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Abstract. Segmenting the image into an arbitrary number of parts is
at the core of image understanding. Many formulations of the task have
been suggested over the years. Among these are axiomatic functionals,
which are hard to implement and analyze, while graph-based alternatives
impose a non-geometric metric on the problem.

We propose a novel approach to tackle the problem of multiple-region
segmentation for an arbitrary number of regions. The proposed frame-
work allows generic region appearance models while avoiding metrication
errors. Updating the segmentation in this framework is done by level set
evolution. Yet, unlike most existing methods, evolution is executed us-
ing a single non-negative level set function, through the Voronoi Implicit
Interface Method for a multi-phase interface evolution. We apply the
proposed framework to synthetic and real images, with various number
of regions, and compare it to state-of-the-art image segmentation algo-
rithms.

1 Introduction

Image segmentation plays an important role in object detection and classifi-
cation, scene understanding, action classification, and other visual information
analysis processes. In this paper we consider active contour approaches, which
have been proven to be very successful for that goal. These include edge-based
methods [15, 5,18, 6] , region-based techniques [21,8,10,13] , and combined ap-
proaches [37,24, 28], to mention just a few.

Several approaches have been suggested for numerical computation of region
boundaries. These include explicit spline evolution [15], level set evolution [23, 5],
graph-cuts [3,27,12], and continuous convex optimization [25,7]. Among these,
the level set framework provides a significant amount of flexibility in the design
of the segmentation criterion. While being naturally suitable for variable topol-
ogy of the regions, this framework has been extended to accommodate different
assumptions on the image and its structure. These include various appearance
models [13,20,22, 1], and different shape priors [16, 11, 26].

However, the level set framework is geared towards two-region image seg-
mentation. To alleviate this limitation, various methods were developed; most
of them require managing multiple level set functions. Some associate a level set
function with each image region, and evolve these functions in a coupled manner
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[36,35,29]. Others perform hierarchical segmentation, by iteratively splitting
previously obtained regions using the conventional level set framework [33,4].
These methods too require coupled level set evolution, so that the resulting re-
gions do not develop gaps or overlaps. It is also possible to use a smaller number
of level set functions, say n, and segment an image into 2" regions [34]. Another
approach was recently suggested in [17]. It uses a single level set function, sim-
ilar to the proposed approach. However, when evolving the contour, it requires
managing multiple auxiliary level set functions, so that no gaps/overlaps are
created.

Other approaches to multi-region image segmentation either use a discrete
labeling problem formulation and solve it using graph-cuts [27,12], or perform
convex relaxation [25,7]. These methods are less easy to adapt for arbitrary
segmentation functionals, in terms of both data and geometry priors. In addition,
such approaches usually require knowing the number of regions a priori. Yet
another method for image segmentation is by mean-shift clustering [10]. This
approach does not, however, allow flexible choice of shape priors or arbitrary
probability models.

We propose a new level set method for multiple region image segmentation.
It overcomes previous challenges and allows segmenting images with arbitrary
number of regions using various image appearance models. For this purpose we
utilize a novel level set framework for multi-phase, or multi-region, interface evo-
lution, named the Voronoi Implicit Interface Method (VIIM), which was intro-
duced by Saye and Sethian in [30]. According to it, evolution is performed using
a single non-negative level set function, while implicitly dealing with regions
merging and splitting, and naturally handling arbitrary topological structures
such as triple junctions.

Our main contributions can be summarized as follows: first, we review the
axiomatic formulation of the multi-region image segmentation problem as an
energy functional minimization. Specifically, we consider energy terms used in
image segmentation based on region statistics, and extend them to the context of
multiple regions. We then derive the active contour evolution equation minimiz-
ing the above energy functional, formulate it as a level set evolution problem, and
solve it by utilizing the VIIM level set framework. The proposed approach does
not require knowing the number of the regions in the image or their statistics a
priori, and produces good segmentation results for various initial contours.

The structure of the paper is as follows: we begin by reviewing the Voronoi
Implicit Interface Method, which is the numerical basis for our approach, in
Section 2. In Section 3 we describe the main ideas that underlie the proposed
method. We shortly review the multi-region segmentation model, for which we
derive the corresponding level set evolution equation in terms of the VIIM frame-
work, and describe prominent segmentation priors that fit within the suggested
framework. In Section 4 we present segmentation results of the proposed ap-
proach, and compare it to state-of-the-art methods. Section 5 concludes the
paper and describes potential extensions of the proposed framework.
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2 Review of the Voronoi Implicit Interface Method

The VIIM was recently suggested for the solution of interface propagation prob-
lems with arbitrary number of phases, or regions, in m-dimensional Euclidean
space. In 2D, the interface separating between different phases is a curve, pos-
sibly with multiple junctions. In 3D, the interface consists of two-dimensional
surfaces. Illustrations of 2D and 3D interfaces can be found in [30].

The interface propagation is performed using a single non-negative level set
function ¢(x),x € R™, given by the unsigned distance from the interface I', and
defined on a fixed regular grid. The propagation is governed by the equation

(bt = Fea:t |v¢| 5 (1)

where F,,; is the extension of the interface propagation speed F' to the whole m-
dimensional region. The examples in [30] include curvature and mean curvature
flows, as well as physical simulations of the dynamics of dry foams.

The central idea of the VIIM is as follows: assume we are given a zero level set
of a function ¢, and a velocity F' defined along it. We can extend this velocity to
the neighboring level sets in a smooth manner, to obtain the extension velocity
F,.+ and apply Eq. (1). Then, two evolving e-level sets will always encapsulate
the evolving zero level set they are adjacent to. Moreover, the e-level sets of ¢
are simple curves, without multiple-junction points, and their evolution is well
defined. Thus, the evolved e-level sets of the level set function can be used to
reconstruct the evolving interface, which is assumed to lie at an equal distance
from the two e-level sets adjacent to it. It is calculated using the Voronoi regions
of the e-level sets.

In order to evolve the interface as described above, Saye and Sethian sug-
gested the following three step-algorithm.

1. Evolve the level set function ¢ by solving Eq. (1).

2. Find the e-level sets of the new function. Reconstruct the interface I" to be
the intersections of the Voronoi regions of the e-level sets, where ¢(x) < e.
Update the level set function ¢ using the reconstructed interface I'.

3. Update the propagation speed function F; return to 1.

The VIIM is formulated in terms of a general interface velocity F', and thus
it is applicable to various interface evolution problems utilizing the level set
approach. Below, we show how it can be employed for multiple regions image
segmentation, where the active contour acts as an interface, and the regions it
defines are the phases in the VIIM notation.

3 Multi-region image segmentation

A general energy functional describing an active contour model is given by

E(C) = Edata(c) + :uEreg(C)- (2)
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The data term Fg4:4(C) is determined by the region-based image intensity
model, for instance [21, 8, 13, 20], etc. In this paper we demonstrate region-based
terms that rely on two specific image models - the piecewise-constant model of
[21, 8] and a more general Gaussian mizture model (GMM). The regularization
term E,.4(C) is determined by the properties of the segmenting contour, and
may depend on the contour alone [15,21], or incorporate image information as
well [5, 6]. The minimizing flow is derived from (2) using methods from calculus
of variations, namely the active contour evolution is proportional to the first
variation of the above energy functional.

3.1 Region-competition model with geodesic active contours
regularization

Here, we consider a modified version of the region competition model of Zhu and
Yuille [37], with added geodesic active contour (GAC) regularization term

BC o) = Y [[ —toxP U plo)dedy+1 § g(ClNas. @)

where I(x,y) is the image to be segmented, defined on a 2D domain 2. The
contour C' divides the image domain into non-overlapping regions {f2;},, such
that 2 = {{J,; 2} UC. In the data term, P (z|c;) is the probability distribution
function of the image intensity values in region (2;, with corresponding param-
eters a;. In the GAC term, g(x,y) is the edge indicator function. Following [6],

2\ )
in this work we used g(z,y) = <1 + ‘VI‘ , where [ is a smooth version of

I. For color images we used g(z,y) suggested in [28]: we treat the image as a
5-dimensional manifold (z,y,R(z,y), G(z,y),B(x,y)) with metric g,.(z,y), so
that the edge indicator function becomes g(z,y) = det (g (z, y))f1 .

We perform alternating minimization: for a fixed contour C, for each region
£2; we calculate the optimal parameters maximizing the image probability in
that region

af =argmax [[ Plaill(z,y), Vi. (4)

o (z,y)€82

Then, for fixed region probability distribution parameters, the active contour
evolution minimizing the energy FE(C,{«;}) is given by

9E _

Ci=—35c

> log P (Iai)n; + (kg — (Vg,n)) n. (5)
i€EN(z,y)

For some (z,y) € C, N;(z,y) denotes the set of indices of the regions £2; adjacent
to C at (z,y). In each region, the normal n; is defined such that it points
outwards of the region §2;. The first term of the minimizing flow is obtained by
differentiating the functional Eg4¢(C), as shown in [37]. The second term is the
well known explicit geodesic active contour flow, obtained by differentiating the
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regularization term in Eq. 3. The above evolution rule is well-defined for (z,y)
lying on a contour segment defining a boundary between two regions {2; and (2;,
for which |N(z,y)| = 2. We will denote such contour segments by C;;.

The traditional methods, described in the introduction, require using multiple
level set functions to perform the above evolution implicitly. In this work we
suggest to exploit the advantages of the Voronoi implicit interface method for
this purpose. The next section describes how to adapt the evolution rule Eq. (5)
to be applicable within the VIIM framework. We would also like to note that
the above formulation is general and may be applied for various models of image
intensity probability distribution. In order to demonstrate this we apply the
proposed method to two such models — Gaussian probability distribution with
constant variance, leading to piecewise constant image segmentation functional
[21,8], and a more elaborated Gaussian mixture model (GMM). Both models
will be described in details in Section 3.3.

3.2 Contour evolution using the VIIM

In terms of the VIIM framework, the contour (interface) velocity F'(z,y) is well
defined for points lying along a boundary between two regions, and is given by

Fz,y) = [log P (I(x,y)|a;) —log P (I(z,y)|e;)] + p (kg — (Vg,mi)),  (6)

in the direction n;, for (x,y) € C;;. According to the VIIM formulation, the
contour velocity F' needs to be extended to the neighboring level sets of the
level set function ¢(x,y), to create F..i(x,y). We observe that a straight forward
extension of (6) produces a velocity profile with discontinuities at the boundaries
of the Voronoi regions of different contour segments. This is also related to the
fact that the interface velocity F' is not well defined at the junction points.
Alternatively, we suggest to evolve the level sets of ¢(z,y) in each region
according to the local information of that region alone. Thus, the extension
velocity, used to evolve the level set function according to Eq. (1), is defined by

Fopi(z,y) =log P (I(z,y)|a;) + pdiv <g(x, y)%) , o (zyy) e . (7)

Proposition 1. Assume that the level set function is given by an unsigned dis-
tance function from the evolving contour, and the parameters {c;} are fized.
For e < 1, the VIIM framework with the extension velocity Feri(x,y) defined in
Eq. (6) will move every regular point (x,y) on the contour in the direction of the
velocity F(C(z,y))n; (6) minimizing the energy functional E(C) in Eq. (3).

The suggested extension velocity Fe,: (7) evolves the contour points along the
same direction as F(C(z,y)) (if not by the same amount). Our experiments show
that the suggested extension velocity produces valid segmentation results. Partic-
ularly, for the two-region piecewise constant problem, the results obtained with
the proposed method are similar to those obtained using the original formulation
of Chan-Vese [8]. Proof of Prop. 1 is given in the accompanying supplementary
material.
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The proposed approach can be summarized as follows: assume we are given
an initial contour Cy and the corresponding unsigned distance level set function

d(x,y)-

1. Calculate extension velocity in each region using Eq. (7). Evolve the function
¢(x,y) using the obtained velocity according to the evolution equation (1).

2. Extract the e-level sets of the evolved level set function. Calculate the Voronoi
regions of these e-level sets in the narrow band {(z,y) : ¢(z,y) < €}, and
reconstruct the evolved contour C' as the collection of the boundaries be-
tween these Voronoi regions, as suggested by [30]. Perform re-distancing:
re-calculate the unsigned level set function ¢(z,y) using the new contour C'.

3. Stop the evolution if a pre-defined stopping criterion was met; otherwise,
return to Step 1.

3.3 Image segmentation models

Piecewise constant model: In this case we assume Gaussian probability distribu-
tion, given by I ~ N(c;,0?) in region (2;. Further simplified by an assumption
0; = 0j,V1,7, the energy functional becomes

zmma&mzzlu;maw—m%wwwfgwwm& (8)

The above is a modified version of the piecewise constant Mumford-Shah energy
functional [21], in the sense that the regularization term is given by the geodesic
active contours model (GAC). The contour C' now separates multiple regions,
denoted by (2;, and may have multiple-junction points. For N = 2 and g = 1,
(8) is the well known Chan-Vese functional [8].

According to Equation (7), the extension velocity Fi.: in the region (2; is
given by

nMsz—mam—m+mw@@m§$),<@mem.(%

For a given contour C, the optimal mean intensity values in each region, ¢},
are given by

. [, 1(z,y)dzdy
! ff(h dxdy

Gaussian mizture model: Here, we model image intensity values in each region
using the Gaussian mixture model [19], which have been successfully applied to
various signal analysis tasks; specifically, in computer vision it was used for
tracking [32], MR image segmentation [14], background substraction [38], etc.
In GMM, the intensity probability distribution( i)n region f2; is modeled lzy) a
J J I,

.~ and covariance matrix o,

(10)

weighted sum of m Gaussians, each with mean ¢

P (z|la;) = i/\gj)/\f (z \ cgj),agj)l) ) (11)

Jj=1
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where (z | cgj ), ai(j T ) is the j*® component of the Gaussian mixture in the

region (2;. The results shown in the next section were obtained with m = 6.
The extension velocity (7) becomes

mo , . . \Y
Fopi(z,y) = log Z)\EJ)N (I(m,y)|cl(,J)7 gg-”]) + pdiv (g(x,y)lvz> )

(z,y) € 2. (12)

j=1

m
~, are then

7

The optimal model parameters a, where o; = {)\gj )7c§j )7J§j )}

calculated as suggested in Eq. (4), using an Expectation Maximization (EM)
algorithm [19].

Finally, note that though the above problem formulation is given in terms of
the image intensity values, other image representations can be easily utilized in
the suggested framework, depending on a specific segmentation problem.

4 Experimental results

In this section we present segmentation results obtained with the proposed
method for different types of images, and compare them to the results ob-
tained using the convex relaxation method of Chambolle and Pock [7]. In all
our experiments, the image intensity values were normalized to the range [0, 1].
The algorithm parameters were p € [0.02,0.1], the time step dt = [25,50], and
e = 0.1. In order to prevent over-segmentation, we united separate regions with
similar region statistics, as a part of Step 2 of the algorithm. For the piecewise
constant model, we united regions with mean intensity value difference smaller
than some threshold (if not stated explicitly, 7" = 0.1 was used).For color im-
ages, we used the maximal difference among the three color channels. For the
GMM, we used the Ls-distance between sampled three-dimensional (for color
images) probability distributions. The level set function evolution (1) was per-
formed using the forward Euler scheme. To perform re-distancing and Voronoi
region calculation we used the fast marching method [31], efficiently initialized
as suggested in [9]. Both the e-level set and the evolved contour extraction were
performed with sub-pixel precision. It should be also noted that the width of the
e-level sets influences the size of the smallest feature that the algorithm is able
to segment. To capture small features one may up-sample the image before the
segmentation, similar to the technique used in [2].

It is important to note the computational efficiency of the proposed method.
Typically, significant parts of the evolution can be performed in a narrow-
band fashion. Specifically, the update of the piecewise-constant model, as well
as the M-step of the EM estimation for the Gaussian mixture model can be
performed incrementally, keeping the same complexity of the 2-region active
contours scheme. The expectation step of the EM algorithm, however, requires
computation over the entire image domain. Exploring efficient implementation
aspects such as incremental update of the expectation is left for future work.
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Fig. 1. Segmentation of noisy synthetic color image with overlapping objects. Left
to right: the original image, noisy image with the initial contour, region boundaries
obtained using the piecewise constant model, piecewise constant segmentation.

In our first experiment, we applied the algorithm with the piecewise constant
model to a noisy synthetic image with several overlapping regions, with of triple-
junction boundary intersections. The segmentation result is shown in Fig. 1.

Fig. 2 presents a comparison of the proposed method, and the convex re-
laxation method of Chambolle and Pock [7], minimizing the piecewise constant
Mumford-Shah functional [21], closely related to the piecewise constant model
described above. To evaluate [7] we used the code published by the authors, with
the algorithm parameters chosen to obtain visually optimal results: isotropic TV,
simple relaxation, initialization with k-means clustering, K = 8, and A = 5.0.
We further compared the proposed method with the graph-cut based approach
of [12], which we applied to the piecewise constant model. We iterated segmen-
tation and model-estimation, as described in [12], with initial model parameters
obtained with k-means clustering, and the algorithm parameters chosen to obtain
optimal results with the same number of regions as the two previous algorithms:
8-connected neighborhood, A = 1/16, with label cost set to be zero. From exam-
ining the images in Fig. 2, (d),(e) and (f), we observe that in this case the three
methods produce comparable results.

Fig. 3 presents segmentation results obtained with the piecewise constant
variant of the proposed method, and different values of the threshold T'. Specif-
ically, increasing T results in more regions being deemed similar and merged
during the evolution process, thus producing less detailed segmentation. The
above results were compared to segmentation obtained with [7] and [12], with
algorithms’ parameters chosen to produce similar number of regions as the pro-
posed method. [12] was used with 8-connected neighborhood, with the initial
parameters obtained using k-means clustering for both methods. The results are
shown in Fig. 4. We observe that in this case both latter approaches fail to seg-
ment one of the objects, namely, the orange candy, and associate part of it with
the background.

Fig. 5 presents the segmentation result obtained with the proposed method
for an image from the Berkeley Segmentation Dataset®, along with the ground-
truth segmentation. Our method captures the main objects in the image, though
it does not detect small image features, such as thin lines and tiny structures.

! http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(b) (c)

(d) (e) ()
Fig. 2. Comparison of the proposed method using the multi-region piecewise constant
model, the convex relaxation approach of 7], and the graph-cut based method of [12].
(a) The original image. (b) Initial contour. (c) Region boundaries detected by our

method. (d) Regions detected by our method, colored according to their mean intensity
values. (e), (f) The results of [7] and [12], accordingly.

€32

Original image T =0.20 =0.15 T =0.10

Fig. 3. Segmentation results obtained with the proposed method using different values
of the absolute intensity difference 7.

This can be overcome by up-sampling the image prior to the segmentation [2]. Tt
also should be noted that some of the object boundaries provided in the ground-
truth segmentation and not detected by the proposed method, may be found
only using a prior knowledge of the object structure.

In Fig. 6 we demonstrate the application of multi-region piecewise constant
model (8) for tracking in a thermal camera video sequence, where the segmen-
tation obtained for k-th frame is used to initialize the algorithm in frame k + 1.
The proposed approach seemlessly allows multiple target tracking in the video se-
quence. In Fig. 7 we demonstrate the segmentation obtained using the proposed
method with Gaussian mixture model. The introduction of more expressive re-
gion appearance models naturally allows us to segment more complex images.
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(a) (F,X) = (12,6)  (b) (K X)

= (16,8) () A=1/8 (d) A =1/16

Fig. 4. Segmentation results obtained with (a), (b) [7] and (c), (d) [12], with different
algorithm parameters.

Fig. 5. Segmentation of an image from the Berkeley Segmentation Dataset. Left to
right: the original image, region boundaries obtained using our method with piecewise
constant model, ground-truth segmentation.

5 Conclusions and future work

In this paper we addressed the problem of segmenting an image into an arbi-
trary number of regions using a novel active contours formulation. The proposed
framework allows utilizing various region appearance priors and employs the new
Voronoi implicit interface method in order to treat multiple regions in a uniform
manner, while avoiding metrication errors. Finally, we demonstrated that the
proposed method works well on challenging images from various data sets and
applications.
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