs from the Encoder and a noise vector with dimen-
sion of 10. This network is composed of two individual
linear layers with output dimensions of 3 and 71 for

1We note that a modified FPS [33] can trade off mode-seeking with
coverage-seeking when generating samples.

the high-level and low-level layers, respectively. The
Discriminator is an LSTM with the same structure as
the Generator’s Encoder, followed by a series of stacked
linear layers with dimensions of (64, 16, 1), activated
by a sigmoid layer at the end. All linear layers in the
Generator are followed by a batch norm, ReLU, and
dropout layers. The linear layers in the Discriminator
utilize a leakyReLU activation instead. The number of
samples n we use for the MoN loss is 5.

The model is implemented in Pytorch and trained on a
single NVIDIA Tesla V100 GPU. We use the Argoverse
forecasting dataset [13] for training and validation, and
select the trained model with the smallest MoN ADE
loss on validation set.

B. Semantic Annotations
In order to test our embedding over a large scale

dataset, we devised a set of classifiers for the data as
surrogates to human annotations. They check for specific
high-level trajectory features, and each of them outputs a
ternary bit representing whether the feature exists, does
not exist, or is unknown, as a k-dimensional vector c that
includes the outputs from all filters. The list of feature
filters used in this paper includes: accelerate, decelerate,
turn left, turn right, lane follow, lane change, move to
left latitudinally, and move to right latitudinally.

C. Quantitative Results
1) Prediction: Over 1 and 3 second prediction hori-

zons, with N = 5 samples, we compute the MoN
ADE (1) and FDE (2) losses, respectively. In addition
to our method, we introduce a few baseline models to
demonstrate the prediction accuracy of our method. The
first two baselines include a linear Kalman filter with
a constant velocity (CV) model and with a constant ac-
celeration (CA) model, respectively. We sample multiple
trajectories given the smoothing uncertainties. The third
baseline is an LSTM-based encoder decoder model [13],
which produces deterministic predictions. In addition, we
introduce a few variants of a vanilla GAN-based model
taking different input features, where social contains the
positions of nearby agents and map contains the nearby
lane information as described in II-C2. The results are
summarized in Table I. The first two rows indicate
that physics-based models can produce predictions with
reasonable accuracy. Using only five samples, the CV
Kalman Filter outperforms a deterministic deep model
with results shown on the third row. The rest of the table
shows that a generative adversarial network improve
upon accuracy by a large margin compared to physics-
based models using five samples. It is observed that the
map features contribute more to long horizon predic-
tions. Additionally, our method is competitive compared
to standard ones, after regularizing the latent space, while
adding sample diversification.

1 Second 3 Seconds
Model Name ADE FDE ADE FDE
Kalman Filter (CV) 0.51 0.79 1.63 3.62
Kalman Filter (CA) 0.69 1.22 2.87 7.08
LSTM Encoder Decoder 0.57 0.94 1.81 4.13
GAN 0.42 0.62 1.55 3.09
GAN+social 0.44 0.66 1.68 3.04
GAN+social+map 0.44 0.63 1.34 2.75
DiversityGAN+social+map 0.41 0.65 1.35 2.74
DiversityGAN(FPS)+social+map 0.44 0.62 1.33 2.72

TABLE I: MoN average displacement errors (ADE)
and final displacement errors (FDE) of our method and
baseline models with N = 5 samples.

Fig. 3: MoN ADE loss of FPS sampling (blue) and direct
sampling (orange) over 3 seconds with N from 1 to 8.
The gap between two curves indicates the improvement
using FPS, especially when N is from 2 to 6. Error
bars represent one standard deviation from five runs with
different random seeds.

To show the effectiveness of our latent sampling
approach, we measure the MoN loss with and without
the FPS method. We test using a challenging subset
of the validation dataset that filters out straight driving
with constant velocity scenarios, resulting in a trajectory
distribution that emphasizes rare events in the data. As
indicated in Figure 3, when the number of samples
increases, the prediction loss using FPS drops faster
compared to direct sampling. We note the improvement
is larger in the regime of 2-6 samples, where reasoning
about full roll-out of multiple hypotheses is still practical
in real-time systems, and we obtain an improvement of
8%. However, beyond the gain in average accuracy, the
importance of the method is that it is able to obtain some
samples from the additional modes of the distribution of
trajectories. We demonstrate the advantage of our meth-
ods with a small number of samples in Section III-D.

FPS Direct Sampling
(a) FPS provides accurate coverage of acausal
trajectory by generating rare turning samples.

FPS Direct Sampling
(b) FPS covers a low-likely lane change event that

matters for decision making for the ego car.

Fig. 4: Illustrations of how our approach captures rare
events by selecting samples that are farther away. The
left column highlights the samples selected by FPS
and their associated predictions, where N = 5. The
right column highlights the selected samples using direct
sampling and their associated predictions, which cover
only high likely events. Blue: observed and acausal
trajectories. Red: predicted trajectory samples. Black:
lane centers.

D. Qualitative Results

We first show how FPS can be used to improve both
prediction accuracy and diversity coverage by illustrating
two examples in Figure 4.

In the first example as illustrated in Figure 4(a),
our method, as described in Algorithm 1, first generate
Nall = 200 samples in grey, and select N = 5 samples

FPS

Direct
Sampling

(a) Predicting diversified events helps reduce
prediction error in challenging scenarios.

(b) Predicting merging and turning events enables
robust and safe decision making for the ego car.

Fig. 5: Predictions of rare events in complicated driving scenarios help improve both accuracy (a) and diversity (b).
Top to bottom: FPS and direct sampling with N = 5 trajectory samples.

using FPS (highlighted on the left column) and direct
sampling (highlighted on the right column) to produce
predictions. By selecting samples that are farther away,
FPS is able to produce rare events such as right turn,
as labelled in 2, that match with the acausal trajectory
and thus improve the prediction accuracy. On the other
hand, direct sampling tends to sample points from denser
regions, which lead to high likelihood events. We show
two additional challenging examples in Figure 5(a),
where FPS is able to reduce the prediction error by
covering turning events when the vehicle is approaching
an off-ramp and a full intersection, respectively.

In the second example as illustrated in Figure 4(b),
although our method predicts rare events that do not
improve displacement losses compared to direct sam-
pling, they are still important for decision making and
risk estimation. Although the target vehicle is most likely
to go forward, it is useful for our predictor to cover
lane change behavior, as labelled in 1, even with a
low likelihood, since such prediction could help avoid
a possible collision if our ego car is driving on the right
lane. Similarly, in the other two examples as shown in
Figure 5(b), our method produces events such as merging
and turning that are unlikely to happen but are important
to consider for robust and safe decision making for the
ego car.

IV. CONCLUSION

We propose a vehicle motion prediction method that
caters to both prediction accuracy and diversity. We
achieve this by dividing a latent variable into a learned
semantic-level part encoding discrete options that the
target vehicle can possibly take, and a low-level part
encoding other information. The method is demonstrated
to achieve state-of-the-art prediction accuracy, while
efficiently obtaining trajectory coverage by near-optimal

sampling of the high-level latent vector. Future work
includes adding more complicated semantic labels such
as vehicle interactions, and exploring other sampling
methods beyond FPS.

REFERENCES

[1] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle
trajectory prediction based on motion model and maneuver recog-
nition,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2013, pp. 4363–4369.

[2] J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, “Probabilistic
trajectory prediction with gaussian mixture models,” in 2012
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2012, pp.
141–146.

[3] X. Huang, S. McGill, B. C. Williams, L. Fletcher, and G. Ros-
man, “Uncertainty-aware driver trajectory prediction at urban in-
tersections,” in 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 9718–9724.

[4] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-
K. Huang, J. Schneider, and N. Djuric, “Multimodal trajectory
predictions for autonomous driving using deep convolutional
networks,” in 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 2090–2096.

[5] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,
and S. Savarese, “Social LSTM: Human trajectory prediction
in crowded spaces,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 961–971.

[6] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and
M. Chandraker, “Desire: Distant future prediction in dynamic
scenes with interacting agents,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017,
pp. 336–345.

[7] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi,
“Social GAN: Socially acceptable trajectories with generative
adversarial networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2255–
2264.

[8] K. Q. Weinberger and L. K. Saul, “Distance metric learning for
large margin nearest neighbor classification,” Journal of Machine
Learning Research, vol. 10, no. Feb, pp. 207–244, 2009.

[9] B. Ivanovic and M. Pavone, “The Trajectron: Probabilistic multi-
agent trajectory modeling with dynamic spatiotemporal graphs,”
in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[10] Y. C. Tang and R. Salakhutdinov, “Multiple futures prediction,” in
Advances in Neural Information Processing Systems (NeurIPS),
2019.

[11] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath:
Multiple probabilistic anchor trajectory hypotheses for behavior
prediction,” arXiv preprint arXiv:1910.05449, 2019.

[12] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and
J. W. Choi, “Probabilistic vehicle trajectory prediction over
occupancy grid map via recurrent neural network,” in 2017 IEEE
International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2017, pp. 399–404.

[13] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hart-
nett, D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse:
3d tracking and forecasting with rich maps,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 8748–8757.

[14] J. Li, H. Ma, and M. Tomizuka, “Interaction-aware multi-agent
tracking and probabilistic behavior prediction via adversarial
learning,” in 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 6658–6664.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” in Advances in Neural Information Processing
Systems, 2014, pp. 2672–2680.

[16] J. Li, H. Ma, and M. Tomizuka, “Conditional generative neural
system for probabilistic trajectory prediction,” arXiv preprint
arXiv:1905.01631, 2019.

[17] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction
of surrounding vehicles with maneuver based LSTMs,” in 2018
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp.
1179–1184.

[18] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the la-
tent space of GANs for semantic face editing,” arXiv preprint
arXiv:1907.10786, 2019.

[19] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable representation learning by
information maximizing generative adversarial nets,” in Advances
in Neural Information Processing Systems, 2016, pp. 2172–2180.

[20] Y. Hristov, D. Angelov, M. Burke, A. Lascarides, and S. Ra-
mamoorthy, “Disentangled relational representations for ex-
plaining and learning from demonstration,” arXiv preprint
arXiv:1907.13627, 2019.

[21] T. Unterthiner, B. Nessler, C. Seward, G. Klambauer, M. Heusel,

H. Ramsauer, and S. Hochreiter, “Coulomb GANs: provably
optimal nash equilibria via potential fields,” in 2018 International
Conference on Learning Representations (ICLR), 2018.

[22] R. Y. Rubinstein, Combinatorial Optimization, Cross-Entropy,
Ants and Rare Events. Boston, MA: Springer US, 2001, pp.
303–363.

[23] J. Bucklew, Introduction to rare event simulation. Springer
Science & Business Media, 2013.

[24] M. Koren and M. Kochenderfer, “Efficient autonomy valida-
tion in simulation with adaptive stress testing,” arXiv preprint
arXiv:1907.06795, 2019.

[25] M. Koschi, C. Pek, S. Maierhofer, and M. Althoff, “Compu-
tationally efficient safety falsification of adaptive cruise control
systems,” in 2019 IEEE International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2019.

[26] M. O’Kelly, A. Sinha, H. Namkoong, J. Duchi, and R. Tedrake,
“A scalable risk-based framework for rigorous autonomous vehi-
cle evaluation,” 2019.

[27] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-
aware long-term prediction of pedestrian motion,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 2543–2549.

[28] G. Aoude, J. Joseph, N. Roy, and J. How, “Mobile agent
trajectory prediction using bayesian nonparametric reachability
trees,” in Infotech@ Aerospace 2011, 2011, p. 1512.

[29] L. A. Thiede and P. P. Brahma, “Analyzing the variety loss in
the context of probabilistic trajectory prediction,” arXiv preprint
arXiv:1907.10178, 2019.

[30] G. Rosman, L. Paull, and D. Rus, “Hybrid control and learning
with coresets for autonomous vehicles,” in 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 6894–6901.

[31] T. F. Gonzalez, “Clustering to minimize the maximum interclus-
ter distance,” Theoretical Computer Science, vol. 38, pp. 293 –
306, 1985.

[32] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic
for the k-center problem,” Math. Oper. Res., vol. 10, no. 2, pp.
180–184, May 1985.

[33] M. Volkov, G. Rosman, D. Feldman, J. W. Fisher, and D. Rus,
“Coresets for visual summarization with applications to loop
closure,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2015, pp. 3638–3645.

	I Introduction
	I-A Related Works

	II Model
	II-A Problem Formulation
	II-B Model Overview
	II-C Trajectory Generator
	II-C1 Trajectory Network
	II-C2 Map Network
	II-C3 Encoder
	II-C4 Latent Network
	II-C5 RNN-based decoder

	II-D Trajectory Discriminator
	II-E Losses
	II-E1 Best prediction displacement loss
	II-E2 Adversarial loss
	II-E3 Independence loss
	II-E4 Latent space regularization loss
	II-E5 Embedding loss
	II-E6 Total loss

	II-F Sampling Approach

	III Results
	III-A Model Details
	III-B Semantic Annotations
	III-C Quantitative Results
	III-C1 Prediction

	III-D Qualitative Results

	IV Conclusion
	References

