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Abstract. Understanding of articulated shape motion plays an important role in
many applications in the mechanical engineering, movie industry, graphics, and
vision communities. In this paper, we study motion-based segmentation of artic-
ulated 3D shapes into rigid parts. We pose the problem as finding a group-valued
map between the shapes describing the motion, forcing it to favor piecewise rigid
motions. Our computation follows the spirit of the Ambrosio-Tortorelli scheme
for Mumford-Shah segmentation, with a diffusion component suited for the group
nature of the motion model. Experimental results demonstrate the effectiveness
of the proposed method in non-rigid motion segmentation.

Key words: Motion Segmentation, Lie-groups, Surface Diffusion, Ambrosio-
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1 Introduction

The analysis of articulated motion in three-dimensional space is a key problem in
biomechanics [1], mechanical engineering, computer vision [28, 31, 20, 37], and com-
puter graphics [24, 29, 41, 27, 44, 6, 43]. Specific problems of deformation analysis [4]
and motion segmentation [5, 13] try to infer the articulated motion of an object, given
several instances of the analyzed object in different poses. The desired outcome is the
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segmentation of the object into rigid parts and motion estimation between the corre-
sponding parts.

Most motion analysis techniques either assume a known prior on the articulated
structure of the inspected object (e.g., in the form of a skeleton), or decide on the struc-
ture in an ad hoc manner, not based on the kinematic model commonly assumed for
near-rigid objects [1, 4]. Since in many cases such a priori assumptions about the data
are only approximate, they can lead to errors in the segmentation and motion estimation.

Another common assumption, especially in graphics applications, is that of known
correspondence. In computer graphics, the problem is usually referred to as dynamic
mesh segmentation.

The above assumptions are often too limiting in real-world applications. Instead, we
would like to apply the intuition often used when studying real-life near-rigid objects,
about the existence of an average rotational motion existing for each body part, but do
so without attempting to detect the articulated parts in advance, and without assuming
the existence of a clear partition of the surface. In other words, we would like to ob-
tain a “soft” segmentation of the surface, without knowing the number or location of
regions in advance, without analyzing the surface features, or having additional priors
on the various object parts. In addition, we expect a complete formulation of motion
segmentation to incorporate an implicit handling of the correspondence problem, given
a reasonable initialization.

Main contribution. In this paper we try to remedy the shortcoming of existing
approaches to articulated motion estimation by combining the two tasks of motion es-
timation and segmentation into a single functional. Unlike existing methods, we pro-
pose a principled variational approach, attempting to find a rigid transformation at each
surface point, between the instance surfaces, such that the overall transformation is de-
scribed by a relatively sparse set of such transformations, each matching a rigid part
of the object. The functional we propose regularizes the motion between the surfaces,
and is guided by the fact that the parameters of the motion transformations (i) should
describe the motion at each point with sufficient accuracy; (ii) should vary smoothly
within (unknown) rigid parts; (iii) can vary abruptly between rigid parts.

We see the main contribution of this paper in the following three aspects: First, we
propose an axiomatic variational framework for articulated motion segmentation. While
focusing on the segmentation problem in this paper, our framework is more general
and the proposed functionals can be easily incorporated into other applications such as
motion estimation, tracking, and surface denoising. Second, we demonstrate that the
articulated motion segmentation problem can be solved within the proposed framework
by adapting standard tools from variational segmentation to the geometry of the case,
and obtain results competitive with domain-specific state-of-the-art tools. Third, we
suggest a spatially-coherent algorithm for spatial visualization of group valued data on
manifolds, which draws from the same variational principles.

Relation to prior work. The scheme we propose involves diffusing the trans-
formations along the surface, in the spirit of the Ambrosio-Tortorelli scheme [2] for
Mumford-Shah segmentation [33]. The diffusion component of our scheme is a diffu-
sion process of Lie group elements, which has recently attracted significant attention
in other applications [16, 39, 18]. In diffusing transformations on the surface, our work
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is similar to that of Litke et al. [30]. We do not, however, make any assumption on the
surface topology; to that end, the proposed method diffuses transformations along the
surface, rather than representing the surface in an evenly sampled 2D parametrization
plane. When dealing with real-life deformable objects that seldom admit regular global
parametrization, such an assumption could be too restrictive.

The idea of combining soft segmentation and motion estimation has been attempted
before in the case of optical flow computation (see, e.g., [3]). In optical flows, how-
ever, the motion field is merely expected to be piecewise smooth. For truly articulated
objects one would expect piecewise-constant flow fields, when expressed in the correct
parametrization.

Finally, our work is related, and complementary, to the topic of geometry-based
mesh segmentation. While several works from this field can be combined with motion
based segmentation techniques, this is not the focus of this work. We point the reader
to [7, 38, 12, 26], and references therein, for additional examples of mesh segmentation
algorithms.

2 Problem formulation

Articulation model. Let us be given a three-dimensional shape, which we model as
a two-dimensional manifold X . In the following, we will denote by x : X → R3 the
embedding of X into R3, and use synonymously the notation x and x referring to a
point on the manifold and its Euclidean embedding coordinates, respectively.

We further assume that the shape X is articulated, i.e., can be decomposed into rigid
parts S1, . . . , Sp and nonrigid joints J1, . . . , Jq, such that X =

⋃p
i=1 Si∪

⋃q
k=1 Jk. An

articulation Y = AX is obtained by applying rigid motions Ti ∈ Iso(R3) (rotations
and translations) to the rigid parts, and non-rigid deformations Qk to the joints, such
that AX =

⋃p
i=1 TiSi ∪

⋃q
k=1 QkJk.

Motion segmentation. The problem of motion-based segmentation, in its simplest
setting can be described as follows: given two articulations of the shape, X and Y ,
extract its rigid parts. Extension to the case of multiple shape poses is straightforward.
We therefore consider in the following only a pair of shapes for the sake of simplicity
and without loss of generality.

Assuming that the correspondence between the points on two shapes X and Y is
known, given two corresponding points x ∈ X and y(x) ∈ Y , we can find a motion g ∈
G such that gx = y, where G is some representation of coordinate transformations in
R3, and with some abuse of notation, gx ∈ R3 denotes the action of g on the coordinates
of the point x. We can represent the transformation at each point as a field g : X → G.

Since the articulated parts of the shape move rigidly, if we choose an appropriate
motion representation (as detailed below), two points x, x′ ∈ Si will undergo the same
transformation, from which it follows that g(x)|x∈Si

= const. One possibility is to
adopt a constrained minimization approach, forcing g(X) = Y , where g(X) is a short
notation for the set g(x)x(x) for all x ∈ X . A more convenient possibility is to take an
unconstrained formulation,

min
g:X→G

λEDATA(g) + ρ(g), (1)
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where ρ denotes some regularization term which is small if g is piecewise constant.
EDATA(g) is our fitting term which penalizes the discrepancy between the transformed
template surface g(X) and Y ,

EDATA(g) =

∫
X

‖g(x)x− y(x)‖2da, (2)

where y(x) denotes the coordinate of the point on Y corresponding to x, g(x) is the
transformation at x, and da is a measure on X .

Such a formulation allows us to recover the articulated parts by clustering g into
regions of equal value. This formulation (presented in Section 4.4) bears much resem-
blance to total variation regularization common in signal and image processing [35].

One tacit assumption in this problem is that the correspondence between X and Y
is known, which is usually not true. We will mention this issue in Section 4.1. Second,
it is crucial to observe that the effectiveness of (1) relies on some correct representation
G of the motion. The simplest representation is the linear motion, assuming G = R3

such that gx = x + t = y for some t ∈ R3. However, such a simplistic model fails
to capture the piecewise constancy of the motion field. It is thus clear that we need a
representation of motion that is redundant (i.e., an over-parametrization using more
than three degrees of freedom to describe a transformation) and in which motions of
points that move rigidly are described by the same element of G.

One parametrization often used in computer vision and robotics [42, 32, 27, 18] is
the representation of rigid motions by the Lie group SE(3) and the corresponding Lie
algebra se(3), respectively. Lie groups are topological groups with a smooth manifold
structure such that the group action G ×G 7→ G and the group inverse are differentiable
maps. Each Lie group has a Lie algebra associated with it, which can be mapped via the
exponential map onto the tangent space at the identity operator. The Lie algebra se(3)
allows us to represent rotations and rigid motions locally in a consistent linear space
using the logarithm and exponential maps at each point. We refer the reader to standard
literature on the subject (e.g., [19]) for more information.

The Lie algebra of SE(3) is the group of 4× 4 matrices of the form

se(3) =

(
A t
0 1

)
,A ∈ so(3), t ∈ R3, (3)

where so(3) is the set of 3× 3 skew-symmetric matrices.
Under the assumption of G = SE(3), we have our desired property that the transfor-

mation of points undergoing a rigid motion are described by the same group element.
Solving problem (1) thus requires a regularization term ρ that favors piecewise con-
stancy of group elements on the shape. We discuss such a regularization in Section 3.
We also note that due to the non-Euclidean structure of the group, special care should
be taken when parameterizing such a representation [32, 18, 39, 27], as discussed in
Section 4.2.

3 Diffusion-based regularization

Thinking of the Lie group G as a Riemannian manifold, we look for a functional defined
on maps between manifolds of the form g : X → G. Such maps can be regularized by
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the well-known Dirichlet energy [25],

ρDIR(g) =
1

2

∫
X

〈∇g,∇g〉g(x)da, (4)

where ∇g denotes the intrinsic gradient of g on X , 〈·, ·〉g(x) is the Riemannian metric
on G at a point g(x), and da is the area element of X . The minimizer of the Dirich-
let energy is called a harmonic map, and it is the solution of a diffusion equation. In
the case where both X and G are Euclidean, ρDIR reduces to the standard Tikhonov
regularization.

Ambrosio-Tortorelli scheme. Unfortunately, the Dirichlet energy does not favor
piecewise-constancy of g, as is desired. We therefore adopt the Ambrosio-Tortorelli
scheme [2] for Mumford-Shah regularization [33], in which the Dirichlet energy term
is modulated by a diffusivity function v : X → [0, 1],

ρAT(g) =

∫
X

(
1

2
v2〈∇g,∇g〉g + ε〈∇v,∇v〉+ (1− v)

2

4ε

)
da, (5)

where ε is a small positive constant. This allows us to extend our outlook in several
ways. The Mumford-Shah functional replaces the notion of a set of regions with closed
simple boundary curves with general discontinuity sets. It furthermore generalizes our
notion of constant value regions with that of favored smoothness inside the areas defined
by these discontinuity curves. This is in order to handle objects which deviate from
articulated motion, for example in flexible regions or joints.

Furthermore, the generalized Ambrosio-Tortorelli scheme allows us to explicitly
reason about the places in the flow where the nonlinear nature of the data manifold man-
ifests itself. Suppose we have a solution (g∗, v∗) satisfying our piecewise-constancy as-
sumptions of g, and a diffusivity function with 0 at region boundaries and 1 elsewhere.
At such a solution, we expect two neighboring points which belong to different regions
to have a very small diffusivity value v connecting them, effectively nullifying the in-
teraction between far-away group elements which is dependent on the mapping used
for the logarithm map at each point, and hence can be inaccurate [22, 32]. While such a
solution (g∗, v∗) may not be a minimizer of the functional, it serves well to explain the
intuition motivating the choice of the functional.

Diffusion of Lie group elements. In order to efficiently compute the Euler-Lagrange
equation corresponding to the generalized Ambrosio-Tortorelli functional (5), we trans-
form the neighborhood of each point into the corresponding Lie algebra elements before
applying the diffusion operator. Using Lie algebra representation of differential oper-
ators for rigid motion has been used before in computer vision [39], numerical PDE
computations [22], path planning and optimal control theory [32, 27].

The Euler-Lagrange equation for the generalized Dirichlet energy measuring the
map between two manifolds is given as [25]

∆Xgα + Γα
βγ

〈
∇gβ ,∇gγ

〉
g(x)

= 0, (6)

where α, β γ enumerate the local coordinates of our group manifold, se(3), and we use
Einstein’s notation according to which corresponding indices are summed over. Γα

βγ
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are the Christoffel symbols of SE(3), which express the Riemannian metric’s local
derivatives. We refer the reader to [15] for an introduction to Riemannian geometry.
Finally, ∆X denotes the Laplace-Beltrami operator on the surface X .

In order to avoid the computation of the Christoffel symbols, we transform the point
and its neighbors using the logarithm map at that point in SE(3). The diffusion opera-
tion is now affected only by the structure of the surface X . After applying the diffusion
operator, we use the exponential map in order to return to the usual representation of
the transformation.

4 Numerical considerations

We now describe the algorithm for articulated motion estimation based on the mini-
mization of the functional

E(g, v) = λEDATA(g) + ρAT (g, v), (7)

where EDATA(g) is the matching term defined by Equation 2, and ρAT (g, v) is defined
in Equation 5. The main steps of the algorithm are outlined as Algorithm 1. Throughout
the algorithm we parameterize g(x) based on the first surface, given as a triangulated
mesh, with vertices {xi}Ni=1, and an element from SE(3) defined at each vertex. The
triangulation is used merely to obtain a more consistent numerical diffusion operator,
and is not required otherwise. Special care is made in the choice of coordinates during
the optimization as explained in Section 4.2.

4.1 Initial correspondence estimation

As in other motion segmentation algorithms, some initialization of the matching be-
tween the surfaces must be used. One approach [6] is to use nonrigid surface matching
for initialization. Another possibility, in the case of high framerate sequences [44], is
to exploit temporal consistency. While we focus on the functional itself, we present a
possible initialization scheme which assumes a known sparse correspondence between
the surfaces (simulating motion capture markers). We then interpolate this sparse set in
order to initialize an iterative closest point (ICP) search [8], matching the patch around
each point to the target mesh. In Figure 3, we use 30 matched points for initialization.
This number of points is within the scope of current motion capture marker systems,
or of algorithms for global nonrigid surface matching such as spectral methods [23, 34,
36], or the generalized multidimensional scaling (GMDS) algorithm [9].

We expect better initial registration, possibly using a smoothness assumption, to
allow fewer markers to be used.

4.2 Diffusion of Lie group elements

Rewriting the optimization over the functional in Equation 7 in a fractional step ap-
proach [45], we update each function in a suitable representation.
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Using the transformation described in Section 3, the update step with respect to the
regularization now becomes [18]

gk+1/2 = exp

(
−dt

δρAT

δg̃

)
gk, vk+1 = vk − dt

δρAT

δv
(8)

where exp(A) = I + A + A2/2! + A3/3! + . . . denotes the matrix exponential, g̃
denotes the logarithm transform of g, and dt denotes the time step. δρAT

δg̃ denotes the
variation of the regularization term ρAT (g) w.r.t. the Lie-algebra local representation of
the solution, describing the Euler-Lagrange descent direction. g(x) and the neighboring
transformations are parameterized by a basis for matrices in se(3), after applying the
logarithm map at g(x). The descent directions are given by

δρAT

δg̃i
= v2∆X(g̃i) + v 〈∇v,∇g̃i〉 (9)

δρAT

δv
= 〈∇g,∇g〉g(x)v + 2ε∆X(v) +

(v − 1)

2ε
,

where g̃i denote the components of the logarithmic representation of g. The dis-
cretization we use for ∆X is a cotangent one suggested by [14], which has been shown
to be convergent for relatively smooth and well-parameterized surfaces. It is expressed
as

∆X (u) ≈ 3

Ai

∑
j∈N1(i)

cotαij + cotβij

2
[uj − ui] , (10)

for a given function u on the surface X , where N1(i) denotes the mesh neighbors of
point i, and αij , βij are the angles opposing the edge ij in its neighboring faces. Ai

denotes the area of the 1-ring around i in the mesh. After a gradient descent step w.r.t.
the diffusion term, we take a step w.r.t. the data term.

gk+1 = PSE(3)

(
gk+1/2 − dt

δEDATA

δg

)
, (11)

where PSE(3)(·) denotes a projection onto the group SE(3) obtained by correcting
the singular values of the rotation matrix. We compute the gradient w.r.t. a basis for
small rotation and translation matrices comprised of the regular basis for translation
and the skew-matrix approximation of small rotations. We then reproject the update
onto the manifold. This keeps the inaccuracies associated with the projecting manifold-
constrained data [32, 18] at a reasonable level.

Finally, we note that we may not know in advance the points y(x) which match X
in Y . The correspondence can be updated based on the current transformations in an
efficient manner similarly to the ICP algorithm [8], using a KD-tree.

4.3 A patch-based data term

The data term we use works to fit the 3 output functions of the transformations defined
on the surface. As in the case of the aperture problem in optical flow computation, it
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is the regularization term that helps us obtain a complete view of the transformations
field. However, as in optical flow computation [11], extending the surface matching to a
small patch around each point gave us a more robust estimation of the transformations.
The revised data term reads

EDATA(g) =

∫
X

∫
N (x)

‖g(x)x− y(x)‖2da× da, (12)

where N (x) denotes a small neighborhood around the point x.

Algorithm 1 Articulated Surface Segmentation and Matching
1: Given an initial correspondence.
2: for k = 1, 2, . . . , until convergence do
3: Update gk+1/2, vk+1 w.r.t. the diffusion term, according to Equation 8.
4: Obtain gk+1 according to the data term, using Equation 11.
5: Update yk+1(x), the current estimated correspondence of the deformed surface.
6: end for

4.4 Visualizing Lie group clustering on surfaces

Finally, we need to mention the approach taken to visualize the transformations as the
latter belong to a six-dimensional non-Euclidean manifold. Motivated by the widespread
use of vector quantization in such visualizations, we use a clustering algorithm with spa-
tial regularization. Instead of minimizing the Max-Lloyd cost function, we minimize the
function

EV IS(gi, Ri) =
∑
i

∫
Ri

‖g − gi‖2da+

∫
∂Ri

v2(s)ds, (13)

where ∂Ri denotes the set of boundaries between partition regions {Ri}Ni=1, gi are the
group representatives for each region, and v2(s) denotes the diffusivity term along the
region boundary. Several (about 50) initializations are performed, as is often customary
in clustering, with the lowest cost hypothesis kept.

While this visualization algorithm coupled with a good initialization at each point
can be considered as a segmentation algorithm in its own right, it is less general as it as-
sumes a strict separation between the parts. We further note, however, that the diffusion
process lowered the score obtained in Equation 13 in the experiments we conducted,
indicating a consistency between the two algorithms in objects with well-defined rigid
parts.

5 Results

We now demonstrate the results obtained by our method, in terms of the obtained trans-
formation field and the diffusivity function. In Figure 1 we demonstrate matching be-
tween two human body poses taken from the TOSCA dataset [10]. As can be seen,
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the diffusivity function hints at the location of boundaries between parts. In addition,
we visualize the transformations obtained using the clustering algorithm described in
subsection 4.4.

Figure 1 also demonstrates the results of comparing four poses of the same surface,
this time with the patch-based data term described by (12). In our experiments the patch-
based term gave a cleaner estimation of the motion as is observed in the diffusivity
function.

We also demonstrate our algorithm on a horse taken from [40] as a set of 6 poses in
Figure 2. In this figure we compare our results to those of [43], obtained on a similar set
of poses with 10 frames. In Figure 3 we demonstrate our algorithm while initializing
it from a set of 30 points where displacement is known. The relatively monotonous
motion range available in the dynamic mesh sequence leads to a less complete, but
still quite meaningful, segmentation of the horse, using an initialization which can be
obtained by a feasible setup. We also note the relatively low number of poses required
for segmentation – in both Figure 2 and Figure 3 we obtain good results despite the fact
we use only a few poses, six and eight respectively. This contrasts with 10 poses used
in [43], the results of which are shown in Figure 2 for comparison.

Finally, in Figure 3 we demonstrate convergence based on a sparse initialization,
with 30 known correspondence points, arbitrarily placed using farthest point sampling
[17, 21]. This demonstrates a possibility of initializing the algorithm using motion cap-
ture markers, coupled with a 3D reconstruction pipeline, for object part analysis. While
the examples shown in this paper are synthetic, this experiment demonstrates the algo-
rithm can be incorporated into a real-world system.

9

Fig. 1. Segmenting a human figure. Top row: the set of poses used. Bottom row, left-to-right: the
transformations obtained from the two left most poses, the transformations obtained from all four
poses using Equation 12 as a data term, and the Ambrosio-Tortorelli diffusivity function based
on four poses.
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Fig. 2. Segmenting a horse dynamic surface motion based on six different poses. Top row: the
poses used. Bottom row, left to right: a visualization of the transformations of the surface obtained
by our method, and the segmentation results obtained by [43], and the diffusivity function v.

Fig. 3. Segmenting a horse dynamic surface motion with a given sparse initial correspondences.
Top row: the eight random poses used. Bottom row, left to right: the set of points used for ini-
tializing the convergence, and a visualization of the transformations obtained, and the diffusivity
function v.

6 Conclusion

In this paper we have presented a method for simultaneous segmentation and motion es-
timation in articulated objects, based on a variational formulation. Several results shown
demonstrate the method’s effectiveness, and merit its application to specific problems
where it can be contrasted and combined with domain-specific algorithms for articu-
lated object analysis. In future work we intend to adapt the proposed algorithm to real
data from range scanners, and explore initialization methods as well as use the proposed
framework in other applications such as articulated surfaces tracking and denoising.
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