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Abstract
We present a new framework for point cloud denoising by patch-collaborative spectral analysis. A collaborative
generalization of each surface patch is defined, combining similar patches from the denoised surface. The Laplace-
Beltrami operator of the collaborative patch is then used to selectively smooth the surface in a robust manner that
can gracefully handle high levels of noise, yet preserves sharp surface features.
The resulting denoising algorithm competes favorably with state-of-the-art approaches, and extends patch-based
algorithms from the image processing domain to point clouds of arbitrary sampling. We demonstrate the accu-
racy and noise-robustness of the proposed algorithm on standard benchmark models as well as range scans, and
compare it to existing methods for point cloud denoising.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Mathematics of Computing]: Approximation—
Approximation of surfaces and contours I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Surface fitting

1. Introduction

In recent years, significant effort has been devoted to noise
removal and smoothing of surfaces. With the increasing
availability of commodity range scanners, even more atten-
tion is required to denoising of point clouds obtained from
such depth sensors, where the surface is often strongly cor-

† This research was supported by the European Community’s FP7-
ERC program, grant agreement no. 267414.

rupted. This has lead to various denoising and reconstruc-
tion algorithms for surfaces, triangulated or sampled as point
sets (see [Lev98, FDCO03, FCOS05, YBS06, LCOLTE07,
HLZ∗09, ASGCO10] for a few examples).

There are various approaches for surface denoising and
smoothing. Several algorithms for surface smoothing use the
moving-least-squares (MLS) approach adopted from signal
approximation theory [Lev98]. Since the estimation process
is defined in most cases on the tangent plane, robust esti-
mation of the tangent plane is required. A principled ap-
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proach for robust tangent plane and surface estimation can
be found, for example, in the robust moving-least-squares
technique [FCOS05].

Other methods for surface smoothing are based on diffu-
sion processes on surfaces. These include several algorithms
for Laplacian-based mesh fairing [Tau95, DMSB99], where
the Laplacian of the coordinate functions is used to define
smoothing iterations. Several papers further generalize this
approach using higher-order differential operators [CDR00,
SKS01, DR04, Xu09], normal diffusion [TWBO02], differ-
ent types of curvatures [ZX06], or anisotropic diffusion
[HP04, LP05].

Many techniques for surface denoising originated from
denoising methods in image processing, continuing the
extension of signal processing approach for surfaces by
[Tau95]. Peng et al. [PSZ01] used Gaussian scale mixtures
(GSM) on the multiscale coefficients of the surface. Fleish-
man et al. extended the bilateral filtering to surface smooth-
ing [FDCO03]. Zheng et al. [ZFAT11] applied bilateral filter
on mesh normal field in order to perform anisotropic mesh
denoising. Yoshizawa et al. [YBS06], adapted the non-local
means (NLM) algorithm [ABM05] for surface smoothing,
while using radial basis function (RBF) approximation to
overcome the problems associated with matching sampled
surface patches.

Local patch similarity was further used by Sharf et al.
[SACO04] for context-aware surface completion, and by
Zheng et al. [ZSW∗10] – in urban scenes consolidation al-
gorithm, exploiting the additional structure available in a
human-made scene. Kim et al. [KMYG12] used repeata-
bility of man-made objects for 3D acquisition and recog-
nition of indoor scenery. In another related appoach, patch
similarity about symmetry axes has been used by Bokeloh
et al. [BBW∗09] for surface reconstruction and denoising.
Guillemot et al. [GAB12] extended the non-local approach
by decomposing the surface in a multiscale fashion.

A different approach is to denoise an implicit volumetric
representation, or level-set function of the surface instead of
the points themselves. Thereby it is possible to apply a va-
riety of image-domain denoising method directly. This was
suggested, for example, for the non-local means algorithm
by Dong et al. [DYOD08], as well as many other reconstruc-
tion techniques. Although the added dimension makes these
methods memory intensive, the Cartesian coordinates allow
fast memory access. Thus, such methods have found use in
real-time algorithms for surface modelling via fast dual al-
gorithms for total variation [NLD11], and techniques based
on octree Haar wavelets have shown an impressive scalabil-
ity in terms of the number of points and accuracy (see for
example the paper by Manson et al. [MPS08]).

Yet another family of methods for surface denoising op-
erates on range scans. For these, again, image-processing al-
gorithms are suitable without major modifications. Among
this group are variants of the non-local means algorithm

[SBS08, HSJS10], as well as a sparsity-based approach
[MSMS09, RDK12]. These algorithms, however, assume a
very specific input which often cannot be generalized if the
data is already given in a different format, or if multiple
viewpoints are involved.

Most of the current state-of-the-art denoising techniques
in image processing are collaborative in nature, bringing to-
gether several patches from the image and analyzing the re-
sulting signal group. This approach is also known as non-
local multipoint modelling [KFEA10], and has been shown
to work with heavily corrupted images. The analysis can be
based on spectral [DFKE07] or sparsity [MBP∗09] princi-
ples. In a sense, the non-local means uses the mean esti-
mator and can be considered a single-point approach for
collaborative image denoising [KFEA10]. The recently in-
troduced NL-Bayesian denoising [LBM12] interprets the
patch-collaborative approach in a probabilistic framework,
resulting in a new denoising algorithm.

The algorithm we describe in this paper builds upon the
non-local, multipoint denoising framework, extending the
signal processing approach to surface denoising into a col-
laborative spectral one. However, functions on point clouds
are not defined on a Cartesian domain for which the spec-
tral decomposition has a separable form. Even the bijec-
tion that exists between patch pixels in images is no longer
available in noisy point clouds with irregular sampling, in-
troduced questions of interpolations and sampling errors.
These differences, among others, requires several fundamen-
tal changes when we address collaborative spectral denois-
ing of point clouds. In our algorithm, each surface patch
is grouped along with similar patches, and these are ana-
lyzed together in order to obtain a joint smoothing opera-
tor. Denoising over several such groups results in a denoised
version of the point cloud. The proposed algorithm defines,
in a sense, an analogue of the Block-Matching 3D Denois-
ing (BM3D, [DFKE07]) algorithm in the context of point
clouds. We now shortly describe the BM3D algorithm, and
its two main phases.

In both phases of the BM3D algorithm, for each patch in
the image, a set of similar patches is collected. The patches
are then stacked into a 3D volume. This 3D volume under-
goes spectral (via DCT or wavelets) decomposition, and is
denoised in the spectral domain, before being aggregated
along with the results of other patches and their collabora-
tive sets, into a final estimate of the image. In the first phase,
the patches are denoised by hard thresholding of the spec-
tral coefficients. In the second phase, the result of phase I is
taken as an estimate of the clean signal. A Wiener filter is
created in the spectral domain, and used to obtain the clean
signal, based on the denoised estimate. The result is a high
quality regularization, typical for non-local multipoint algo-
rithms. As we demonstrate in this paper, the various steps
of this algorithm all have their parallel in the context of sur-
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face processing, resulting in a robust and accurate surface
smoothing algorithm.

We concentrate on dealing with arbitrary point clouds,
without an underlying connectivity. This scenario is of-
ten important in more general cases of surface processing
where data is obtained from several scanners, or where large
changes in view angles and depths make scanner-based tri-
angulation inadequate. We therefore describe our algorithm
in this setting, working with the discrete point sets them-
selves whenever possible. This is consistent with the obser-
vation taken from image denoising algorithms, where in-
correct interpolation in the presence of noise can lead to
smoothing artifacts. Exploiting a known connectivity of a
mesh is one possible extension of the proposed algorithm,
which is left for future work.

We describe our model in Section 2, and explain its steps
in detail. We demonstrate in Section 3 the results of the pro-
posed method on several models and subject to various noise
levels and types.

2. Collaborative Spectral Denoising of Point Clouds

We now turn to describe the notion of collaborative spec-
tral denoising and related concepts. The flow diagram of the
complete algorithm is shown in Figure 4. Given a surface, we
assume that for each small surface patch we can find a set of
similar patches. This assumption is consistent with the one
used in image denoising, for instance in [ABM05,DFKE07].
Two examples of a such similar patches are shown in Fig-
ure 1. Note that for better visualization in all figures show-
ing point clouds, the points constructing them are marked by
small spheres, as in Figure 1.

A definition of the distance between surface patches is re-
quired to obtain these similar patches. Unlike the case of
image processing, where data sampled on a Cartesian grid
can be considered part of a vector space (endowed with sev-
eral metrics), in the case of point cloud patches a different
approach must be taken. In general, our notion of distance,
or dissimilarity, between surface patches should be rotation
invariant to account for differences in the local coordinate
frames of the different patches.

One such distance is based on the iterative closest point
(ICP) cost function, that matches two given patches with re-
spect to rigid transformation (R, t),

d(Pi,P j) = min
(R,t)

‖RP j + t −Pi‖2, (1)

where R ∈ SO(3) and t ∈ R3 represent rotation and trans-
lation. In our case, we use ‖ · ‖2 to denote a quadratic
distance approximation [PH03, MGPG04] between point
clouds. Moreover, the patches used for matching are first
denoised by a moving-least-squares in order to improve
the similarity measure, as was suggested by Dabov et al.
[DFKE07] in the context of image denoising. The ICP al-
gorithm is initialized by aligning the means of the two

patches. The resulting distance value over all computed
patches is shown in Figure 11. Yet another option, suggested
by Yoshizawa et al. [YBS06], is to approximate the surface
by RBFs. Comparing the performance of such distance mea-
sures as well as other measures of local surface similarity is
beyond the scope of this paper.

Once defined, this patch similarity also provides us with
a transformation (R, t) that brings together similar patches
into a single local coordinates frame. Once the patches are
in the same coordinate frame, a transform can be defined
simultaneously on points from the patches. This transform
can then be used to denoise the surface. In order to ob-
tain this transform we look at the spectral decomposition
of our rotated and translated patches, calculated using the
Laplace-Beltrami operator (LBO) [Ros97]. Specifically, in
the same way that wavelets transforms and other dictio-
naries are used for image denoising and compression, the
eigenfunctions of the LBO can be used for surface denois-
ing. Other uses of LBO eigenfunctions include surface com-
pression [KG00], analysis [Lév06, RWP06, OSG08], recog-
nition [BK10, SHCB11], invariant representations [Rus07],
segmentation [SOCG10], surface deformation [BS08], and
so forth [Sor06, ZVKD10].

2.1. Collaborative Patch Construction

In contrast to previous methods that utilize spectral prop-
erties of surfaces, we look at a set of similar patches as a
local collaborative representation of the surface and perform
the spectral decomposition of this combined representation.
Specifically, for each patch Pi from the sampled surface we
construct its collaborative patch, P̂i, by registering onto it
similar patches. In order to use only relevant patches to con-
struct P̂i, we keep patches whose distance to the patch Pi af-
ter the rigid alignment is smaller than some threshold, here-
after denoted by µ. This defines the collaborative group (of
patches) for patch Pi,

Gi =

{
P j s.t. min

R,t
‖RP j + t −Pi‖2 < µ

}
. (2)

The above patches are combined into the collaborative patch
P̂i using the transformations found in Equation 2, to form a
single point cloud approximating the surface, but with many
more data samples. This point cloud should give us a better
approximating power in the presence of noise, assuming the
surface has self-similarities. The collaborative patch can be
thought of as a new sampling of the surface (assuming the
patches are sufficiently similar), or as a point cloud where
each point is associated with a source point from our origi-
nal sampled surface. We demonstrate two such point clouds
in Figure 1. We note, however, that even in the lack of com-
plete matching patch candidate, the algorithm still creates a
thickly sampled patch, making spectral denoising more ro-
bust.

One should also make note of the type of (coordinate)
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Figure 1: Left-to-right: A patch in the point cloud along with two other similar patches, taken from [MBB10], followed by the
collaborative point cloud obtained from these three patches, and a similar example from the Fandisk model, of three similar
patches, and the resulting collaborative patch.

functions used to describe surface smoothness. In general,
we want to use relatively regular functions. This is achieved
by choosing a suitable support region and a local coordi-
nate frame for each collaborative patch, by applying the
forward-support estimation algorithm introduced by Fleish-
man et al. [FCOS05]. We illustrate a collaborative patch and
the smooth support region obtained for it in Figure 3, the top-
left sub-figure. The spectral denoising procedure, described
in the next sections, is then applied to the estimated sup-
port region, in the local coordinate frame of the patch, here-
after denoted by (x̃, ỹ, z̃). This also assures us, in the case
of uniquely-appearing patches, that the collaborative group
only pertains to the common primitives inside each patch.
Thus, such patches still receive ample support and can be
denoised using a suitable collaborative group.

After construction of the collaborative patch, our algo-
rithm proceeds in two main phases: employing a shrinkage
operator based on the collaborative patch LBO eigenfunc-
tions, followed by Wiener filtering based on the denoised
estimate and the noisy point cloud. We denote these phases
as phase I and II, respectively. In each phase we first gather
for each patch a collaborative group, process it, and obtain
a new estimator for the original patches that participated in
the group. We need not create a collaborative patch for each
vertex – all that is required is a sampling dense enough to
cover each vertex with several estimators. As in the BM3D
algorithm, we then average these estimators. For the surfaces
we show in the paper, we used P = 400 collaborative groups,
each using patches chosen from the patches surrounding the
nearest 1000 vertices. Using fewer groups or smaller search
windows, however, already gave satisfactory results.

2.2. Collaborative Point-cloud Shrinkage

Both phase I and phase II of the algorithm require defin-
ing the discrete Laplacian approximation on the points par-
ticipating in the collaborative patch. In our experiments,
both nearest-neighbor graph-Laplacian approximation and
the method of Belkin et al. [BSW09] gave comparable re-
sults for noisy point clouds. We note that other algorithms
can also be used for denoising the collaborative patch –

for example, spectral analysis can be applied using wavelet
bases constructed on a given point cloud, for example using
one of the techniques [REC11, CM11, Rus11].

The shrinkage is performed using the eigenfunctions of
the Laplace-Beltrami operator of the collaborative patch,
forming a spectral domain for functions defined on it. Dif-
ferent eigenfuntions may be thought of as corresponding to
different frequencies in this spectral domain [Lév06]. Fig-
ure 3 demonstrates the typical low-frequency nature of the
first few LBO eigenfunctions.

Let f be a function defined on the point set of P̂i. Let fk
denote the spectral coefficients of the collaborative patch,

fk = 〈 f ,φk〉 , (3)

where φk are the eigenfunctions of the Laplace-Beltrami op-
erator, indexed according to increasing order of the eigenval-
ues of the LBO they correspond to, and the inner product is
the standard l2 inner product defined on the discrete points
set, although other choices are possible. The collaborative
hard shrinkage of f is defined by

SP̂i,τ( f ) = ∑
k

f̂kφk, (4)

where f̂k denote the hard thresholding of each spectral coef-
ficient fk with threshold τ,

f̂k =
{

fk, | fk| ≥ τ
0, | fk|< τ . (5)

We apply the shrinkage operator to each of the aligned lo-
cal coordinate functions of the surface separately, in order to
obtain the denoised version of the collaborative patch. This
collaborative shrinkage process provides us with a set of es-
timators for each point in our point cloud, obtained for the
collaborative groups the point belongs to.

We give an example of the estimated coefficients in Fig-
ure 2, averaged over 400 collaborative patches of the Fan-
disk model, shown in Figure 6, for the 3 local coordinate
functions. In our examples, the first 100 eigenfunctions suf-
ficed to describe the collaborative patch. As expected, the
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fast decay of these coefficients allows us to use only a few
dozens of eigenfunctions without losing accuracy. It is in-
teresting to note the strong spectral components in the tan-
gent directions and small linear coefficient in the normal
direction, as expected. The resulting graphs can be viewed
as a power spectral density (PSD) estimation of the coordi-
nate functions. Similarly, it is easy to show that independent,
identically distributed (i.i.d.) Gaussian noise defined on the
points is transformed into a uniform noise PSD (for non-
overlapping patches). This gives us the theoretical motiva-
tion for the shrinkage operator on the collaborative patch.
While the uniformity assumption is no longer true in the
patch-collaborative case, the collaborative shrinkage oper-
ator works well in practice, as was shown in [DFKE07]. We
now turn to describe several key practical aspects regarding
the combination of estimators.
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Figure 2: The average normalized coefficient strength for
the collaborative patch Laplacian eigenfunctions, sampled
on the Fandisk model. Red, green and blue represent the ab-
solute magnitude of the normal (red) and two tangent coor-
dinates in the local frame as estimated by our algorithm.

Averaging estimators Special care must be given to the
way different patch estimators are combined together, as in
the image-denoising case. We now describe the weights used
to average different denoised estimates of each point. Let us
denote by σD a constant proportional to the patch radius.
The weights wi j of point i based on the collaborative patch
P j are obtained by multiplying three different aspect-related
weights,

1. A weight decreasing with the distance between the points
i and j – in our case a Gaussian kernel,

exp{−‖xi −x j‖2/σ2
D}, (6)

where x j is the center of patch P j.
2. The quality measure of the estimation of the patch P j

based on the collaborative group it belongs to, as defined
by how much of the signal’s (l2) energy was removed by

Figure 3: Top left: a collaborative patch with the support,
shown in blue, obtained as suggested in [FCOS05]. The rest
of the images illustrate the first six eigenfunctions of the LBO
defined over the chosen support.

the shrinkage

‖SP̂i,τ( f )‖
‖ f‖ . (7)

3. A coefficient inversely proportional to the density around
point i in the collaborative patch P j. This is impor-
tant since isolated points in the collaborative patch of-
ten have a poor approximation of the Laplace-Beltrami
eigenfunctions, leading to a relatively poor estimation by
the shrinkage operator at these points. This also helps
prevents the ghosting artifacts that are often associated
with examplar-based methods where partially-matched
patches are grouped together.

Handling boundaries In addition, we replace the spectral
estimators in patches that belong to boundary points with a
simple linear estimator. For patches at the boundary, the es-
timation of local LBO basis is inaccurate, and a simplified
model is expected to help avoid overfitting. This is similar
to the approach taken in the data-dependent moving-least-
squares algorithm [LCOL07]. Detecting boundaries in point
clouds have been reviewed and discussed in the context of
manifold learning. We refer the readers to [RBBK10] for
several approaches for boundary detection on point clouds
and an overview of the topic.

Patch construction The set of patches used for denoising
is constructed as follows: we consider a subset of surface
points, denoted by seed points. We then define a patch Pi
centered at a seed point xi as

Pi =
{

x j | ‖xi −x j‖ ≤ r0
}
, (8)

where r0 is some predefined patch size.

Not all vertices can be used to seed a collaborative
group due to the computational effort required. Special
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care must therefore be given to choosing a uniform cover-
ing of patches. In order to assure spatially uniform selec-
tion, the farthest point sampling strategy ( [Gon85], [HS85],
[ELPZ97]) can be used. This, however, does not guarantee
that each point receives a sufficient number of estimators. In
order to verify this, we look at each point’s estimator weights
effective sample size,

Ne f f (xi) =

(
∑ j wi j

)2

∑ j
(
wi j

)2 . (9)

We use this measure, taken from the particle filtering lit-
erature [DGA00], by selecting the farthest point from the
points whose effective sample size is above the median. This
strategy gave us a reasonably uniform coverage while en-
suring that all points are sufficiently represented in multiple
collaborative groups. We therefore use it, for both the first
and second phases of our algorithm.

2.3. Collaborative Point-cloud Wiener Filtering

The spectral decomposition of functions on the collabora-
tive patch also allows us to define a Wiener filtering pro-
cess, similar to the second stage of the BM3D algorithm. As
in the BM3D [DFKE07] or in the WienerShrink [GSB97]
algorithms, the denoised surface from phase I acts as our
assumed clean signal, and the difference in the coordinate
functions acts as the assumed additive noise.

Specifically, let f orig
k denote the spectral coefficients of

the original noisy signal, and let f den
k denote the coefficients

of the denoised estimate obtained from phase I. The Wiener-
filtered spectral coefficients are defined as

f wien
k =


(

f den
k

)2

(
f den
k

)2
+
(

f orig
k − f den

k

)2

 f orig
k . (10)

Similar to phase I, we construct the collaborative groups
and collaborative patches, now using the denoised estimate
of the point cloud from phase I. It is important that the trans-
form computed in phase II will differ significantly from the
transform found in the first phase, as was discussed in the
context of the WienerShrink algorithm [GSB97]. As in the
BM3D algorithm, the different choice of patches at phase
II suffices to produce a different transform and ensure the
effectiveness of the Wiener-filtering approach to shrinkage.
Another possibility is to use a different spectral transform
such as one of [REC11, CM11, Rus11].

An overall algorithmic description of the proposed ap-
proach is given as Algorithm 1. Its flow diagram is shown
in Figure 4.

The above algorithm was implemented using Matlab c©
and the Point Cloud Library (PCL) [RC11]. Currently, the
current implementation of the algorithm is computationally

demanding, taking a few hours to run on surfaces with 15K
vertices, depending on parameters. We note, however, that
the most computationally costly stages of the algorithm are
the ICP optimization and spectral decomposition calcula-
tion, performed in both denoising phases. Since, however,
collaborative groups are analyzed independently, it is possi-
ble to significantly speed up the algorithm by parallelizing
the calculations.

3. Results

We now demonstrate the results of our approach on several
example models, with different levels of noise. In Figures 6,8
we show the denoising results on the Fandisk and Bust mod-
els. The point clouds were added a Gaussian noise with
standard deviations of 0.005,0.01 and 0.02 for the Fandisk
model, and 0.01 for the Bust model examples, or 1%,2%
and 4%, and 0.43% of the objects’ diameters, respectively.

Besides visual comparison, we measure the mean-
squared-error (MSE), and median-of-squares (MedSq) esti-
mate. We compare our method to the moving-least-squares
implementation available in the Point Cloud Library (PCL)
[RC11], as well as an implementation of non-local means
and bilateral filtering algorithms for point clouds.

The MSE for point cloud denoising is given by the ICP
cost measure

min
R∈SO(3),t∈R3

1
N

N

∑
i=1

d2(Rpden
i + t,SGT ), (11)

where SGT and pden
i denote the ground-truth (original) sur-

face and the denoised cloud points, respectively, and d(·, ·)
denotes a point-to-surface distance. In our case we used a
quadratic point-to-surface distance approximation [PH03]
due to its relatively high accuracy in the case of sparsely
sampled surfaces. Similarly, we look at MedSq, the median
of the summands in Equation 11. While MSE is the classical
choice for denoising performance, MedSq is quite relevant
when the denoising is a preprocessing step for robust algo-
rithms which ignore outlier points, as is often the case in
ICP [RL01], or robust fitting algorithms. The error measures
for the Fandisk model are summarized in Table 1, and for
the Bust model – in Table 2.

Both tables demonstrate that the proposed algorithm per-
forms favorably compared to the state of the art in terms of
denoising accuracy of point clouds with strong noise. Pa-
rameters of all methods were taken so as to minimize the
resulting MSE. Note that the non-local means implementa-
tion used in our experiments attempts to fit together nearby
similar patches, and average them. It does so while referring
to the point samples themselves, which are quite sparse, and
while fitting together patches from the area which may not
convey a lot of information. Thus it is often less success-
ful than the MLS algorithm, which approximates the sur-
face and thus is expected to be more accurate and robust to
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Figure 4: An overview flowchart of the collaborative spectral denoising scheme.

Algorithm 1 Collaborative spectral denoising of point-cloud surfaces
1: Obtain initial estimation via moving least-squares.
2: Phase I: Obtain denoised surface via collaborative spectral shrinkage.
3: for each patch Pi, i = 1,2, . . . ,P do
4: Collect collaborative group Gi.
5: Build collaborative patch P̂i.
6: Estimate a local coordinate frame and coordinate functions (x̃, ỹ, z̃).
7: Apply shrinkage operator on collaborative patch’s coordinate functions.
8: Return patch estimates to their original location, averaging overlapping estimates together.
9: end for

10: Phase II: Obtain denoised surface via collaborative spectral Wiener filtering.
11: for each patch Pi, i = 1,2, . . . ,P do
12: Collect collaborative group Gi.
13: Build collaborative patch P̂i.
14: Estimate a local coordinate frame and coordinate functions (x̃, ỹ, z̃).
15: Apply Wiener filter on collaborative patch’s coordinate functions, using the denoised estimate from phase I.
16: Return patch estimates to their original location, averaging overlapping estimates together.
17: end for

sampling artifacts. The MLS, on the other hand, efficiently
smoothes the point clouds, but then it also smoothes sharp
surface features, which are preserved by the proposed algo-
rithm. We also compare to an implementation of the bilateral
filter for point clouds [FDCO03], with a robust estimation of
the normal. Since most of the surfaces shown in this paper

appear locally as a relatively simple signal, they agree with
this filter, which surpasses the results of the non-local means.
In order to see the regions where the algorithms encountered
problems, residual plots, or method-noise plots in Figure 7
demonstrate the error left after denoising by each method,
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again in terms of distance from the original surface, per sur-
face point.

Figure 9 demonstrates the results of the proposed algo-
rithm applied to data obtained from a structured light scan-
ner. The resulting surface is clearly smoothed in a plausible
manner, removing most of the scanning artifacts, while still
managing to capture subtle details such as the lips and eyes
areas where sampling was irregular and other techniques
may smooth the area altogether. We note that this result is
obtained despite the fact that the noise is far from a Gaussian
i.i.d model, as is often assumed in shrinkage-based denois-
ing.

Figure 10 illustrates denoising of a point cloud having
both sharp features and smooth areas, taken from [RDK].
The search radius for detecting similar patches was taken
to be sufficiently small, so that each protrusion is consid-
ered separate, and each collaborative patch contains merely
different variations of the same patch taken along dominant
features. While the incomplete set of similar patches limits
the power of the collaborative filter, results are still convinc-
ing. This example also raises the question of non-repetitive
patches in non-local denoising methods. In general, the im-
plicit assumption made in non-local methods is that patches
are small enough so that variations of the patch appear at
least a few times. This assumption may break down if the
surface sampling is not dense enough, the local feature size
[AB99] is relatively small, and the surface does not have a
repetitive structure. We note that such patches are less influ-
ential in the denoised results because of the choice of patch
support set, and the weight given to such estimators, as de-
scribed in Subsection 2.2. An attempt to address this issue
and allow several scales to be used simultaneously in de-
noising has been made in the context of non-local image de-
noising [LFSB09]. In our paper we restrict ourselves to the
usual assumption of a single scale of patches.

We illustrate the above limitation in the left sub-figure
of Figure 11, by showing the measured distances between
patches according to Equation 1, over the search area. De-
spite this intentionally posed limitation, each patch still
successfully undergoes a robustified spectral shrinkage and
Wiener filtering. Even though the collaborative patches are
limited to perturbed replicas of the same patch, and each
patch is limited in the number of sampled points, the pro-
trusions are still preserved in the smoothed version while
the noise is eliminated, as shown in Figure 10. A different
case of selection for a collaborative group is shown for the
Fandisk model, in in the right sub-figure of Figure 11, where
many low-distance patches can be found, limited mostly by
the surface density.

4. Conclusions

In this paper we demonstrated a method for patch-
collaborative spectral denoising of surfaces, generalizing the

Block Matching 3D Denoising algorithm from images to
surfaces. The suggested method reaches state-of-the-art re-
sults in denoising and smoothing of point cloud surfaces, and
suggests other possibilities for surface reconstruction that we
intend to explore in future work.
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Noise Level σ = 0.005 σ = 0.01 σ = 0.02
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Table 1: Mean squared error (MSE) and median of squares (MedSq) of the point cloud after denoising for the Fandisk model
in Figure 6, for the noise levels shown in the figures.
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Table 2: Mean squared error (MSE) and median of squares (MedSq) of the point cloud after denoising for the Bust model in
Figure 8, for the noise level shown in the figure.
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Figure 5: The two standard models used in our experiments – Fandisk (left) and Bust (right).

Figure 6: The denoising results for the Fandisk model. Top-to-bottom: results for additive component-wise Gaussian noise with
standard deviation σ = 0.005,0.01 and 0.02. Left-to-right: the noisy model, non-local means result, bilateral filtering result,
moving-least-squares result using PCL [RC11], the result after Phase I of the proposed method, the result after Phase II of the
proposed method. The surface reconstruction from point clouds was performed using [Gia11].
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Figure 7: A residual plot, showing the method noise for various methods. Left-to-right: NL-means, bilateral filtering, MLS, and
phase I and phase II of our method, under various noise levels. Colors measure point-to-plane error. Top-to-bottom: standard
deviations of σ = 0.005, 0.01, 0.02.

Figure 8: Left to right: a reconstruction of the Bust model with added noise of σ = 0.01, with moving-least-squares results
using PCL [RC11], denoising results by phase I and phase II of the proposed algorithm.
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Figure 9: Left-to-right: raw range-scanned data triangulated into a surface, moving-least-squares results using PCL [RC11],
and the results of phase I and II of the proposed algorithm. Note the delicate structures such as the eye and lip areas, and the
relative smoothness of the forehead.

Figure 10: Left to right: original shape, with added Gaussian noise, denoised result of the proposed method.

Figure 11: The measured distances for a patch over from the half-smooth and Fandisk models. Blue signifies low distances, red
denotes high distances. Gray points are outside the search area for the specific patch.
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