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Abstract—Objects and structures within man-made environments typically exhibit a high degree of organization in the form of
orthogonal and parallel planes. Traditional approaches utilize these regularities via the restrictive, and rather local, Manhattan World
(MW) assumption which posits that every plane is perpendicular to one of the axes of a single coordinate system. The aforementioned
regularities are especially evident in the surface normal distribution of a scene where they manifest as orthogonally-coupled clusters.
This motivates the introduction of the Manhattan-Frame (MF) model which captures the notion of a MW in the surface normals space,
the unit sphere, and two probabilistic MF models over this space. First, for a single MF we propose novel real-time MAP inference
algorithms, evaluate their performance and their use in drift-free rotation estimation. Second, to capture the complexity of real-world
scenes at a global scale, we extend the MF model to a probabilistic mixture of Manhattan Frames (MMF). For MMF inference we
propose a simple MAP inference algorithm and an adaptive Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hastings
split/merge moves that let us infer the unknown number of mixture components. We demonstrate the versatility of the MMF model and
inference algorithm across several scales of man-made environments.

Index Terms—Manhattan World, Manhattan Frame, Mixture of Manhattan Frames, World Representation, Surface Normals

F

1 INTRODUCTION

S IMPLIFYING assumptions about the structure of the sur-
roundings facilitate reasoning about complex environ-

ments. On a wide range of scales, from the layout of a city to
structures such as buildings, furniture and many other objects,
man-made environments lend themselves to a description in
terms of parallel and orthogonal planes. This intuition is for-
malized as the Manhattan World (MW) assumption [1] which
posits that most man-made structures may be approximated by
planar surfaces that are parallel to one of the three principal
planes of a common orthogonal coordinate system.

At a local level, this assumption holds for parts of city
layouts, most buildings, hallways, offices and other man-made
environments. However, the strict MW assumption cannot
represent many real-world scenes on a global level: a rotated
desk inside a room, more complex room and city layouts (as
opposed to planned cities like Manhattan). While local parts of
the scene can be modeled as an MW, the entire scene cannot.
This suggests a more flexible description of a scene—one that
is composed of multiple MWs of different orientations.

When reasoning about the composition of a scene in terms
of MWs, we directly utilize the surface-normal distribution
of the scene, rather than working with a plane segmentation.
This is motivated by the observation that across a wide range
of scales, man-made environments exhibit structured, low-
entropy surface-normal distributions as displayed in Fig. 1.
Additionally, surface-normal distributions are invariant to
translation and scale [2] which makes the proposed approach
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Fig. 1: Across scales, surface normals of man-made environ-
ments exhibit characteristic patterns. This work establishes the
connection between 3D Manhattan-World structures and their
surface-normal distributions via the Manhattan-Frame model.

largely independent of the measurement and 3D reconstruction
process. Finally, surface normals are straightforward to extract
from most 3D scene representations such as depth images [3],
[4], point clouds [5] and meshes [6], [7].

We introduce the notion of the Manhattan Frame (MF)
which represents the MW structure in the space of surface
normals, i.e., the unit sphere, as orthogonally-coupled clusters.
Modeling surface-normal noise with two different distributions
on the sphere, we formulate two probabilistic generative MF
models. Depending on the model, real-time MAP inference is
carried out in closed form or via optimization on the manifold
of rotation matrices SO(3). Additionally, these models are
used to construct a mixture of MFs (MMF) to represent com-
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Fig. 2: Structure assumptions about scenes in terms of expres-
siveness. The proposed MMF subsumes both the Atlanta and
the Manhattan World models.

plex scenes composed of multiple MFs. For the MMF model,
we derive a simple MAP inference algorithm and a Gibbs-
sampling-based algorithm that using Metropolis-Hastings [12]
split/merge proposals [13], adapts the number of MFs to best
capture the surface-normal distribution of a scene.

We examine the properties of the proposed models and
inference algorithms in a variety of qualitative and quantitative
experiments. These demonstrate the expressiveness and versa-
tility of the MF and MMF model across scales: depth images
of a single view of a scene, larger indoor reconstructions and
large-scale aerial LiDAR data of an urban center.

2 RELATED WORK

The different assumptions made in the literature about the
environment can be categorized in terms of their expres-
siveness as depicted in Fig. 2. The assumptions range from
mostly unrestricted representations such as point clouds, mesh
and level-set, which can in the limit represent any surface
exactly, to the rather strict MW assumption as indicated by the
inclusion diagram. The proposed MMF assumption subsumes
the Atlanta World (AW) which in turn subsumes the MW
assumption. The MMF provides a directional segmentation
under the orthogonality constraints imposed by the MW as-
sumption. Relaxing the orthogonality constraints completely,
we arrive at what we term the Stata Center World (SCW)1. It
captures only the directional composition of a scene. Planar
scene representations differ from the SCW in that different
planes with the same orientation are separated in space.

These different assumptions about scenes can be observed
directly in the 3D structure or indirectly in the projection of
the 3D structure into a camera [14]. Models and inference
algorithms based on the former utilize 3D representations such

1. see http://web.mit.edu/facilities/construction/completed/stata.html

as meshes, point clouds and derived data such as surface
normals. Intersections of planes in 3D are lines which can
be observed as lines in the image space. A Vanishing Point
(VP) is the intersection of multiple such lines where the 3D
lines are all parallel to each other. Models built on VPs usually
use image gradient orientations directly or indirectly via line
segment extraction. Specifically, the MW is manifested as
orthogonally-coupled VPs (OVPs) in the image space and an
MF in the surface-normal space. Multiple MWs cause multiple
OVPs and MFs. The SCW can be observed via independent
VPs in the image or independent surface normal clusters.
2D image-space There is a vast literature on VP estimation
from RGB images. The goals for VP estimation range from
single-image scene parsing [15] and 3D reconstruction [16],
[17], [18], [19], VP direction estimation for rotation estimation
with respect to man-made environments [1], [20], [21], [22]
to VP direction tracking over time to estimate camera rotation
and scene structure [23], [24], [25], [26], [27].

While early VP extraction algorithms relied on image
gradients [1], [8], most modern algorithms operate on line
segments extracted from the image. This has been found to
yield superior direction estimation results over dense image-
gradient approaches [28]. Generally, VPs are extracted by
intersecting lines in the image. These intersections are often
found after mapping lines to the unit sphere [23], [29], [30], or
into other accumulator spaces [31]. Introduced in [15], horizon
estimation has emerged as a benchmark for VP estimation
algorithms [32], [33].

Many VP extraction algorithms rely on the MW assump-
tion [1], [20], [22], [25], [26], [32], [34], [35] which is mani-
fested as three OVPs. Incorporating the MW assumption into
the VP estimation algorithms not only increases estimation
accuracy (if the MW assumption holds) [31] but also allows
estimation of the focal length of the camera [20], [31], [32],
[35], [36], [37], and rejection of spurious VP detections.
Another avenue of research uses the MW assumption for
single-image 3D reconstruction [16], [17], [18], [19]. The
inferred MW and associations of lines to MW axes combined
with geometric reasoning are used to reconstruct the 3D scene
in [16], [17]. Hedau et al. [18] use an MW prior to iteratively
infer the 3D room layout and segment out clutter in the room.
Liu et al. [19] use a floor plan in conjunction with a set of
monocular images to reconstruct whole apartments.

The AW model of Schindler et al. [8] assumes that the
world is composed of multiple MWs sharing the same z-axis
(which is assumed to be known). This facilitates inference
from RGB images as only a single angle per MW has to
be estimated as opposed to a full 3D rotation. The approach
by Antunes et al. [38] infers the full MMF from RGB
images. Relaxing the assumptions about the scene, VPs can
be extracted independently [15], [21], [23], [24], [28], [30],
[31], [33], [39] akin to the SCW assumption.
3D representations There are many approaches that rely
purely on 3D representations of surfaces and scenes. Assump-
tions such as the MW or SCW, are used to align scenes into a
common frame of reference for scene segmentation and under-
standing [40], [41], and to regularize 3D reconstruction [42],
[43]. The AW and MMF model could be used similarly.
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Similar to the image space, the MW assumption has been
used most commonly [40], [41]. This is probably due to
the fact that man-made environments exhibit strong MW
characteristics on a local scale, i.e. on the level of a single
RGBD frame of a scene. In the application of Simultaneous
Localization and Mapping (SLAM) [44], the MW assumption
has been used to impose constraints on the inferred map [43].
Our original idea of the MF [9] has been adapted by Ghanem
et al. [45] who propose a robust inference scheme for MF
estimation (RMF) and by Kyungdon et al. [46] who use
a branch-and-bound scheme to perform real-time globally
optimal MF inference (MF BB).

To the best of our knowledge the assumption of multiple
MWs in the 3D data setting (as opposed to RGB 2D-images)
has not been explored prior to our own work in [9], which
was a preliminary and partial version of this manuscript.

Similar to the MF and MMF model, the SCW can be
inferred solely from surface-normal distributions [10], [11].
Monszpart et al. [42] couple a local plane-based approach
with global directional regularity constraints to regularize 3D
reconstructions of man-made environments from point clouds.
Gupta et al. [41] assume the only relevant direction for seman-
tic scene segmentation is the direction of gravity to enable
alignment of the ground plane across scenes. They propose
a simple algorithm to segment the scene into the gravity
and all other directions based on surface-normal observations.
Triebel et al. [47] extract the main directions of planes in
a scene using a hierarchical Expectation-Maximization (EM)
approach. Using the Bayesian Information Criterion (BIC)
they infer the number of main directions as well. Note, that
the MF and MMF model could be inferred from the SCW by
grouping inferred directions into MFs.

An alternative to the MW, MMF or SCW model describes
man-made structures by individual planes with no constraints
on their relative normal directions. The orthogonality con-
straints in the MW or MMW models enable statistical pooling
of measurements across different orientations. This means
not only that fewer measurements (per plane) are needed
to achieve the same amount of accuracy as without those
constraints but also that reliable measurements from one or
more directions help in handling cases where there are only
few reliable measurements from other directions.
2D & 3D The connection between VPs in images and 3D
MW structures has been used to infer dense 3D structure
from sets of images by Furukawa et al. [48]. They employ
a greedy algorithm for a single-MF extraction from normal
estimates that works on a discretized sphere. Neverova et
al. [49] integrate RGB images with associated depth data from
a Kinect camera to obtain a 2.5D representation of indoor
scenes under the MW assumption. Silberman et al. [40] infer
the dominant MW using VPs extracted from the RGB image
and surface normals computed from the depth image.

3 THE MANHATTAN FRAME (MF)
The Manhattan Frame (MF) is the image of a 3D MW structure
under the Gauss Map as depicted in Fig. 3. In other words, the
MF describes the notion of the MW in the space of surface

Manhattan World
(MW)

Manhattan Frame
(MF)

Orth. Vanishing
Points (OVP)

Gauss MapProjection

R3 S2R2

Fig. 3: A MW structure maps to a MF in the surface normal
space and to three orthogonal VPs in the image plane.

normals. In a noise-free, perfect MW the surface normals
would align with the six directions collected as columns in:

E =
[

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

]
, ej denotes the jth col. of E. (1)

In the camera coordinate system these six directions will
appear rotated by R, an element of SO(3) the space of
orthonormal matrices in 3D:

M = RE , µj denotes the jth col. of M . (2)

Note that the rotation of the camera, R, is unknown and hence
a key parameter to be estimated by an inference algorithm. In
other words, if a 3D scene consists of only planar surfaces
such that the set of their surface normals is contained in the
set {µj}6j=1, then M captures all possible directions in the
scene—the scene follows the MW assumption.

Specifically, let qi ∈ S2 denote the ith observed surface
normal. A latent label, zi ∈ {1, . . . , 6}, assigns qi to a specific
signed axis within the MF. Hence µzi is the signed axis
associated with qi. In the following we will denote the set
of all labels as z = {zi}Ni=1 and the set of all surface normals
as q = {qi}Ni=1. The unit normals are elements of the unit
sphere in R3, denoted by S2, a 2D manifold whose geometry is
outlined in Sec. 3.2.1. Commonly, in 3D processing pipelines
(e.g. in surface fairing or reconstruction [50], [51]), the unit
normals are estimated from noisy measurements of the 3D
scene structure such as depth images [3], [4], point clouds [5]
and meshes [7]. Due to these noise sources and potentially
imperfect 3D MW structure, the surface normals q may deviate
from their associated MF axis.

In order to fit the parameters of an MF, one would seek
to penalize those deviates. While, in principle, this can be
formulated directly as a deterministic optimization, we adopt
a probabilistic modeling approach. This allows us to derive a
real-time algorithm for single MF inference as well as MCMC
inference for the more complicated MMF model all from the
same base MF model. Another key advantage over determin-
istic approaches is that the MCMC algorithm infers all model
parameters to facilitate reasoning about uncertainty which is
important for scene understanding. Furthermore using MCMC
inference, the MMF model can be integrated into larger and
more complex environment models, as we showed recently
in [7]. Another approach would be to utilize a non-parametric
directional segmentation algorithm such as [11] or [10] and to
fit MFs to the inferred modes of the surface normal distribu-
tion. The advantage of directly inferring an MF model is that
data from the different (orthogonal and opposing directions)
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(a) Tangent Space Gaussian MF (b) von-Mises-Fisher MF

Fig. 4: Depictions of the two proposed MF noise models.

all jointly contributed to the estimation of the MF orientation.
This is especially important in scenes like the urban scene
in Fig. 1 where there is only few data points for some of
the directions. To this end, we propose two different noise
models to describe those random deviations: tangent space
Gaussian (TG) noise as well as von-Mises-Fisher (vMF) noise.

3.1 The probabilistic MF model
Let R ∈ SO(3) denote the rotation of the MF. Making no a-
priori assumptions about which orientation of the MF is more
likely than others, R is distributed uniformly:

R ∼ Unif(SO(3)) . (3)

Since SO(3) is a manifold with finite support, we can compute
its volume and obtain 8π2 [52] which implies that all rotations
have equal likelihood of 1/8π2 .

As is standard in Bayesian mixture modeling, the MF axis
assignments zi of a surface normal qi to an MF axis are as-
sumed to be distributed according to a categorical distribution
Cat(w) with a Dirichlet distribution prior parameterized by γ:

zi ∼ Cat(w); w ∼ Dir(γ) (4)

The deviations of the observed normals from their signed
axis are modeled by a directional distribution parameterized
by Θ. We only require this directional distribution to have
the assigned MF axis µzi as its mode. Following a Bayesian
approach we assume a prior p(Θ;λ) for the parameters:

qi ∼ p(qi | zi, R,Θ); Θ ∼ p(Θ;λ) (5)
s.t. µzi = arg maxq∈S2 p(q | zi, R,Θ) , (6)

where λ are the so-called hyperparameters of the prior. Many
directional distributions exist (e.g., [53], [54], [55]) and most
are valid choices for the distribution of surface normals. We
focus on the tangent-space Gaussian (Sec. 3.2) and the von-
Mises-Fisher distribution (Sec. 3.3) as depicted in Fig. 4.

Finally, the joint distribution for the MF model is given as:

p(z,q, w,R,Θ; γ, λ) = 1
8π2 p(w; γ)p(Θ;λ)∏N
i=1 wzip(qi | zi, R,Θ) .

(7)

3.2 Tangent Space Gaussian MF Model
The tangent-space Gaussian MF (TG-MF) model describes the
deviates not on S2 directly but in a tangent plane. To explain
this concept, we touch upon some differential-geometric no-
tions before describing the TG-MF model.

TpS2

S2

p
x

q

τ = 1

µ

τ = 100

Fig. 5: Left: The unit sphere S2 in 3D. The blue plane on
the sphere illustrates TpS2, the tangent space to S2 at point p.
Middle and right: 2D vMF distributions.

3.2.1 The Manifold of the Unit Sphere S2

As alluded to earlier, surface normals lie on the unit sphere in
3D, S2. This space is a 2-dimensional Riemannian manifold
whose properties we review in the following.

Let p and q be two points on the unit sphere in 3D, S2, and
let TpS2 denote the tangent space to S2 at point p. Then

pT p = qT q = 1 and TpS2 = {x : x ∈ R3 ; xT p = 0} . (8)

Note that while S2 is a nonlinear manifold, TpS2 ⊂ R3 is
a 2-dimensional linear space as depicted in Fig. 5. It can be
shown ([56], [57]) that the length of the shortest path along the
manifold, also called the geodesic, between p and q is given
by the angle between p and q:

dG(p, q) = arccos(pT q) . (9)

Furthermore, the Riemannian exponential map Expp :
TpS2 → S2 maps a point x in the tangent space TpS2 around
p onto the sphere S2:

x 7→ p cos(||x||) + x
||x|| sin(||x||) . (10)

The inverse of Expp, the Riemannian logarithm map Logp :
S2/{−p} → TpS2 can be computed as:

q 7→ (q − p cos θ) θ
sin θ , (11)

where θ = dG(p, q). Since θ is computed as the angle between
p and q it is upper bounded by π for q = −p. In that case the
logarithm map becomes singular and is thus defined over the
entire sphere except the antipodal point −p. The Riemannian
logarithm map can be thought of as a linearization of S2\{−p}
to a disk with radius π excluding the boundary of the disk.

In other words, the geodesic distance between two unit
normals is the angle between them, Expp maps TpS2 onto
S2 and Logp performs the inverse mapping. Note that Expp
and Logp depend on p. For further details and an introduction
to Riemannian geometry see [57].

Note that in the formulas for the Riemannian exp and log
map points x ∈ TpS2 are vectors in the ambient Euclidean
space R3 fulfilling Eq. (8). In the following we express x in
local tangent space coordinates as x̃ by parallel transporting all
data into the tangent space around the north pole n = (0, 0, 1)
using a rotation R. Vectors x ∈ TnS2 all have xz = 1
and hence x̃ is obtained from x by simply discarding the
z coordinate. In the following all this process is implicitly
assumed whenever a point on the sphere is mapped into a
tangent space via the log map. Likewise whenever the exp
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map is used the process is performed in the inverse direction:
first augment the z direction with 1, then rotate the resulting
point down to the tangent space via RT .

The rotation R can be computed via the axis-angle formula-
tion with axis w = n×p

‖n×p‖2 and angle θ = arccos(nT p) using
Rodrigues’ formula [58]:

R(w, θ) = I + (sin θ)[w]× + (1− cos θ)[w]2× (12)

where [w]× denotes the construction of a skew-symmetric
matrix from a vector w as:

[w]× =
[ 0 −w3 w2
w3 0 −w1
−w2 w1 0

]
(13)

Note that since θ[w]× is a skew-symmetric matrix, it is an
element of the Lie Algebra so(3) associated with SO(3).
The Exponential map from so(3) to SO(3) is equivalent to
Rodrigues’ formula in Eq. (12) [59].

3.2.2 The TG-MF Model
Under the TG-MF model the deviations of the observed
normals from their assigned axis are modeled by a 2D zero-
mean Gaussian distribution with covariance Θ = Σ ∈ R2×2 in
the tangent space around the axis. The conjugate prior distri-
bution for covariance matrices Σ is the inverse Wishart (IW)
distribution [60] parameterized by λ = {∆ ∈ R2×2, ν ∈ R}:

p(qi | zi, R,Θ) = N (Logµzi
(qi); 0,Σzi) , (14)

p(Θ;λ) = IW(Σzi ; ∆, ν) (15)

where Logµzi
(qi) ∈ TµziS

2. In other words, we evaluate the
probability density function (pdf) of qi ∈ S2 by first mapping
it into TµziS

2 and then evaluating it under the Gaussian
distribution with covariance Σzi ∈ R2×2. The pdf of the
surface normals over the nonlinear S2 is then induced by the
Riemannian exponential map:

qi ∼ Expµzi
(N (0,Σzi)) (16)

The range of Logp is contained within a disk of finite radius
(π) while the Gaussian distribution has infinite support. Conse-
quently, for probabilistic inference, we use the inverse Wishart
prior to favor small covariances resulting in a probability
distribution that, except a negligible fraction, is within the
range of Logp and concentrated about the respective axis.

3.3 von-Mises-Fisher MF Model

In this section we introduce modeling the surface normals as
von-Mises-Fisher (vMF) [55], [61] distributed. This distribu-
tion is natively defined over the manifold of the sphere and
commonly used to model directional data [11], [62], [63],
[64]. It defines an isotropic distribution for D-dimensional
directional data q ∈ SD−1 around a mode µ ∈ SD−1 with
a concentration τ ∈ R and has the following form:

vMF(q;µ, τ) = Z(τ) exp(τqTi µ) , (17)

where Z(τ) is the normalizing constant. See Fig. 5 for a 2D
illustrative example. Under the vMF model with concentration

Θ = τ , a surface normal qi ∈ S2 is distributed as:

p(qi | zi, R,Θ) = vMF(qi;µzi , τ) , (18)
p(Θ;λ) ∝ Z(τ)a exp(bτ) , λ = {a, b} , (19)

where the prior p(Θ;λ) on the concentration parameter of the
vMF is only known up to proportionality [65].

4 REAL-TIME MF MAP INFERENCE

Based on the probabilistic generative models for the MF
setup in the previous sections, we now develop real-time
MF (RTMF) maximum-a-posteriori (MAP) inference methods.
These algorithms are used to infer the local MF structure of
an environment efficiently. Starting from the TG-MF model
we first derive the MAP inference algorithm directly be-
fore employing an approximation that yields more efficient
inference. Lastly, the vMF-MF MAP inference is derived.
Those three MF algorithms are instantiations of the hard-
assignment expectation maximization algorithm (EM): We
iterate assigning surface normals to the most likely MF axis
and updating the MF rotation estimate until convergence.

In this section, for efficiency reasons and in the absence of
further knowledge about the scene, the surface normals are
assumed to be generated with equal probability from any of
the axes, i.e. all wj = 1

6 . For the same reason we assume
identical isotropic covariances Σj = σ2I for all TG-MF axes
and identical concentration parameters τj for all vMF-MF
axes. In Section 5, the TG-MF assumptions will be relaxed.

4.1 Direct MAP MF Estimation for the TG-MF
Starting from the tangent-space Gaussian MF model as set
up in Sec. 3.2, we derive the direct MAP MF rotation
estimation algorithm. The posterior over assignments zi of
surface normals qi to axis of the MF is given by

p(zi = j|R, qi;π,Σ) ∝ wj N (Logµj (qi); 0,Σ) . (20)

Therefore the MAP estimate for the label zi becomes:

zi = arg minj∈{1...6} Logµj (qi)
TΣ−1Logµj (qi)

= arg minj∈{1...6} arccos2(qTi µj) ,
(21)

where we have used arccos(qTi µj) = ||Logµj (qi)||2 and
assumed that the covariance Σ is isotropic. With p(R) =
Unif(SO(3)), the posterior over the MF rotation R is

p(R|q, z; Σ) ∝ p(q|z, R; Σ)p(R) ∝ p(q|z, R; Σ)

=
∏N
i=1N (Logµzi

(qi); 0,Σ) .
(22)

Working in the log-domain, the MAP estimate for R is

R? = arg minR− log p(R|q, z; Σ) := arg minR f(R) . (23)

With the posterior in Eq. (22), the cost function f(R) is

f(R) = − log
[∏N

i=1N (Logµzi
(qi); 0,Σ)

]
∝
∑N
i=1 arccos2(qTi µzi) ,

(24)

where we have used a derivation similar to Eq. (21). We call
this method direct since the cost function directly penalizes a
normal’s deviation from its associated MF axis.
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Fig. 6: The geometry of the approximation of Logµ(qi).

We enforce the constraints on R (RTR = I & det(R) = 1)
by explicitly optimizing the cost function on the SO(3)
manifold using gradient descent with backtracking linesearch.
More details can be found in [56], [66], [67]. To derive the
Jacobian needed for the optimization we use that perturbations
of R from R0 can be written as R(ω) = R0Exp(ω) where
ω = θ[w]× ∈ so(3) and Exp is the exponential map from
so(3) to SO(3) as introduced in Eq. (12). Then the Jacobian
is J = ∂f(R(ω))

∂ω |ω=0, the derivative of f with respect to the
perturbation ω ∈ R3 at ω = 0:

J =
∑
i
∂ arccos2(x)

∂x
∂
∂ω q

T
i RExp(ω)ezi

∣∣∣
ω=0

=
∑
i

2 arccos(qTi Rezi )√
1−(qTi Rezi )

2
qTi [Rezi ]×

(25)

Backtracking line search in the direction of the negative
Jacobian until the Armijo conditions are met provides an
appropriate step size δ which allows us to obtain a new rotation
estimate using the exponential map:

Rt = Rt−1Exp(−δJt) (26)

4.2 Approximate MAP MF Rotation Estimation
The direct approach derived in the previous section is ineffi-
cient since the cost function in Eq. (24) and the respective
Jacobian involve a sum over all data-points. The Jacobian
needs to be re-computed after each update to R and the cost
function multiple times during the backtracking linesearch. To
address this inefficiency, we derive an approximate estimation
algorithm by exploiting the geometry of S2.

The approximation necessitates the computation of the
Karcher means {q̃j}6j=1 for each of the sets of normals, {qi}Ij ,
associated with the respective MF axis. The Karcher mean is
the generalization of the standard Euclidean sample mean to
arbitrary manifolds. It is computed efficiently as described in
Appendix A. After this preprocessing step, we approximate
Logµzi

(qi) using the Karcher mean q̃zi as proposed in [10]:

Logµ(qi) ≈ Logµ(q̃) +Rµq̃Logq̃(qi) . (27)

where the subscript zi was omitted for the sake of clarity
and Rµq̃ rotates vectors in Tq̃S2 to TµS2. Intuitively this
approximates the mapping of qi into µzi with the mapping
of the Karcher mean into µzi plus a correction term that
accounts for the deviation of qi from the q̃zi . See Fig. 6 for an
illustration of underlying geometry. With this the cost function
f(R) from Eq. (24) can be approximated by f̃(R) as

f(R) ≈ f̃(R) ∝
∑N
i=1 Logµzi

(qi)
TΣ−1Logµzi

(qi)

∝
∑6
j=1 |Ij | arccos2(q̃Tj µj) ,

(28)

where we have used that the sample mean in the tangent space
of their Karcher mean

∑
i∈Ij Logq̃j (qi) = 0 by definition.

With µk = Rek the Jacobian for f̃(R) is

J = ∂f̃(R(ω))
∂ω =

∑
k

2|Ik| arccos(q̃Tj Rmk)√
1−(q̃Tk Rek)2

q̃Tk [Rek]× . (29)

Thus the gradient descent optimization over R only utilizes the
Karcher means {q̃j}6j=1, which can be pre-computed since the
labels are fixed for the rotation estimation. This eliminates the
costly iteration through all data-points at each gradient descent
iteration.

4.3 MAP Inference in the MF-vMF Model
In this section, we derive the MAP inference for the vMF-
MF model and show that the structure of the vMF distribution
allows the MF rotation to be computed in closed form.

With the uniform distribution over labels, i.e. πj = 1
6 , the

posterior distribution over label zi follows the proportionality

p(zi = j|qi, R; τ) ∝ vMF(qi;µj , τ) ∝ exp(τqTi µj) . (30)

Since we assume equal concentration parameter τ for the six
vMF distributions, the MAP assignment for zi is

zi = arg maxj∈{1,...,6} q
T
i µj . (31)

The posterior distribution over the MF’s rotation is:

p(R|q, z; τ) ∝ p(q|z, R; τ)p(R) ∝ p(q|z, R; τ) =

=
∏N
i=1 vMF(qi|µzi ; τ) .

(32)

With N =
∑6
j=1 ej

∑
i∈Ij q

T
i we can find the optimum of

the log posterior in closed form by noticing

max
R∈SO(3)

∑N
i=1 τq

T
i µzi = max

R∈SO(3)

∑6
j=1

∑
i∈Ij q

T
i Rej

= maxR∈SO(3) tr {NR} .
(33)

This has the same form as the orthogonal Procrustes prob-
lem [68]. Hence, the optimal rotation can be computed in
closed form using the SVD N = USV T as

R? = V diag(1, 1, sign(det(UV T )))UT . (34)

This has been used before to align point patterns by
Umeyama [69] and applied to the MF rotation estimation in a
slightly different way by [45].

4.4 Real-time MF inference on streaming data
In the case of a stream of batches of surface normals obtained,
for example, from an RGB-D camera, we impose a matrix
vMF [70] diffusion model with concentration τR. The condi-
tional distribution of the current rotation R given the previous
rotation R− is:

p(R|R−, τR) ∝ exp(τR tr{RT−R}) . (35)

This distribution is uniform over the rotation space for τR = 0
and concentrates on R− as τR increases. See [71] Ex. 2 for a
modern treatment of the matrix vMF distribution. In practice
we chose τ = 1. This adds the negative log likelihood term

fR = −τR tr{RT−R} (36)
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to the MAP cost functions derived in the previous sections. For
the direct and the approximate RTMF algorithm this means an
additional term in the Jacobian:

∂fR(R(ω))
∂ω = −τR ∂

∂ω tr{RT−R(ω)}
= −τR

[
tr{RT−G1R} tr{RT−G2R} tr{RT−G3R}

]
.

(37)

For the vMF-based algorithm we can still derive a closed from
rotation MAP estimate:

R? = arg maxR∈SO(3) log p(R|q, z; τ) + τR tr{RT−R}
= arg maxR∈SO(3) tr{ÑR} , Ñ = N + τRR

T
− .

(38)

Note that the additional term stemming from the matrix vMF
distribution acts as a regularizer if only one MF axis has
associated observations.

5 THE MIXTURE OF MANHATTAN FRAMES

As alluded to in the introduction, the description of man-
made environments on a global scale necessitates a more
flexible model that can capture Manhattan Worlds with some
relative rotation between them. This motivates the extension
of the MF framework described in Sec. 3 to the MMF. In
practice, scene representations may be composed of multiple
intermediate representations, which may include MMFs, to
facilitate higher-level reasoning (e.g. [7]). As such, adopting
a probabilistic model allows one to describe and propagate
uncertainty in the representation. Prior knowledge and model
inherent measurement noise can be incorporated in a princi-
pled way. Conditional independence allows drawing samples
in parallel and hence leads to tractable inference.

In the proposed MMF representation scenes consist of K
MFs, {M1, . . . ,MK} which jointly define 6K signed axes.
For K = 1, the MMF coincides with the MF. Specifically, let
qi ∈ S2 denote the ith observed normal. In the MMF, each
qi has two levels of association. The first, ci ∈ {1, . . . ,K},
assigns qi to the cith MF. The second, zi ∈ {1, . . . , 6}, assigns
qi to a specific signed axis within the MF Mci as described in
Sec. 3. In the following sections it will be convenient to collect
all variables of the kth MF into Ψk = {ck, zk, wk, Rk,Σk}
where Σk = {Σkj}6j=1, ck = {ci}i:ci=k and zk = {zi}i:ci=k
denote all labels ci or zi which are associated to the kth MF
via c. The MF axes of the kth MF are a function of the rotation
Rk according to Eq. (2) and will be denoted {µkj}6j=1.

First we define the MMF’s probabilistic model before we
outline a sampling-based-inference scheme. We restrict the
analysis and inference method to the TG-MF model because
the vMF distributions in the vMF-MF model necessitate more
involved inference methods since the prior on the concentra-
tion does not have a closed form as mentioned in Sec. 3.3.
Hence an internal slice sampler would be required to sample
posterior concentration parameters for the vMF-MF.

5.1 Probabilistic Model
Figure 7 depicts a graphical representation of the probabilistic
MMF model. It is a Bayesian finite mixture model that takes
into account the geometries of both S2 and SO(3). In this
probabilistic model, the MMF parameters are regarded as

π α Σkj ∆, ν

ci qi µkj Rk

zi wk γ
N

6

K

Fig. 7: Graphical model for a mixture of K MFs.

random variables and we avoid assumptions from Sec. 4 about
weights and covariances of the individual MFs.

A surface normal qi is associated with an MF via the assign-
ment variable ci. These MF-level assignments are assumed to
be distributed according to a categorical distribution with a
Dirichlet distribution prior with parameters α:

ci ∼ Cat(π); π ∼ Dir(α) . (39)

Each MF follows the mixture distribution outlined in
Sec. 3.2 and hence a surface normal is distributed as

qi ∼ p (Ψci ; γ,∆, ν) . (40)

We set α < 1 to favor models with few MFs, which is
typical for man-made scenes. Contemporary buildings, for
example, customarily exhibit a small number of MFs. To
encourage the association of equal numbers of normals to all
MF axes, we place a strong prior γ � 1 on the distribution
of axis assignments zi. Intuitively, this encourages an MF to
explain several normal directions and not just a single one.

5.2 Metropolis-Hastings MCMC Inference
We perform inference over the probabilistic MMF model
described in Sec. 5.1 using Gibbs sampling with Metropolis-
Hastings [12] split/merge proposals [13]. Specifically, the
sampler iterates over the latent assignment variables c and z,
their categorical distribution parameters π and w = {wk}Kk=1,
as well as the covariances in the tangent spaces around the
MF axes Σ = {Σk}Kk=1 and the MF rotations R = {Rk}Kk=1.
We first explain all posterior distributions needed for Gibbs
sampling before we outline the algorithm.

5.2.1 Posterior Distributions for MCMC Sampling
The posterior distributions of both mixture weights are:

p(π|c;α) = Dir(α1 +N1, . . . , αK +NK) (41)
p(wk|c, z; γ) = Dir(γ1 +Nk1, . . . , γk6 +Nk6) , (42)

where Nk =
∑N
i=1 1[ci=k] is the number of normals assigned

to the kth MF and Nkj =
∑N
i=1 1[ci=k]1[zi=j] is the number

of normals assigned to the jth axis of the kth MF. The
indicator function 1[a=b] is 1 if a = b and 0 otherwise

Using the likelihood of qi from Eq. (14), the posterior
distributions for labels ci and zi are given as:

p(ci = k|π, qi,Θ) ∝ πk
∑6
j=1 wkj p(qi;µkj ,Σkj) (43)

p(zi = j|ci, qi,Θ) ∝ wcij p(qi;µcij ,Σcij) , (44)

where Θ = {w,Σ,R}. We compute xi = Logµcizi
(qi), the

mapping of qi into TµciziS
2, to obtain the scatter matrix Skj =
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∑N
i 1[ci=k]1[zi=j]xix

T
i in TµkjS2. Using Skj the posterior

distribution over covariances Σkj is:

p(Σkj |c, z,q,R; ∆, ν) = IW (∆ + Skj , ν +Nkj) . (45)

Since there is no closed-form posterior distribution for an
MF rotation given axis-associated normals, we approximate it
as a narrow Gaussian distribution on SO(3) around the optimal
rotation R?k under normal assignments z and c:

p(Rk|z, c,q) ≈ N (Rk;R?k(R0
k, z, c,q),Σso(3)) , (46)

where Σso(3) ∈ R3×3 and R0
k is set to Rk from the previous

Gibbs iteration. Refer to Appendix B for details on how to
evaluate and sample from this distribution.

The (locally-) optimal rotation R?k ∈ SO(3) of MF Mk

given the assigned normals q = {qi}i:ci=k and their associa-
tions zi to one of the six axes µkzi can be found using any of
the MAP MF inference algorithms (i.e. Sec. 4.1 or 4.3).

5.2.2 Metropolis-Hastings MCMC Sampling
The Gibbs sampler with Metropolis-Hastings split/merge pro-
posals is outlined in Algorithm 1. For K MFs and N nor-
mals the computational complexity per iteration is O(K2N).
To let the order of the model adapt to the complexity of
the distribution of normals on the sphere, we implement
Metropolis-Hastings-based split/merge proposals. The details
of the algorithm are described in the following sections.

Algorithm 1 One Iteration of the MMF Inference

1: Draw π | c;α using Eq. (41)
2: Draw c | π,q,R,Σ in parallel using Eq. (43)
3: for k ∈ {1, . . . ,K} do
4: Draw wk | c, z; γ using Eq. (42)
5: Draw z | c,w,q,R,Σ in parallel using Eq. (44)
6: Draw Rk|z, c,q; Σso(3) using Eq. (46)
7: Draw {Σkj}6j=1 | c, z,q,R; ∆, ν using Eq. (45)
8: end for
9: Propose splits for all MFs

10: Propose merges for all MF combinations

5.3 Split/Merge Proposals
Here we derive split and merge proposals for the MMF model
as well as their acceptance probability in an approach similar
to Richardson and Green [13]. Note that a merge involves
moving all points from MF l and m into a new MF n and then
removing MFs l and m. Similarly, a split creates two new MFs
l and m from a single MF n. Hence, both a split and a merge
change the number of parameters in the model. Specifically
the parameters that change their dimension are the set of MF
rotations, R, and the set of covariances on the MF axes, Σ.
The labels z and c remain of the same dimensions; only the
range for c changes from [1,K] to [1,K−1] (merge) or from
[1,K] to [1,K+1] (split). Therefore, we employ the theory of
Reversible Jump Markov Chain Monte Carlo (RJMCMC) [72]
to derive a proper acceptance probability. RJMCMC is a
generalization of Metropolis-Hastings MCMC [12] and pro-
vides a way of computing an acceptance probability when

the number of parameters changes between moves. We will
see that the split/merge proposals as well as the acceptance
probabilities are similar to what one would expect from the
Metropolis-Hastings algorithm. For this reason and because
the MH algorithm is more well-known, we chose to refer to
the inference algorithm as to Metropolis-Hastings MCMC.

5.3.1 RJMCMC Split/Merge Moves in an MMF
RJMCMC utilizes auxiliary variables to propose deterministic
moves to change between model orders. In the following,
we will give the RJMCMC algorithm for a merge proposal
between two MFs. The inverse proposal of a split of an MF
into two MFs follows the same but inverted process.

Let a MF A be parameterized by the random variables
ΨA. An RJMCMC merge proposal between MFs m and l
is executed in three steps. First, an auxiliary MF v is sampled
from q(merge) to propose a merge of the current MFs l and m
as will be described in Section 5.3.2. Second, the deterministic
function f([Ψl,Ψm,Ψv]) = [u1,u2, Ψ̂n] is used to obtain the
merged MF n parameterized by Ψ̂n. The auxiliary MFs u1

and u2 absorb the MFs l and m from before the merge. The
function f([Ψl,Ψm,Ψv]) is hence defined as

u1 = Ψl , u2 = Ψm , Ψ̂n = Ψv . (47)

Therefore, the Jacobian Jf of the function f([Ψl,Ψm,Ψv]) is

Jf = ∂f([Ψl,Ψm,Ψv ])
∂[Ψl,Ψm,Ψv ] = I , (48)

where I is the identity matrix with determinant 1.
Third, the proposed merge is accepted with probability

min

{
1,

∏K−1
k=1 p(Ψ̂k;α, γ,∆, ν)∏K
k=1 p(Ψk;α, γ,∆, ν)

q(split)
q(merge)

det(Jf )

}
, (49)

where parameters after the merge are designated with a hat.
The proposal distributions for a split of MFs l and m into MF
n is denoted q(split).

The RJMCMC split proposal of an MF n into MFs l and
m follows the same process except that a split is proposed
according to Sec. 5.3.3 instead of a merge. The deterministic
transformation is the inverse of f(·). This means that the
determinant of the Jacobian is 1 and the acceptance probability
for the split is Eq. 49 where the ratio has been inverted.

Note that the RJMCMC acceptance probability for
split/merge moves in an MMF looks like the Metropolis-
Hastings acceptance probability, because |det(Jf )| = 1. How-
ever, since the model orders in the nominator and denominator
of the fractions are different, it technically is not a Metropolis-
Hastings acceptance probability.

5.3.2 Merge Proposal in an MMF
Let the two MFs l and m be parameterized by the random
variables Ψl and Ψm. A merged MF n can be sampled from
the current MFs l and m as follows. We first assign all normals
of MF l and m to MF n: cc∈{l,m} = n, which corresponds to
the proposal distribution:

q(cl, cm|c) = δ({cl, cm} − n) . (50)
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Second, we sample the axes assignments zn according to

q(zi = j|wl, Rl,Σl,q) ∝ wlj p(qi;µlj ,Σlj) . (51)

Next, given associations cn and zn, we find the optimal rota-
tion using the closed form solution of the vMF-based model
derived in Sec. 4.3. This is justified because the direct and the
vMF-based algorithms generally found the same optimum in
our experiments. Then we sample Rn from a narrow Gaussian
distribution over rotations with mean R?n:

q(Rn|z, c,q, Rl) = N (Rn;R?n(zn, cn,q),Σso(3))

= N ((R?Tn LogR?n(·)(Rn))∨; 0,Σso(3)) ,
(52)

where LogR?n(R) : SO(3)→ TR?nSO(3) denotes the logarithm
map of R into the tangent space TR?nSO(3) around R?n. The
vee operator ∨ [52] extracts the unique elements of a skew-
symmetric matrix W ∈ R3×3 into a vector w: W∨ = w =
[−W23;W13;−W12] ∈ R3. Σso(3) ∈ R3×3 is the covariance
of the Normal distribution in TR?nSO(3). Refer to Appendix B
for an in depth discussion.

Finally, we obtain samples for the axis covariances Σn

according to the proposal distribution

q(Σn|c, z, Rn,q) =
∏6
j=1 p(Σnj |zn, cn,q, Rn) , (53)

where p(Σnj |zn, cn,q, Rn; ∆, ν) is the posterior distribution
over covariance Σnj under the IW prior given the assigned
normals in the tangent space TµnjS2.

The proposal of merging MF l and m into MF n factors as

q(merge) = q(Ψn|Ψl,Ψm,q;α, γ,∆, ν) = q(cl, cm|c)

q(Rn|Rl, z, c,q)q(Σn|c, z,q, Rn; ∆, ν)∏
i:ci=n

q(zi|wl, Rl,Σl,q) .

(54)

5.3.3 Split Proposal in an MMF
First, we randomly assign normals in MF n to MF l or m
by drawing MF labels according to the Dirichlet Multinomial
(DirMult) distribution:

q(cn|c;α) = DirMult (cn;αl, αm)

=
∫
π

Cat(c|π) Dir(π;αl, αm) dπ ;
(55)

DirMult(c;α) =
Γ(

∑K
k=1 αk)

Γ(
∑K
k=1 αk+Nk)

∏K
k=1

Γ(αk+Nk)
Γ(αk) . (56)

and the counts Nk of labels ci = k are Nk =
∑N
i=1 1[ci=k].

Within each of the MFs l and m we assign normals q to
an axis by drawing the assignments zn as

q(zi = j|wn, Rn,Σn,q) ∝ wnj p(qi;µnj ,Σnj) . (57)

Using these assignments, we find optimal rotations R?l and
R?m and draw Rl and Rm:

q(Rl, Rm|z, c,q, Rn) = N (Rl;R
?
l (Rn, z, c,q),Σso(3))

N (Rm;R?m(Rn, z, c,q),Σso(3)) .
(58)

Given rotations as well as labels, we can draw axis covariances
Σ{l,m} from the respective posterior:

q(Σ{l,m}|c, z,q, R{l,m}; ∆, ν)

=
∏6
j=1 p(Σlj |z, c,q, Rl)p(Σmj |z, c,q, Rm)

(59)

The split proposal distribution factors as

q(split) = q(xl, xm|xn,q;α, γ,∆, ν) = q(cn|c;α)

q(R{l,m}|z, c,q, Rn)q(Σ{l,m}|c, z,q, R{l,m})∏
i:ci=n

q(zi|wn, Rn,Σn,q) .

(60)

5.3.4 RJMCMC Acceptance Probability
After introducing the RJMCMC merge and the split proposals
in the previous sections, we will now derive the acceptance
probabilities for those two moves by detailing the distributions
involved in the computation of Eq. (49).

The joint distribution for the MMF model is defined by
the graphical model depicted in Fig. 7. For the evaluation of
the acceptance probability, we marginalize over the categorical
variables π and w as in the split proposal in Eq. (55):

p(c;α) =
∫
π
p(c|π)p(π;α)dπ = DirMult(c;α) (61)

p(zk|c; γ) =
∫
wk
p(zk|c, wk)p(wk; γ)dwk

= DirMult(zk; γ) ,
(62)

After marginalization of π and w, the joint distribution is:

p(q, c, z,Σ,R;α, γ,∆, ν) = p(c;α)
∏6
j p(Σkj ; ∆, ν)∏N

i=1 p(qi|ci, zi, Rci ,Σcizi)
∏K
k=1 p(Rk)p(zk|c; γ) ,

(63)

where we have assumed that the prior over rotations factors
according to p(R) =

∏K
k=1 p(Rk). Therefore, the ratio of

joint probabilities in the merge move acceptance probability
in Eq. (49) becomes

p(q,̂c,̂z,Σ̂,R̂;α,γ,∆,ν)
p(q,c,z,Σ,R;α,γ,∆,ν) = p(ĉ;α)p(q|̂c,̂z,R̂,Σ̂)p(ẑ|̂c;γ)p(Σ̂;∆,ν)p(R̂)

p(c;α)p(q|c,z,R,Σ)p(z|c;γ)p(Σ;∆,ν)p(R) =

8π2p(ĉ;α)(
∏N
i p(qi|ĉi,ẑi,R̂,Σ̂))

∏K̂
k=1 p(ẑk |̂c;γ)

∏6
j=1 p(Σ̂kj ;∆,ν)

p(c;α)(
∏N
i p(qi|ci,zi,R,Σ))

∏K
k=1 p(zk|c;γ)

∏6
j=1 p(Σkj ;∆,ν)

,

(64)
where K̂ = K − 1. For a split proposal this ratio is inverted.

The acceptance probability of splits and merges of MFs can
be computed, by plugging Eq. (64) into Eq. (49).

5.4 MAP inference in the vMF-MMF model
To design a simple inference algorithm for MAP estimation in
the vMF-MMF model we add a hierarchy level to the vMF-MF
model from Sec. 4.3 as described in the previous MMF section.
For hard-assignment EM-based inference we only additionally
require the assignment of data points to an MF. According to
the MMF model the labels ci are distributed as:

p(ci = k|qi, R; τ) ∝ wk
∑
j πkj exp(τqTi µkj) . (65)

Assuming πkj = 1
6 and τ all equal, like for the derivation of

the vMF MAP algorithm, leads to the hard assignment rule:

ci = arg maxk wk
∑
j πkj exp(τqTi µkj)

≈ arg maxk arg maxj q
T
i µkj + log(wk) .

(66)

Given the MF-level assignment, data is assigned to MF
internal axes as dictated by Eq. 31 and the kth MF rotation
updated according to Eq. 34. With the number of normals
assigned to the kth MF, Nk =

∑N
i=1 1[ci=k], we estimate the

MF proportions wk under the Dirichlet distribution prior as:

wk = Nk+α
N+Kα . (67)
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Fig. 8: Timing breakdown for the three different RTMF
algorithms. The error bars show the one-σ range.
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Fig. 9: Rotation estimation accuracy. Percentages of points
assigned to each MF axis is color-coded in the second row.

6 EVALUATION

We evaluate the properties and performance of the real-
time MF (RTMF) before the MMF inference algorithms. All
evaluations were run on an Intel Core i7-3940XM CPU at
3.00GHz with an NVIDIA Quadro K2000M GPU.

6.1 Evaluation of real-time MAP Inference

We show run-times and rotation estimation accuracy of all
three derived real-time MF inference (RTMF) algorithms on a
dataset with groundtruth (GT) camera rotations from a Vicon
motion-capture system. The dataset was obtained by waving
the camera randomly in full 3D motion up-down as well as
left-right in front of a simple MW scene for 90 s as can be
seen in the GT yaw-pitch-roll angles in the first row of Fig. 9.

The approximate RTMF algorithm was run for 25 iterations
at most while the direct RTMF algorithm was run for at
most ten to keep computation time low. Any fewer iterations
rendered the direct MF rotation estimation unusable.
Timings We split the computation times into the following
stages: (1) applying a guided filter to the raw depth image, (2)
computing surface normals from the smoothed depth image,
(3) pre-computing of data statistics and (4) optimization for
the MF rotation. The timings shown in Fig. 8 were computed
over all frames of the dataset. At 111 ms per frame the direct
method cannot be run in real-time. While the approximate
method improves the runtime, it is 15 ms slower than the
vMF-based approach which runs in 18 ms. The approximate
algorithm is slower since the Karcher mean pre-computation
is iterative whereas the vMF pre-computation is single pass.
As intended by shifting all computations over the full data into
a pre-processing step, the latter two RTMF algorithms can be
run at a camera frame-rate of 30 Hz. In the following we omit
the direct method from the evaluation due to its slow runtime.
Accuracy Over the whole dataset the algorithms obtain an
angular RMSE from the Vicon groundtruth rotation of 2.5◦

for the vMF-based approach and 4.56◦ for the approximate

Fig. 10: Inferred MMF in scene and surface normal space.

method showing the higher precision of the vMF-based closed-
form rotation estimates. The percentages of surface normals
associated with the MF axes displayed in the second row of
Fig. 9 support the intuition that a less uniform distribution
of normals across the MF axes results in a worse rotation
estimate: large angular deviations occur when there are surface
normals on only one or two MF axes for several frames. Note
that the rotation estimates of the RTMF algorithms are drift
free—an important property for visual odometry systems.

6.2 Evaluation of MMF Inference
We now evaluate MMF inference on various datasets across
scales and compare against MF and VP estimation algorithms.

With the RJMCMC-based approach, we infer an MMF in a
coarse-to-fine approach. First, we down-sample to 120k nor-
mals and run the algorithm for T = 150 iterations, proposing
splits and merges throughout as described in Sec. 5.2. We use
the following parameters: Σso(3) = (2.5◦)2 I3×3, α = 0.01,
γ = 120, ν = 12k, and ∆ = (11◦)2ν I2×2. For the purpose
of displaying results, we obtain MAP estimates from samples
from the posterior distribution of the MMF. First, we find the
most likely number of MFs K? from all samples after a burn-
in of 100 RJMCMC iterations. We then run MCMC starting
form the latest sample that has K? MFs using all data without
proposing splits and merges. All MMF results displayed herein
show the last MMF sample of that chain.

The vMF-MMF MAP inference algorithm is sensitive to
the initial MF rotations. Hence, we run it 11 times each time
starting from 6 randomly rotated MFs and choose one of the
models with the moste likely number of MFs after discarding
MFs with less than 10% of surface normals.

6.2.1 MMF Inference from Depth Images
We first highlight different aspects and properties of the
inference using the 3-box scene depicted in Fig. 10. For this
scene, we initialized the number of MFs to K = 6. The
algorithm correctly infers K = 3 MFs corresponding to the
three differently rotated boxes as displayed in Fig. 10 on the
sphere and in the point cloud. While the blue MF consists
only of the single box standing on one corner, the green and
red MFs contain planes of the surrounding room in addition to
their respective boxes. This highlights the ability of our model
to pool normal measurements from the whole scene.

In Fig. 11 we show several typical indoor scenes of varying
complexity and the inferred MF using the vMF-based RTMF
algorithm, the MMF inferred by the MAP-MMF algorithm
and the MMF inferred by the RJMCMC algorithm. The MMF
inference algorithms were started with six MFs in all cases.
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Fig. 11: Segmentation and inferred (M)MF of various indoor scenes partly taken from the NYU V2 depth dataset [40]. For
single-MF scenes we color-code the assignment to MF axes and for MMF scenes the assignments to MFs.
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Fig. 12: Common failure cases of the MMF inference.

For the single MW scenes, all these algorithms infer the same
MF, for the multiple-MW scenes the MMF and the MAP-
MMF algorithm infer the same reasonable MFs while the vMF
RTMF algorithm seems to pick the most prominent MF.

Besides poor depth measurements due to reflections, strong
ambient light, black surfaces, or range limitations of the
sensor, the inference converged to the wrong number of MFs
mainly because of violations of the MW assumption such as
round objects or significant clutter in the scene. We observe
that the algorithm fails gracefully, approximating round objects
with several MFs or adding a “noise MF” to capture clutter
as can be seen in Fig. 12. Hence, to eliminate “noise MFs”,
we consider only MFs with more than 10% of all normals for
the following quantitative evaluation.

To evaluate the performance of the MMF inference algo-
rithms, we ran them on the NYU V2 dataset [40] which
contains 1449 RGB-D images of various indoor scenes.
MF count inference For each scene, we compare the number
of MFs the algorithm infers to the number of MFs a human
annotator perceives. The confusion matrices for the two MMF
algorithms are:

CMMF = [ 557 467 108 3 0
130 152 28 1 1 ] CvMF MMF = [ 528 283 186 138

37 118 83 74 ] (68)

The MMF algorithm infers the human perceived MMFs in
49.0% of the scenes while vMF-MMF is slightly worse with
44.6% and a tendency to overestimate the number of MFs.
MW orientation accuracy We use the groundtruth MW

Fig. 13: CDFs of gravity and MW orientation estimation.

orientation of the most prominent MW provided by [45] to
directly evaluate MW orientation estimation accuracy. We take
into account that the same MF axes defined according to
Eq. (2) can be described by 24 rotations {RMF,i}24

i=1. These
are constructed as: for all six permutations of choosing two
columns from RMF,i, r and r′, construct four rotation matrices:

[r, r′, r×], [−r, r′,−r×], [r,−r′,−r×], [−r,−r′, r×] (69)

where r× = r× r′. To compute the angular deviation θ of an
estimated MF to the ground truth MF rotation we construct
the set {RMF,i}24

i=1 from the inferred MF rotation, compute all
angular rotation deviations to the groundtruth RGT and choose
the smallest deviation:

θ = mini arccos( 1
2 trace(RTGTRMF,i)− 1

2 ) (70)

In case of MMFs we choose the smallest deviation across MFs.
Figure 13 (right) depicts cumulative distribution functions

(CDF) for the angular deviation of the different MF and MMF
algorithms, and two VP extraction algorithms, [31] (VP Lez)
and [17] (VP Lee), which extract three OVPs. Evidently, MF
algorithms estimate the MW rotation more accurately than the
OVP algorithms. The MMF algorithms show higher accuracy
on the whole dataset than single MF algorithms.
Gravity direction estimation Like the algorithms by Silber-
man et al. [40] and Gupta et al. [41] the proposed MF and
MMF inference algorithms can be used to estimate the gravity
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TABLE 1: Algorithm timings on NYU V2 dataset

Method RTMF MMF vMF MMF RMF MF BB Lez Lee Kos Barn
Time [s] 0.037 0.18 3312 23.6 0.061 3.99 5.76 0.21 0.015

Fig. 14: MMF extracted from a mesh of an indoor couch area
(see middle of Fig. 1) obtained using Kintinuous [75].

direction to facilitate rotating scenes into a canonical frame
for scene understanding. VPs are also indicative of the gravity
direction and we show the performance of two additional VP
algorithms [20] (VP Kos) and [29] (VP Barn). The mean
direction of surface normals in the scene parts labeled as
“floor” serves as a proxy for the true gravity direction in the
evaluation.

The CDFs of angular deviation from the gravity direction
in Fig. 13 (left) demonstrates that all MF inference algorithms
match the performance of Gupta et al. and clearly outperform
all VP-based estimates. The inferred MMF models outperform
all other methods because of the higher flexibility of the model.
The MF algorithms all show similar performance.
Timing Table 1 gives an overview of run-times for the
different algorithms averaged over the 1449 scenes from the
NYU V2 dataset. RTMF-vMF is the fastest algorithm while
the sampling-based algorithm is, unsurprisingly, the slowest.
It could, however, be sped up, e.g., by employing a sub-cluster
approach for split-merge proposals [10], [74].

6.2.2 Additional Qualitative MMF Inference Results
Triangulated meshes Algorithms such as Kintinuous [75]
and Elastic Fusion [76] allow dense larger scale indoor recon-
structions from a stream of RGBD frames as depicted in the
middle of Fig. 1 for a couch area with some boxes, shelves
and a Lego house. Using the triangles’ surface normals, the
MMF can be inferred. The associations to one of the inferred
MFs is shown in the middle of Fig. 14 while the associations
to the MF axes within each of the MFs is shown to the right.
LiDAR data The large-scale LiDAR scan of Cambridge
(Fig. 1 right) has few measurements on the sides of buildings
due to reflections off the glass facades and inhomogeneous
point density because of overlapping scan-paths. To handle
these properties, we implement a variant of robust moving-
least-squares normal estimation [77]. Figure 15 shows the
point cloud colored according to MF assignment of the nor-
mals overlaid on a gray street-map. The inferred MFs share
the upward direction without imposing any constraints. The
inferred MFs capture large scale organizational structure in
this man-made environment: blue and green are the directions
of Boston and Harvard respectively, and red is aligned with the
Charles river. The locations belonging to the MFs are spatially
separated supporting that the MW assumption is best treated
as a local property as argued in the introduction.

Fig. 15: Inferred MMFs (top left) and MMF labels overlayed
on top of a street map of Kendal Square in Cambridge, MA.
Normals associated with upward axes are hidden for clarity.

7 CONCLUSION

Guided by the observation that regularities of the orientations
of planes composing man-made environments manifest in
structured surface normal distributions, we have proposed the
MF model which captures the MW assumption in the space
of surface normals. We have formalized the notion of the MF
and explored two different probabilistic models and resulting
MAP inference algorithms. These real-time capable inference
algorithms are useful for extracting the local MW orientation
and segmentation of a scene from a stream of data. Motivated
by the observation that on a larger scale the commonly-made
MW assumption is easily broken, we have extended the MF
model to a mixture of MFs. Besides a simple MAP inference
algorithm, a manifold-aware Gibbs sampling algorithm with
Metropolis-Hastings split/merge proposals, allows adaptive
and robust inference of MMFs. This enables the proposed
model to describe both complex small-scale-indoor and large-
scale-urban scenes. We have demonstrated the versatility of
our model by extracting MMFs from 1.5k indoor scenes, larger
indoor reconstructions and from aerial LiDAR data of Cam-
bridge, MA. Since VP estimation algorithms showed lower
accuracy in both gravity and MF orientation estimation we
conclude that if surface normal data is available MF inference
algorithms should be used. Beyond the herein demonstrated
applications of gravity direction estimation, drift free rotation
estimation and scene segmentation, we envision that the MF
and MMF models can enable robust and flexible modeling
of real-world scenes for a variety of tasks, such as scene
understanding, 3D reconstruction and 3D perception.

APPENDIX A
THE KARCHER MEAN

The Karcher mean q̃ of a set of points on a manifold {qi}Ni=1 is
a generalization of the sample mean in Euclidean space [78].
It is a local minimizer of the following weighted cost function:

q̃ = arg minp∈M
∑N
i=1 wid

2(p, qi) . (71)

Here, wi = 1, M = S2, and d(·, ·) = dG(·, ·) In this case,
excepting degenerate sets, it has a single minimum. It may be
computed by the following iterative algorithm:
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1) project all {qi}Ni=1 into Tq̃tS2 and compute their sample
mean x̄ = 1

N

∑N
i=1 Logq̃t(qi).

2) project x̄ from Tq̃tS2 back onto the sphere to obtain
q̃t+1 = Expq̃t(x̄).

3) iterate until ||x̄||2 is sufficiently close to 0.

APPENDIX B
NORMAL DISTRIBUTION OVER SO(3)

A matrix R ∈ R3×3 is called a rotation matrix if it is an
element of SO(3), the Special Orthogonal group; namely,
RTR = I and det(R) = 1. Probability distributions over
rotation matrices can be defined by exploiting the manifold
structure of SO(3) (e.g. [52], [78]). In particular, a way to
construct the analog of a Gaussian distribution utilizes the lin-
earity of the tangent spaces. Let LogRµ(R) : SO(3)→ so(3)
denote the logarithm map of R into the associated Lie Algebra
so(3). With θ = arccos

(
1
2 (trace(RTµR)− 1)

)
:

LogRµ(R) =
(

θ
2 sin(θ)

(
RTµR−RTRµ

))
. (72)

As a member of so(3), the matrix W = LogRµ(R) is skew-
symmetric. The vee operator ∨ [52] inverts [w]× from Eq. 13
by extracting the unique elements of W into a vector w:
W∨ = w = [−W23;W13;−W12] ∈ R3. With this we
can define a normal distribution with mean rotation Rµ and
covariance Σso(3) ∈ R3×3 in so(3):

p(R;Rµ,Σso(3)) = N (LogRµ(R)∨; 0,Σso(3)) . (73)

In order to sample from the distribution in Eq. (73), we
sample w = W∨ ∼ N (0,Σso(3)) and map from so(3) to
SO(3) using the exponential map ExpRµ : so(3) → SO(3)
from Eq. 12 and rotating by Rµ: ExpRµ = RµR(w, ‖w‖2).
For further details on SO(3), the log and exp maps, and the
relation to the Lie Algebra so(3), refer to [52], [57].
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