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Abstract—Segmenting an image into an arbitrary number of coherent regions is at the core of image understanding. Many

formulations of the segmentation problem have been suggested over the past years. These formulations include, among others,

axiomatic functionals, which are hard to implement and analyze, and graph-based alternatives, which impose a non-geometric metric

on the problem. We propose a novel method for segmenting an image into an arbitrary number of regions using an axiomatic variational

approach. The proposed method allows to incorporate various generic region appearance models, while avoiding metrication errors. In

the suggested framework, the segmentation is performed by level set evolution. Yet, contrarily to most existing methods, here, multiple

regions are represented by a single non-negative level set function. The level set function evolution is efficiently executed through the

Voronoi Implicit Interface Method for multi-phase interface evolution. The proposed approach is shown to obtain accurate

segmentation results for various natural 2D and 3D images, comparable to state-of-the-art image segmentation algorithms.

Index Terms—Segmentation, multi-region, active contours, level sets

Ç

1 INTRODUCTION

IMAGE segmentation plays an important role in various
areas of image processing, such as object detection and

classification, action classification, scene understanding, and
other visual information analysis processes. Existing algo-
rithms for image segmentation may be broadly divided into
several groups according to the following criteria: automatic
segmentation vs. user-assisted approaches, object and back-
ground segmentation vs. multi-region segmentation, types
of segmentation criteria, usage of prior data, such as various
segment statistics or known shape priors, algorithms using a
discrete optimization vs. a continuous one, etc.

In this paper we consider the active contours approach
to image segmentation, which may be traced back to the
snake model of [1]. In the active contours approach,
region boundaries are modelled by a (parametric) curve,
which minimizes the chosen type of segmentation crite-
rion modelled as an energy functional. Important advan-
tage of the active contours approach is the ability to
minimize arbitrary energy functionals, while allowing for
accurate region boundary detection with subpixel preci-
sion. The active contours approaches may be loosely clas-
sified into edge-based methods [1], [2], [3], [4], region-
based methods [5], [6], [7], and combined approaches [8],
[9], [10], to mention just a few.

Other common approaches to multi-region image
segmentation either use a discrete labeling problem formu-
lation and solve it using graph-cuts [13], [14], [15], or

minimize the segmentation functional using convex relaxa-
tion techniques [16], [17], [18], [19], [20]. Contrary to the
active contours method, such approaches require more
effort to adapt for arbitrary segmentation functionals, in
terms of both data and geometry priors, and usually require
knowing the number of regions a priori, with the notable
exception of [11], [12]. Other methods for multi-region
image segmentation include mean-shift clustering [21],
spectral segmentation [22], greedy algorithms [23], learning
approaches [24], [25], and a combination of the above [26].

Compared to the above methods, the level set framework
provides a significant amount of flexibility in the design of
the segmentation criterion, and can be naturally extended to
accommodate various assumptions about the image and its
structure. These assumptions include different appearance
models [7], [27], [28], [29], and shape priors [30], [31], [32].

The active contour evolution is commonly performed
using the level set approach of [33], as in [2], [4], [34],
[35]. The conventional level set framework is geared
towards two-region image segmentation. Various meth-
ods were developed to alleviate this limitation; most of
them require managing multiple level set functions. Some
methods associate a level set function with each image
region, and evolve these functions in a coupled manner,
so that the resulting regions do not develop gaps or over-
laps [36], [37], [38]. Other method perform hierarchical
segmentation, by iteratively splitting previously obtained
regions using the conventional level set framework [39],
[40]. A different method was suggested by [41], where a
smaller number of n level set functions were used to seg-
ment an image into 2n regions.

Several approached were suggested, where a single
level set function was used to perform the level set evolu-
tion, similar to the method introduced in the present
paper. One such approach was recently suggested in [42].
While using a single level set function to represent image
regions, it still requires managing multiple auxiliary level
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set functions when evolving the contour, so that no gaps/
overlaps are created. In [16], [43], partitioning an image
into multiple regions was modelled by a single, piecewise
constant level set function, which was obtained using
either augmented lagrangian optimization, or graph-cuts.
However, these methods were designed to minimize the
piecewise constant Mumford-Shah functional [5] only,
though they may possibly be extended for more elabo-
rated image appearance models.

Here, we propose a new level set method for multi-
region image segmentation, where the regions are repre-
sented by a single non-negative level set function, such
that the zero level set of this function corresponds to the
region boundaries. The proposed method allows seg-
menting images with arbitrary number of regions using
various image appearance models. To perform the level
set evolution, the suggested method utilizes a novel level
set framework for multi-phase interface evolution-the
Voronoi Implicit Interface Method (VIIM), which was
introduced by Saye and Sethian in [44], [45], for numeri-
cal simulations of fluid dynamics. During the evolution,
performed using the foremention non-negative level set
function, the VIIM implicitly deals with regions merging
and splitting, and naturally handles complex topological
structures such as triple junctions.

The main contributions of the present paper can be
summarized as follows: first, we review the axiomatic for-
mulation of the multi-region image segmentation problem
as an energy functional minimization. We consider the
region competition model of [8] and the pairwise dissimi-
larity-based models of [46], [47], augmented with the geo-
desic active contour (GAC) regularization term [4], as our
energy functionals. We then show the derivation of the
steepest descent minimization for the proposed function-
als for multi-region segmentation. We formulate the
active contour evolution equation as a multi-region level
set evolution problem, and solve it by utilizing the VIIM
level set framework. In the proposed method, neither the
number of regions, nor the region statistics are required
to be known a priory, and good segmentation results are
produced for various initial conditions, extending the
method presented in [48]. Fig. 1 presents two segmenta-
tion results obtained with the proposed method.

The structure of the paper is as follows: in Section 2
we describe the multi-region segmentation model, and
the prominent segmentation priors that fit within the
suggested framework. In Section 3 we review the level
set approach for active contour evolution, and the

Voronoi Implicit Interface Method, which is the numeri-
cal basis for our approach. In Section 4 we describe the
main ideas that underlie the proposed method, derive
the corresponding level set evolution equation in terms
of the VIIM framework, and discuss implementation con-
siderations. In Section 5 we present segmentation results
and qualitative evaluation of the proposed approach,
and compare it to state-of-the-art methods. Section 6 con-
cludes the paper.

2 PROBLEM DEFINITION

Given an image IðxÞ defined over a domain V 2 R2, the
active contour model finds a contour CðsÞ ¼ ðx1ðsÞ; x2ðsÞÞ 2
V that minimizes an energy functional of the type

EðCÞ ¼ EdataðCÞ þ mEregðCÞ: (1)

The data term EdataðCÞ is determined by the region-based
image intensity model, for instance, piecewise smooth or
piecewise constant model [5] and [6], pairwise region inter-
action model [7], [27], [46], [49], etc. The regularization term
EregðCÞ is determined by the segmenting contour proper-
ties. It may depend on the contour length alone [1], [5], [6],
or incorporate image information, as is the case for the geo-
desic active contour model [4], [34].

The above energy functional is typically minimized by
steepest descent with respect to the virtual arbitrary time
parameter t, to obtain the optimal partition of the image

Ct ¼ � dEðCÞ
dC

¼ � dEdataðCÞ
dC

þ m
dEregðCÞ

dC

� �
: (2)

In this paper we demonstrate region-based terms that
rely on two specific image models—variants of the region-
competition model of [8], namely the piecewise-constant
model of [5], [6] and a more general Gaussian mixture model
(GMM), and the pairwise dissimilarity model suggested in
[46], [49]. Below we describe in details both models, formu-
lated for multi-region segmentation, and the corresponding
curve evolution rules.

In the case of volumetric image segmentation, the image

IðxÞ is defined over a domain V � R3, and the segmentation
is performed using the active surface model (see, for
instance, [35], [50]), with similar problem formulation. To
keep the notations simple, we first proceed by discussing
the 2D problem, and describe the 3D case in more detail in
Section 4.2.

2.1 Region-Competition Model

The energy functional. In this paper we consider the region
competition model of Zhu and Yuille [8], which we aug-
ment with geodesic active contour [4] regularization term

EðC; aif gÞ ¼
XM
i¼1

Z
Vi

�log P IðxÞjaið Þdx

þ m

2

X
i

I
Ci

gðCiðsÞÞds;
(3)

where x 2 V denotes a point in the image domain. The
model attempts to divide the domain V into a series of M

non-overlapping regions Vif gMi¼1, such that V ¼ f[M
i¼1Vig,

Fig. 1. Multi-region image segmentation.
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with homogeneous intensities. Image intensity homogene-
ity is measured by the data term, where P zjaið Þ is the proba-
bility distribution function describing the image intensity
values in the region Vi, having corresponding parameters
ai. The curve CiðsÞ, parameterized by the arclength s,
denotes the boundary of the region Vi, and can also be
defined as Ci ¼ @Vi. Each boundary CiðsÞ is parameterized
to have a counter-clockwise direction with respect to its cor-
responding region Vi. The contour C is given by union of
all Ci, C ¼ S

iCi.
The regularization term is defined using an inverse

edge indicator function gðxÞ. Here, we used gðxÞ ¼ ð1þ
rðG � IÞj j2Þ�1, as suggested in [4], though other indicator
functions may be considered. For color or vector valued
images, one may use the edge indicator functions suggested
in [10] or [51]. [10] treats the image as a five-dimensional
manifold (for color images) with metric gmnðxÞ, and define

g ¼ det gmnðxÞð Þ�1, while [51] uses the largest eigenvalue of

the metric tensor, �, and define g ¼ ð1þ �2Þ�1. The regulari-
zation term is multiplied by a factor 1=2 as every boundary
segment appears in Eq. (3) twice. Note that the proposed
formulation is general and may be applied with various
image intensity probability distribution models, as will be
demonstrated in Section 2.2.

Optimization. The energy functional EðC; aif gÞ depends
on both the contour C and the probability distribution
parameters aif g. To minimize the energy with respect to
these two sets of variables, an alternating minimization
approach is commonly used. First, for a fixed contour C and
the partition Vif g, minimize the energy with respect to the
parameters aif g. Or, equivalently, compute the optimal
parametersmaximizing the image probability in each region

a�
i ¼ argmax

ai

Y
x2Vi

P aijIðxÞð Þ; 8i: (4)

Next, for fixed parameters aif g, do a steepest descent
step to compute the new contour C

Ct ¼ � dE

dC

¼
X

i2NðxÞ
�log P IðxÞjaið Þ þ m

2
kig� rg;nih ið Þ

h i
ni:

(5)

In the above equation, consider some x 2 C. The set NðxÞ is
comprised of the indices of the regions Vj adjacent to C at
x. The curvature ki and the normals ni correspond to the
region boundaries Vi, when the normal ni is defined such
that it points inwards the region Vi. For a point x lying on a
contour segment defining a boundary between two regions
Vi and Vj, we have NðxÞj j ¼ 2, while for a triple junction
point we have NðxÞj j ¼ 3.

The minimizing flow (5) is obtained by differentiating the
energy functional EðCÞwith respect to the active contour C.
The first term was derived in [8], while the second term is
the explicit geodesic active contour flow [4], obtained by dif-
ferentiating the regularization term in Eq. (3).

2.2 Region Competition Model: Examples

A piecewise constant model. [5], [6] is a special case of the
region competition model. Assuming Gaussian probability

distributions, given by I � Nðci; s2
i Þ in a region Vi, with

identical variances si ¼ sj; 8i; j, the data term of the energy
functional EðCÞ becomes

EdataðC; cif gÞ ¼
XM
i¼1

Z
Vi

IðxÞ � cið Þ2dx: (6)

The above equation describes the piecewise constant var-
iant of the Mumford-Shah energy functional [5]. For M ¼ 2
and g ¼ 1, (6) is known as Chan-Vese model [6].

For the piecewise constant model, the contour evolution
rule becomes

Ct ¼
X

i2NðxÞ
IðxÞ � cið Þ2 þ m

2
kig� rg;nih ið Þ

h i
ni: (7)

For a given contour C, the optimal distribution parameters
are obtained according to (4), by least squares minimization

c�i ¼
R
Vi

IðxÞdxR
Vi

dx
: (8)

General intensity distribution model. In most natural scenar-
ios, image intensity values in regions Vi cannot be modelled
by a single Gaussian distribution, as in the piecewise con-
stant model above. To address a broader class of images in
our segmentation framework, we can model the intensity
distribution in each region using, for example, kernel den-
sity estimation [52], [53], Gaussian mixture model [54], etc.
Here, we estimated these discrete densities using sums of
Dirac delta distributions, as follows:

P zjaið Þ ¼ 1

jVij
X
x2Vi

dz¼IðxÞ; z 2 ½0; 1�d; (9)

where d ¼ 1 for grayscale images and d ¼ 3 for images
given in RGB or CIE-Lab color spaces. Specifically, we

found that modelling image intensities using 32d intensity
histograms produced satisfactory segmentation results, as
shown in Section 5.

Gaussian mixture model. The Gaussian mixture model can
be integrated into our framework, to model the intensity
value distributions, as follows. In that setting, the intensity
probability distribution in region Vi is given by a weighted
sum ofK Gaussians

P zjaið Þ ¼
XK
j¼1

�
ðjÞ
i N �z j cðjÞi ; s

ðjÞ
i

�
; (10)

where Nðz j cðjÞi ; s
ðjÞ
i Þ is the jth component of the Gaussian

mixture in the region Vi, with mean c
ðjÞ
i and covariance

matrix s
ðjÞ
i I. Different components are mixed with weights

�
ðjÞ
i , such that

PK
j¼1 �

ðjÞ
i ¼ 1. In this case, the curve evolution

rule is obtained by substituting the probability density in
Eq. (5) with the Gaussian mixture above.

The optimal model parameters a�
i , where

ai ¼ �
ðjÞ
i ; c

ðjÞ
i ; s

ðjÞ
i

n oK

j¼1
; (11)
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are calculated as suggested in Eq. (4), using the Expectation
Maximization (EM) algorithm [54].

Finally, note that though the above problem formulations
are given in terms of the image intensity values, different
image representations, for instance, Gabor filter responses
or textons for texture segmentation, can be easily utilized in
the suggested framework.

2.3 Pairwise Dissimilarity Model

Pairwise dissimilarity models were previously suggested in
[46], [47], [49]. For two-region segmentation problem, with
V ¼ Vin [Vout, the energy functional data is given by

EdataðCÞ ¼
Z Z

Vin�Vin

wðx; yÞdxdy

þ
Z Z

Vout�Vout

wðx; yÞdxdy;
(12)

where wðx1; x2Þ is the measure of dissimilarity between pix-
els x1 and x2 in Vin or in Vout. The two terms of the above
model measure the total dissimilarity of the image inside
the two regions Vin and Vout.

Extension of the above model for the multi-region case is
straightforward

EdataðCÞ ¼
X
i

Z Z
Vi�Vi

wðx; yÞdxdy; (13)

where as before V ¼ [iVif g [46], [47].
Proposition 2.1. Steepest descent step minimizing the data term

EdataðCÞ in Eq. (13) is given by

Ct ¼ �
X

i2NðCÞ

Z
Vi

wðy; xÞ þ wðx; yÞð Þdy
" #

ni; (14)

where x 2 C, and ni is the normal to C at x.

The proof of the proposition is given in Appendix A.
The regularized contour evolution equation for the pair-

wise dissimilarity model is then given by

Ct ¼
X

i2NðxÞ

Z
Vi

wðy; xÞ þ wðx; yÞð Þdy
"

þm

2
kig� rg;nih ið Þ

i
ni:

(15)

2.4 Pairwise Dissimilarity Model: Examples

We tested the proposed approach with two dissimilarity
models suggested in [46] and [47]. The former model meas-
ures pairwise pixel dissimilarity by comparing the corre-
sponding image values, in CIE-Lab color space, as follows:

wðx; yÞ ¼ ILabðxÞ � ILabðyÞ�� ��
2

¼
X

l¼L;a;b

ðlðxÞ � lðyÞÞ2
 !1

2

:
(16)

In the latter paper [47], the authors used a patch-based
pixel dissimilarity measure. Define a patch of size r� r cen-
tred at a pixel x 2 V by

pxðvÞ ¼ Iðxþ vÞ; 8v 2 ½�r=2; r=2�2: (17)

Then, the patch-based pairwise pixel dissimilarity is
given by

wðx; yÞ ¼ Gsðx; yÞdpðpx; pyÞ; (18)

where Gsðx; yÞ is a decaying function of kx� yk and
dpðpx; pyÞ denotes a distance measure between two patches
px and py. This patch distancemay be defined, for instance, as

dpðpx; pyÞ ¼
Z

GaðvÞkpxðvÞ � pyðvÞk2dv; (19)

and GaðvÞ is a Gaussian weight.

3 LEVEL SET FRAMEWORK

According to the active contours model, the contour evolu-
tion rule, obtained using the first variation of the energy
functional EðCÞwith respect to C, is

Ct ¼ � dEðCÞ
dC

¼ Fn; (20)

where F denotes the evolution force applied to the evolving
contour in the normal direction n.

The contour evolution can be re-formulated ([2], [4], [6],
[34]) in the level set framework of [33]. A level set function
fðxÞ is defined such that the contour C is given by its zero
level set

C ¼ x j fðxÞ ¼ 0f g; (21)

f is negative inside the region defined by C, and positive
outside. Note that C consists of one or more simple, possi-
bly closed, curves, each of which can be parameterized as a

mapping from R to R2. Thus, except for the junction points,
this definition of C is consistent with the definition as a

mapping from R to R2, given at the beginning of Section 2.
As was shown in [33], evolving the curve according to

Eq. (20) is equivalent to evolving the level set function
according to

ft ¼ Fext rfj j; (22)

where Fext is a smooth extension of the force F to the entire
domain V, or, alternatively, to a narrow band around
the evolving contour [55], and subject to FextðCÞ ¼ F . For
efficient techniques for constructing extension velocities
see [56].

This conventional framework is well suited for two-
region segmentation, where C divides the image into an
object and a background, but it cannot be trivially extended
for multi-region segmentation. Previous methods for multi-
region segmentation, based on the level set framework,
require either managing multiple level set functions to exe-
cute the multi-region active contour evolution [36], [38],
[41], or exploit level functions specifically designed to
describe multiple evolving regions [16], [43].

Here, we present a new method for multi-region active
contour evolution, using a single level set function and
exploiting the Voronoi Implicit Interface Method [44], [45],
[48], that we describe in the next section.
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3.1 Description of the Voronoi Implicit Interface
Method

The Voronoi Implicit Interface Method [44] was recently
introduced for numerical solution of interface propagation
problems with arbitrary number of phases (regions), arising
in the area of computational fluid dynamics. In 2D, the
interface between the phases is a set of 1D curve segments,
meeting at tripple-junctions. Fig. 2a demonstrates an exam-
ple of such an interface (the black solid curve), with two tri-
ple-junctions with different intersection angles. In 3D the
interface is given by a set of 2D surface segments.

The interface propagation is governed by the equation
Ct ¼ Fn. A single non-negative level set function fðxÞ;
x 2 Rd is used to evolve C. This function is given by an
unsigned distance from the interface C. Hence, the inter-
face C is the zero level set of the function fðxÞ, similar to
the conventional level set framework

C ¼ x j fðxÞ ¼ 0f g:
The level set function evolution is again governed by the
equation

ft ¼ Fext rfj j; (23)

where Fext is the extension velocity, mentioned in the previ-
ous section. Examples given in [44] include curvature and
mean curvature flows, as well as physical simulations of the
dynamics of dry foams.

For some small ", observe the evolution of the "-level sets
of f

C" ¼ x 2 R2 j fðxÞ ¼ "
� �

: (24)

According to the comparison theorem, two evolving
"-level sets will always encapsulate the evolving zero level
set they are adjacent to [44]. Moreover, these "-level sets of
f are necessarily simple curves. Thus, their evolution is
well defined in terms of the conventional level set frame-
work. The main observation of [44] consists in the follow-
ing: the evolving "-level sets of the function f can be used
to reconstruct the evolving interface, which is assumed to
lie at an equal distance from the two "-level sets adjacent
to it. Thus, the interface may be reconstructed from these
new "-level sets C" as follows.

1) Compute Voronoi regions of different segments of
C" in the narrow band xjfðxÞ < "f g.

2) Reconstruct the interface C from intersections of
these Voronoi regions.

In order to evolve the interface as described above, the
following three step-algorithm was suggested in [44].

1) Evolve the level set function f according to Eq. (23),
using a small time step dt.

2) Find the "-level sets of the new function, and recon-
struct the interface C, as described above. Update
the level set function f using the reconstructed
interface.

3) Update the propagation speed function F ; return to
Step 1.

Fig. 2 illustrates several stages of a contour evolution per-
formed with the VIIM. We note that step 2 of the algorithm

constrains the regions Vif gMi¼1 so as to form a partition of
the domain, as is expected in segmentation models such as
the region competition model.

4 MULTI-REGION ACTIVE CONTOURS: THE
PROPOSED APPROACH

We propose to adapt the Voronoi Implicit Interface Method,
described above, to solve the multi-region segmentation
problem that was defined in Section 2. The VIIM was for-
mulated in terms of a general interface velocity F ; thus, it is
applicable to various interface evolution problems which
may be solved using the level set approach. Specifically, the
contour evolution rule for both the region competition and
the pairwise dissimilarity models, discussed in Section (2),
can be written as

Ct ¼
X

i2NðxÞ
FiðxÞ þ m

2
Fgac
i ðxÞ

h i
ni: (25)

The force Fi in the above equation depends on the chosen
model: for the region competition model it is

FiðxÞ ¼ �log P IðxÞjaið Þ; x 2 C; (26)

and for the pairwise dissimilarity model the force is

FiðxÞ ¼
Z
Vi

wðy; xÞ þ wðx; yÞð Þdy; x 2 C: (27)

The regularizing geodesic active contours force Fgac
i ðxÞ is

given by

Fgac
i ðxÞ ¼ kig� rg;nih i; x 2 C: (28)

To use the level set formulation, the contour velocity has
to be extended to the entire domain V (or to a narrow band
around the evolving interface) to obtain FextðxÞ. Given this
extension velocity, the level set function is evolved accord-
ing to the evolution rule in Eq. (23). Extension of the regular-
ization velocity to the entire domain V is performed, for
example, using the standard definition of [4]

Fig. 2. The VIIM contour evolution illustration, with Neumann boundary conditions. Left to right: original contour C (shown in black) with "-level sets
(show in red); corresponding level set function fðx; yÞ; "-level sets of fðx; yÞ and the evolved contour, at different stages of the evolution.
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Fgac
ext ðxÞ ¼ div gðxÞ rf

rfj j
	 


: (29)

The suggested construction of the extension velocity for the
term

X
i

FiðCÞni is described in the following section.

4.1 Extension Velocity Construction

Let us define by Cij a part of the contour C separating two
regions Vi and Vj. For each point x 2 V, identify the part of
the contour Cij closest to x, as follows:

d x;Cij

� �
< d x;Cklð Þ; 8k; l; (30)

where

d x;Cikð Þ ¼ min
y2Cik

x� yk k (31)

is the minimal euclidean distance between the point x and
any y 2 Cik. Such a point x necessarily belongs to either Vi

or Vj. Following the notations used in [44], [45], we denote
the set of all points ðx; yÞ 2 V satisfying Eq. (30) by the Voro-

noi region of the segment Cij, Vor Cij

� �
.

Using the above definition, the extension velocity at
x 2 Vi reads

FextðxÞ ¼ FiðxÞ � FjðxÞ; x 2 Vor Cij

� �
: (32)

Notice that for the two-region case, the above extension
velocity produces the conventional evolution rule, sug-
gested, for instance, in [6] and in [49], up to a sign change
that follows from the fact that our level set function is non-
negative everywhere in the domain V.

Note that in a previous paper [48], we suggested to
define this extension velocity by

FextðxÞ ¼ FiðxÞ; x 2 Vi: (33)

According to it, the level set function evolution in each
region Vi depends on the statistics of this region alone. In
addition, FextðxÞ defined as above, is smooth within every
region Vi. The straightforward extension of the contour
velocity suggested in Eq. (32) may, theoretically, produce
velocity profile with discontinuities at the boundaries of the
Voronoi regions of different contour segments. However, in

practice this new definition of extension velocity produces
more accurate region boundaries than the previous one
(33), as illustrated by the segmentation results shown in
Fig. 3.

Finally, to obtain the evolution rule for the level set func-
tion fðxÞwe combine Eqs. (29) and (32)

ftðxÞ ¼ FiðxÞ � FjðxÞ þ mdiv gðxÞ rf

rfj j
	 
� �

rfj j;

for x 2 Vi \Vor Cij

� �� �
:

(34)

With the above level set function evolution rule, the pro-
posed algorithm for multi-region segmentation reads as fol-
lows. Define some initial contour C ¼ C0, and compute its
corresponding unsigned distance level set function fðxÞ.
Repeat the following steps, until convergence.

1) Compute the extension velocity in each region Vi,
and evolve the level set function fðxÞ according to
the evolution equation (34).

2) Extract the "-level sets of the evolved level set func-
tion. Extract the Voronoi regions of these "-level sets
in the narrow band x : fðxÞ < "f g, and reconstruct
the evolved contour C as the collection of the bound-
aries between these Voronoi regions.

3) Perform re-distancing: Re-calculate the unsigned
level set function fðxÞ using the new contour C.
Return to Step 1.

4.2 Volumetric Image Segmentation

The above formulation can be easily extended to segment
volumetric data, such as video, medical volumetric data
(CT or MRI scans), etc. As in the two-dimensional case, the
segmentation problem is formulated as a minimization of
the energy functional

EðSÞ ¼ EdataðSÞ þ mEregðSÞ; (35)

where S is the set of intersecting two-dimensional surface
segments, defining boundaries of three-dimensional
regions. Different image appearance models, discussed in
Section 2.2, can be applied for volume segmentation as is.
The regularization energy term is now given by

Fig. 3. Comparison of results produces using the proposed method with two extension velocities Fext described in Section 4. Upper row: the original
image (left), results obtained using the extension velocity suggested in this paper. Bottom row: results obtained using the extension velocity sug-
gested in [48].
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EregðSÞ ¼ 1

2

X
i

I
Si

gðSiðu; vÞÞdaðu; vÞ; (36)

where Siðu; vÞ : R2 ! R3 is a parameterized two-dimen-
sional surface describing the boundary of the region Vi 2 V,
and daðu; vÞ ¼ jSu � Svjdudv is an area element at the point
Siðu; vÞ [35], [50]. For instance, the 3D region competition
model reads

EðS; aif gÞ ¼
X
i

Z
Vi

�log P IðxÞjaið Þdx

þ m

2

X
i

I
Si

gðSiðu; vÞÞdaðu; vÞ;
(37)

where IðxÞ is now a volumetric image, defined on the

domain V � R3.
Here as well, we use the level set formulation to evolve

the surface towards minimum of EðSÞ above. The surface
S is represented implicitly as the zero level set of the level

set function f : R3 ! Rþ [ 0f g,

S ¼ x 2 R3 j fðxÞ ¼ 0
� �

: (38)

The level set function evolution is performed using the sug-
gested multi-region framework, according to the evolution
rule in Eq. (34), where the forces Fi, 8i, are calculated as
described in Eq. (26) or Eq. (27).

4.3 Implementation Considerations

The level set function evolution is performed on a fixed
grid of size h, in 2D or 3D. In all our experiments, the nar-
row band level set evolution technique of [55] was used
to reduce the computation complexity. Both "-level set
extraction and level set function re-initialization were per-
formed with subpixel precision, to obtain an accurate con-
tour. The level set function was re-initalized after each
evolution step. Following [45], we set " to be an integer
multiple of the grid size h, to ensure numerical conver-
gence of the proposed method. In our experiments, we
used h ¼ 1 and " ¼ 3h.

Algorithm intialization. In our experiments, we used two
types of initial contours. For the first, we used multiple
equally spaced circles, or rectangular grid boundaries,
defining the initial regions (see Fig. 9). For the second, the
initial regions were obtained using k-means or mean shift
clustering. Note that the latter initialization is naturally
suited for the piecewise constant segmentation model.

Discrete level set function evolution. When using the
explicit forward time derivative to perform the level set
function evolution according to Eq. (34), the geodesic
active contour term imposes a constraint on the time step
required for stability. In our implementation, we com-
bined an explicit forward time derivative to perform the
evolution according to the velocity derived from the data
term, with the unconditionally stable semi-implicit LOD
scheme [57], to perform the geodesic active contour evo-
lution, similar to [51].

Contour reconstruction from the "-level sets. Let us denote

by Ci
" the "-level set of the evolved function fðxÞ in the

region Vi. The new contour C is reconstructed by taking all
points in the region x 2 V jfðxÞ < "f g, that are equidistant

from a pair of their closest "-level sets

C ¼ x jf dðx;Ci
"Þ ¼ dðx;Cj

"Þ 	 dðx;Ck
" Þ;

for some i; j; and any k 6¼ i; jg: (39)

The distances dðx;Ci
"Þ are computed for each level set Ci

"

and the image pixels in the region x 2 V jfðxÞ < "f g using
the fast marching method of [58].

Finally, we recompute the unsigned distance from the
new contour C, using the fast marching method. To com-
pute the distances with subpixel precision, one may initial-

ize the fast marching method using the distances dðx;Ci
"Þ

computed at the previous step, and the re-initilaization
technique described in [59], or calculate the distances to the
new contour explicitly [51]. In our experiments, explicit con-
tour extraction was performed only to visualize boundaries
of the obtained regions.

Region creation and destruction. In the course of the level
set function evolution, regions may be created, or may dis-
appear as a consequence of the regularization. However,
the proposed framework does not allow two adjacent
regions to merge. To overcome a similar problem, in [8] the
authors suggested to merge pairs of adjacent regions, if the
merging decreased the energy functional. In our experi-
ments, we adopted this approach and performed region
merging after each redistancing step.

However, evaluating the above test for every pair of adja-
cent regions at each algorithm iteration may be computa-
tionally demanding. Alternatively, region merging can be
performed using the following simple heuristic approach:
two regions Vi and Vj are merged if they have sufficiently
similar intensity statistics. For the piecewise constant
model, regions Vi and Vj are merged when their corre-
sponding mean intensity values ci and cj are closer than
some predefined threshold Tc

kci � cjk2 	 Tc: (40)

In the case of the general region competition model,
image intensity values in regions Vi are described by proba-
bility density functions piðzÞ ¼ pðzjViÞ. The merging crite-
rion can be based on the dissimilarity between pairs of
probability density functions, and measured using the
x-squared distance, for instance,

dðpi; pjÞ ¼ 1

2

P
zðpiðzÞ � pjðzÞÞ2P
z piðzÞ þ

P
z pjðzÞ

	 Tp: (41)

Other distance measures between distributions may be used
as well.

The two above criterions are well suited for applications
where the required region similarity is known in advance.
In more complex scenarios, the energy minimization crite-
rion may be applied. Since there is no equivalent simple
region similarity criterion for the pairwise dissimilarity
models, for these models the energy minimization or the
heuristic merging criterion given in Eq. (40) can be used.

We note that a more general model is one where the
number of regions is unbounded. For this model, other
region merging and also splitting methods can be used to
define additional, non-local, optimization steps. We leave
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the discussion of alternative split and merge steps in our
model for future work.

Algorithm complexity. In terms of memory consumption,
the proposed method requires additional space of order of
the number of image pixels. The computational complexity
of the proposed approach is determined by the redistanc-
ing, extension velocity computation and region merging
steps. Let us denote by n the number of pixels in the narrow
band around the evolving contour, and by m the number of
different image regions detected at some algorithm itera-
tion. During the redistancing step, the new contour can be
obtained from "-level sets in Oðn log nÞ time, and the dis-
tance function can be recomputed in Oðn log nÞ time, using
the fast marching method. Thus, the total complexity of the
redistancing step is Oðn log nÞ.

The following components of the computation time
depend on the chosen model: the model parameter update
time, required for the region competition model, the exten-
sion velocity computation, and region merging. The model
parameter update step, for the piecewise constant case, or
for the general intensity distribution modelled using KDE,
can be performed incrementally, using only the pixels
inside the Voronoi regions of "-level sets. For the Gaussian
mixture model, the update step requires computation over
the entire image domain.

The extension velocity Fext computation time, in the sim-
plest case of the piecewise linear model, is linear in the
number of the narrow band pixels, n, while for the more
complex pairwise dissimilarity model, computation over
the entire image domain may be required. Note that this
and the previous computation time components are not spe-
cific to the proposed method alone, since similar computa-
tion would be required by any algorithm minimizing the
energy functionals (3) and (13), discussed in Section 2.

Region merging based on energy minimization can be
computationally demanding, and in general may require
multiple computations over the detected image regions,
after each algorithm iteration. When using the region com-
petition model, the heuristic region merging may be applied
alternatively, to facilitate the computation. It requires
calculating mðm� 1Þ=2 dissimilarity values, according to

Eq. (40), which may be performed in Oðm2Þ time, or

Eq. (41), for which the required number of operations is m2

multiplied by the time it takes to evaluate a single pdf. This
brute-force implementation can be further improved by
merging only pairs of neighbouring regions, which can be

preformed in OðmÞ rather than Oðm2Þ time. Note that here
we assume that m 
 jVj (the number of image pixels),
which makes this merging procedure very efficient.

5 RESULTS AND DISCUSSION

In this section we present the segmentation results obtained
using the proposed method, combined with different data
energy terms described above. In most of our experiments
we used the natural images from the Berkeley Segmentation
Dataset (BSDS500) [25]. The proposed method was applied
to color images, in RGB or CIELAB colorspaces, with inten-
sity values normalized to the range ½0; 1�.

5.1 Image Segmentation

Fig. 4 presents a comparison of the proposed method, the
convex relaxation method of Chambolle and Pock [19], and
the graph-cut based approach of [15]. The proposed method
was applied with the piecewise constant region competition
model described in Section 2.2, Eq. (6). [19] minimizes the
same energy functional, up to the regularization term,
which is given by the total contour length, while [15] mini-
mizes its discrete counterpart with an additional label cost
term. To make the proposed method and [15] comparable in
terms of the minimized energy functional, we set the weight
of this additional term to zero, effectively obtaining the
algorithm described in [13]. Fig. 5 presents the results
obtained using the proposed method and the algorithm of
[19], together with the manual “groundtruth” segmentation
provided for the BSDS500 [25]. For both [19] and [15], we
used the implementation provided by the authors, and opti-
mized the algorithm parameters to obtain visually optimal
results. The proposed method was initalized using k-means
clustering, and the algorithm parameters were kept constant
for the three images. From examining the images in Figs. 4
and 5, we observe that the three methods indeed produce
comparable results.

Fig. 7 presents segmentation results, obtained for images
from the BSDS500 using the proposed method with the
region competition model. The proposed method was
applied with two variants of the region competition model,
that were described in Section 2.2, and with the two region
merging algorithms described in the previous section.
When applied with the heuristic region merging algorithm,
with relatively low region similarity thresholds, the pro-
posed method produces very detailed segmentation results-
see the second and the fourth columns in Fig. 7. The level of
details in the obtained segmentation can be further adjusted
by varying the region similarity thresholds Tc and Tp. When
applied with region merging based on energy minimization,
our method produces results that are less fragmented, and
more similar to manual semantic region labelling—see the
third and the fifth columns in Fig. 7.

Fig. 4. Segmentation result obtained with the proposed method, applied with the piecewise constant model, and the results obtained with the algo-
rithms of Chambolle and Pock [19] and Delong et al. [15].
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Fig. 8 presents more results obtained for images from the
BSDS500 using the proposed method, alongside results
obtained with [19] and [15]. The proposed method was
applied in both RGB and CIELAB colorspaces, using the
same set of parameters; [15], [19] were applied in RGB color-
space, where they obtained visually optimal results. For the
proposed method to be able to detect thin image regions,
such as the wickerwork in the upper example, the images
were scaled to be twice their original size, that is 642� 962
or 962� 642 pixels, prior to the segmentation.

For the three images presented in Fig. 8, we also exam-
ined the computation time of the proposed method, and
compared it to [15], [19]. The proposed method, [15] and
[19] were terminated after 50; 20 and 250 iterations, respec-
tively (chosen so that all the algorithms would produce sim-
ilar segmentation results), or when less than 0:01 percent of
all image pixels were assigned new labels at a certain itera-
tion. All three implementations took several minutes on
a laptop with an Intel Core i7 processor and 16 GB RAM.

The proposed method, applied with the piecewise constant
model and heuristic region merging, was slightly faster
than [19]. Ref. [15] showed best performance in terms of
computation time, terminating after a couple of minutes, at
the cost of some visible metrication errors, which can be
noticed in Fig. 8f. It is important to note that the proposed
algorithm was implemented in Matlab, without perfor-
mance considerations in mind, while [15] is a C based effi-
cient implementation. For [19], a Matlab implementation
provided by the authors was used. Applying the proposed
method with the general region competition model
increases the computation time of the proposed method,
in accordance with the algorithm complexity analysis pre-
sented above.

To perform quantitative evaluation of the proposed
method, we used the evaluation framework suggested in
[24], [25]. According to it, the detected regions boundaries
are compared to several manual segmentations given for
every image, producing a precision-recall segmentation
score. An F-measure is then calculated as ð2 � Precision � Recall

Precision þ Recall Þ.
Higher F-measure corresponds to better agreement with
manual segmentations. The region detection quality was
evaluated using the variation of information (VI), the rand
index, and segmentation covering measures—for a detailed
description of each of these measures see [25].

Fig. 6 presents a plot of the F-measure values obtained
using the proposed method with the piecewise constant
model for the test images from the BSDS500. Different
Precision�Recall pairs were obtained by varying the
weight of the regularization term m. Additional results
shown in Fig. 6 correspond to the boundary detection algo-
rithm of [25], and additional segmentation methods dis-
cussed therein.

Tables 1 and 2 present region and boundary benchmarks
on the BSDS500. The learning approach of Arbelaez et al.
[25], whose parameters were optimized over the training
images from the BSDS500, and the new spectral clustering
method utilising multi-layer affinities of Kim et al. [26], per-
form best among all the compared methods. The proposed
method, while not as accurate as [25], [26], outperforms
most of other segmentation methods, including the mean
shift and the multiscale normalized cuts algorithms of [21],
[22], in terms of the F-measure. This is despite the fact that it

Fig. 5. Comparison of the results obtained with the proposed method, applied with the piecewise constant model, the method of Chambolle and Pock
[19], and the manual “ground truth” segmentation [25].

Fig. 6. Boundary benchmarks on the BSDS500: Precision-recall plots
and the best F-measures obtained for different algorithms.
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was applied using the very simple assumption of piecewise
intensity constancy in image regions.

Fig. 9 presents the segmentation results obtained using
the proposed method for various initial contours. For com-
parison, it also presents the results obtained with [15] and
[19], for some of the examined contours. Both [15] and [19]
were initialized using the number of the regions defined
by the initial contours, and mean intensity values in these
regions, and applied in the RGB colorspace, where they
produced optimal results. While the results of the pro-
posed method clearly depend on the initialization, our
algorithm produces reasonable segmentation results for
most types of initial contours. Note that [15], [19] produce
segmentation with the number of regions equal (or smaller,
in case of [15]) to the number of the initial regions. Thus,
for too small or too large number of initial contours, [15],
[19] may produce sub-optimal results, as can be observed
in Figs. 9g–9l.

Fig. 10 presents a comparison of the proposed method,
and the algorithm of Bertelli et al. [46]. Note that [46]
employ a preprocessing step, during which the images are
divided into superpixels, which are then used to construct
the final segmentation. Thus, the quality of the final region
boundaries, produced by [46], strongly depends on the
quality the super pixel boundaries. The suggested method
was applied with the piecewise constant and the pairwise
dissimilarity models. Its segmentation results were compa-
rable, or more detailed than the results presented in [46].

Fig. 11 presents a comparison of the proposed method,
and the non-local active contours algorithm of [47]. The sug-
gested method was applied with the piecewise constant
model, and the pairwise dissimilarity model with the non-
local energy measure (18) of [47]. When applied with the
piecewise constant model, despite the simplicity of the lat-
ter, our algorithm produced accurate segmentation results
for both test images, with tighter boundaries, as compared

Fig. 7. Segmentation results obtained using the proposed method with piecewise constant and general region competition models. (a) Original
image. (b, c) The piecewise constant model, with (b) heuristic region merging with Tc ¼ 0:05, and (c) region merging by energy minimization. (d, e)

General region competition model, with image intensity pdf modelled by 323-bin histogram, (d) heuristic region merging with Tp ¼ 0:3, and (e) region
merging by energy minimization.
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to the results of [47]. When applied with the nonlocal active
contour model, our algorithm produced a more fragmented
segmentation, due the local similarity measure utilized by
this model.

5.2 Volume Segmentation

We applied the proposed method to volume segmenta-
tion on a simulated brain MRI scan from the BrainWeb
dataset1 [60]. The scan was generated using the follow-
ing parameters: T1 modality, 1 mm slice thickness, 3 per-
cent noise, calculated relative to the brightest tissue, and
20 percent intensity non-uniformity.

Fig. 12 presents the segmentation results obtained for a
single MRI slice using the piecewise constant segmenta-
tion model, and an arbitrarily chosen initial contour,
shown in the left image. The algorithm correctly detected
the boundaries between the white and the gray matter,
while missing some of the boundaries between the gray
matter and the cerebrospinal fluid (CSF), due to small
contrast changes and the fact that the initial contour is
located far from these boundaries.

Fig. 13 presents the segmentation results obtained using
the 3D version of the proposed method, with the piecewise
constant segmentation model. The initial segmentation was

Fig. 8. Additional segmentation results obtained using the proposed method with piecewise constant and general region competition models, using
heuristic merging algorithm with Tc ¼ 0:05 and Tp ¼ 0:05, and results of [15], [19]. (a) Original image; (b, d) piecewise constant model, applied in
(b) RGB and (d) CIELAB colorspaces; (c, e) general region competition model, with image intensity pdf modelled using [53], applied in (c) RGB and
(e) CIELAB colorspaces; (f) results of [15]; (g) results of [19].

TABLE 1
Boundary Benchmarks on BSDS500

ODS OIS AP

Our method 0.65 0.68 0.51

gPb-owt-ucm [25] 0.73 0.76 0.73
gPb [25] 0.71 0.74 0.65
Canny 0.60 0.63 0.58
Mean Shift [21] 0.64 0.68 0.56
NCuts [22] 0.64 0.68 0.45
Canny-owt-ucm [25] 0.60 0.64 0.58
Felz-Hutt [23] 0.61 0.64 0.56
FNCut [26] 0.67 0.71 0.44
fPb-owt-ucm [26] 0.69 0.71 0.62
cPb-owt-ucm [26] 0.72 0.75 0.73

Shown are F-measures obtained with a single optimal parameter selection for
all test images (ODS), optimal parameter selection per image (OIS), and the
average precision (AP). Results in the upper row correspond to the proposed
method.

TABLE 2
Region Benchmarks on BSDS500

Covering PRI VI

ODS OIS Best ODS OIS ODS OIS

Our method 0.54 0.60 0.70 0.79 0.83 1.89 1.64

gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48
Canny-owt-ucm 0.49 0.55 0.66 0.79 0.83 2.19 1.89
Mean Shift [21] 0.54 0.58 0.66 0.79 0.81 1.85 1.64
Felz-Hutt [23] 0.52 0.57 0.69 0.80 0.82 2.21 1.87
NCuts [22] 0.45 0.53 0.67 0.78 0.80 2.23 1.89
FNCut 0.53 0.60 - 0.81 0.84 1.86 1.59
fPb-owt-ucm 0.58 0.63 - 0.82 0.85 1.70 1.50
cPb-owt-ucm 0.59 0.65 - 0.83 0.86 1.65 1.45

Shown are the Best covering (Covering), the Probabilistic Rand Index
(PRI), and the Variation of Information (VI) measures, obtained with a
single optimal parameter selection for all test images (ODS), optimal
parameter selection per image (OIS), and the average precision. Results in
the upper row correspond to the proposed method. The results gPb-owt-
ucm and Canny-owt-ucm correspond to [25], and FNCut, fPb-owt-
ucm, cPb-owt-ucm - to [26].

1. http://www.bic.mni.mcgill.ca/brainweb
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given by 6 small spheres, arbitrarily placed inside the gray
matter outer boundary. Fig. 14 presents the comparison of
the detected white matter region and the ground truth seg-
mentation. Total of 93:27 percent of the white matter pixels
were correctly classified by our method, producing Dice
coefficient DC ¼ 93:37 [61]. Mislabeling occurs at the pixels
where there is no significant contrast change between the
white matter and the adjacent tissues, and where our algo-
rithm, based on piecewise constant model, is indeed more
likely to fail.

We plan to extend the proposed method for color volu-
metric image and video segmentation. For medical image
segmentation, we expect that incorporating prior knowl-
edge about intensity statistics of different tissues will help
performing accurate segmentation targeted for more spe-
cific tasks, for instance detection of boundaries between
pre-specified set of regions. Further evaluation of the
proposed method for 3D segmentation, and its application
for other types of volumetric data analysis are left for
future research.

Fig. 9. Segmentation results obtained for various initial contours, with the piecewise constant model and heuristic region merging algorithm. (a, c, e)
Initial contours, and (b, d, f) the corresponding segmented images, colored according to mean intensity values in the obtained regions. Results of
[15] (g, i, k) and [19] (h, j, l), initialized using the circular initial regions, shown in columns (a, c, e) above, in the second and the fourth rows. See the
accompanying text for details.
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5.3 Algorithm limitations

Initalization and parameter selection. As illustrated by Fig. 9,
the segmentation results are initialization-dependent. Fur-
thermore, parameter tuning may be required to adapt the
proposed method to different energy functionals.

Time complexity. As mentioned in Section 4.3, calculating
the evolution force for the the pairwise model and the region-
competitionmodelwith general probability density functions

is computationally expensive. For the test image presented
above, between 50 and 200 iterations were required for con-
vergence. Another time consuming part of the algorithm is
regionmerging based on energyminimization, as opposed to
heuristic region merging. According to our experiments, in
many cases the region competition model with heuristic
region merging is sufficient to obtain good segmentation
results, andmay be used to facilitate the computation.

Fig. 10. Comparison of the proposed method and [46]. (a) The original image. (b) Results obtained with our method using the piecewise constant
model. (c) Results obtained with our method using the pairwise similarity model (13) and the similarity measure (16). (d) Results reported in [46].

Fig. 11. Comparison of the proposed method and the non-local active contours algorithm of [47]. (a) Original image with initial contours. (b) Final
contour obtained with the piecewise constant model. (c) Final contour obtained with the nonlocal pairwise model (13) with the similarity measure
(18). (d) Results reported in [47].
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5.4 Additional Energy Models

The proposed method is not limited to the two segmentation
models described above. It can be easily extended for texture
image segmentation, using the image gradient magnitude,
Gabor features, textons, etc., instead of, or in addition to the
color features. Our method can also be applied with various
edge alignment functionals, for instance the following func-
tional, suggested in [57], [62], [63],

EðCÞ ¼
I
C

rIðCðsÞÞ;nðsÞh ids; (42)

or with a different class of segmentation models for active
contours, suggested in [7], [27], [29]. In these papers, the
energy functional is designed to measure the discrepancy
between empirical distributions of image features inside

Fig. 12. Segmentation of a single MRI scan slice from the BrainWeb dataset. (a) Initial contour. (b) Final contour, (c) A closeup on the final contour.
(d) The obtained regions, colored according to their mean grayscale values.

Fig. 13. Segmentation of an MRI scan from the BrainWeb dataset.
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and outside the segmenting contour. Evaluation and com-
parison of these and additional multi-region segmentation
models will be a subject of future research.

6 CONCLUSIONS

We addressed the problem of segmenting an image into an
arbitrary number of regions using a novel multi-region
active contours formulation. The proposed framework
treats multiple regions in a uniform manner by utilising the
new Voronoi implicit interface method, while avoiding met-
rication errors. It can be applied with various region and
boundary appearance priors, for both 2D and volumetric
image segmentation, for which it produces accurate and
detailed segmentation results.

APPENDIX A
PROOF OF PROPOSITION 2.1

Steepest descend step minimizing the data term EdataðCÞ in
Eq. (13) is given by

Ct ¼ � dEdata

dC

¼ �
X
i

Z
Vi

wðx1; xÞdx1 þ
Z
Vi

wðx; x2Þdx2
" #

ni;

where x 2 C, and ni is the normal to C at x.

Proof. Consider a single term of the sum in Eq. (13)

EiðCðtÞÞ ¼
Z
ViðtÞ

Z
ViðtÞ

wðx1; x2Þdx1dx2: (43)

where C denotes the boundary of Vi. We may re-write
the above functional using two auxiliary variables
tðtÞ ¼ t and t0ðtÞ ¼ t

EiðCðtÞÞ ¼
Z
ViðtðtÞÞ

Z
Viðt0ðtÞÞ

wðx1; x2Þdx1dx2: (44)

The variation of EiðCÞwith respect to t is given by

dEi

dC
¼ dEi

dCðtÞ
@t

@t
þ dEi

dCðt0Þ
@t0

@t
: (45)

To calculate the above two functional derivatives, let
us define F ðx2; t

0Þ ¼ RViðt0ðtÞÞ wðx1; x2Þdx1. Thus, the func-
tional EiðCÞ becomes

Ei ¼
Z
ViðtðtÞÞ

F ðx2; t
0Þdx2: (46)

It was shown in [8] that the first variation of Ei as
above, with respect to CðtÞ, is

dEi

dCðtÞ ¼
d

dCðtÞ
Z
ViðtðtÞÞ

F ðx2; t0Þdx2
( )

¼ �F ðx2; t0Þni

¼ �
Z
Viðt0ðtÞÞ

wðx1; xÞdx1
" #

ni:

(47)

Similarly, the first variation of Ei with respect to dCðt0Þ
is given by

dEi

dCðt0Þ ¼ �
Z
ViðtðtÞÞ

wðx; x2Þdx2
" #

ni: (48)

Now, we can substitute the two last results in Eq. (45).
We thus obtain

dEi

dC
¼ �

Z
Vi

wðx1; xÞdx1 þ
Z
Vi

wðx; x2Þdx2
" #

ni

¼ �
Z
Vi

wðx1; xÞ þ wðx; x1Þð Þdx1
" #

ni: (49)

Finally, the first variation of the data term EdataðCÞ
given in Eq. (13) is

Fig. 14. Comparison with the ground-truth segmentation of the white matter, from the BrainWeb dataset. Top row—original MRI image slices, bottom
row—segmentation overlap, where correctly segmented pixels are shown with dark gray, pixels mistakenly labeled as the white matter region are
shown with black, and white matter pixels not found by our method are shown with white.
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dEdata

dC
¼ �

X
i2NðCÞ

Z
Vi

wðx1; xÞ þ wðx; x1Þð Þdx1
" #

ni; (50)

which concludes the proof. tu
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