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Abstract

We propose an integrated probabilistic model for multi-
modal fusion of aerial imagery, LiDAR data, and (optional)
GPS measurements. The model allows for analysis and
dense reconstruction (in terms of both geometry and ap-
pearance) of large 3D scenes. An advantage of the ap-
proach is that it explicitly models uncertainty and allows
for missing data. As compared with image-based methods,
dense reconstructions of complex urban scenes are feasi-
ble with fewer observations. Moreover, the proposed model
allows one to estimate absolute scale and orientation, and
reason about other aspects of the scene, e.g., detection of
moving objects. As formulated, the model lends itself to
massively-parallel computing. We exploit this in an efficient
inference scheme that utilizes both general purpose and
domain-specific hardware components. We demonstrate re-
sults on large-scale reconstruction of urban terrain from Li-
DAR and aerial photography data.

1. Introduction
The increasing availability of multi-modal data sets, in-

cluding aerial imagery and Light Detection and Ranging
(LiDAR), provides new opportunities for visualization and
analysis of extended geographic areas. A critical challenge
for enabling such analysis is to develop methods for fus-
ing the available data within a mathematically-consistent
framework. While much progress has been made on image-
based scene reconstruction, the existing literature on multi-
modal scene reconstruction is less extensive.

Here, we propose an integrated probabilistic model for
multi-modal fusion of Wide Area Motion Imagery (WAMI)
and LiDAR for 3D scene analysis. We formulate the re-
construction as a statistical inference problem within a
Bayesian framework that encompasses the following key
modeling issues: (1) integration and exploitation of multi-
modal measurements within a mathematically consistent
model; (2) explicit modeling of uncertainty in both mea-
surements and the resultant reconstruction; and (3) allows
for straightforward incorporation of additional data sources.

Figure 1: Top: Lubbock scene reconstruction (3 images,
and 1M LiDAR points). Bottom: Sample measurements.

The resulting model lends itself to highly parallelizable
inference, a property we exploit using existing graphics
hardware. We discuss and empirically demonstrate several
advantages of the approach including: (1) the ability to ob-
tain dense reconstructions in both geometry and appearance
by utilizing higher order primitives and images to represent
the 3D scene; (2) the need for fewer images given the geo-
metric information provided by LiDAR; and (3) the ability
to perform higher level reasoning within the model, e.g.,
detecting moving objects and obtaining absolute scale and
orientation.

2. Background and Related Work
Structure from Motion (SfM) is a widely-used technique

for estimating 3D scene geometry and camera pose from
a collection of images. Traditional reconstruction meth-
ods [12, 32, 35] rely solely on images, neglecting avail-
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able intrinsic and extrinsic information. Newer methods ex-
ploit additional noisy information such as Global Position-
ing System (GPS) measurements or focal-length estimates
(information readily available from most digital cameras).
Such additional information is commonly used for initial-
ization [31] and/or reconstruction [9]. Recent advances in
SfM [1, 28, 31, 34, 37] achieve remarkable reconstructions
of urban scenes from a large collection of street views. The
proposed approach differs from these methods in the choice
of geometric primitive used (e.g., modeling geometry as
higher-order primitives as opposed to single points), the use
of additional noisy geometric measurements (e.g., LiDAR),
and the replacement of explicit pixel correspondences with
dense implicit correspondences.

Previous attempts to recover higher-order primitives in-
clude piecewise-planar reconstructions [17, 30] that pro-
duce accurate reconstructions when the underlying scene is
primarily planar; however, these methods typically utilize
SfM as an initial step and are therefore susceptible to errors
in the SfM reconstructions.

The utility of geometric information in SfM is gener-
ally agreed upon but methods for exploiting it vary widely
[2, 3, 4, 5, 8, 11, 33]. These methods typically introduce
geometry as constraints that provide regularity and reduce
computational complexity. Common constraints include
time-consuming manual annotation of points, lines, or pla-
nar structures. The proposed method differs in that it uti-
lizes LiDAR as a source of geometric information while
eliminating the need for manual interaction.

LiDAR has been exploited extensively in aerial recon-
structions [10, 15, 19, 22, 23, 24, 25, 38, 39, 40]. How-
ever, in sharp contrast to the proposed method, these meth-
ods assume that LiDAR provides a noise-free and accurate
geometry, relegating images solely as a source of texture in-
formation and neglecting image-based geometric informa-
tion. Previous image-based aerial reconstructions methods
include [20, 21] while probabilistic formulations of SfM in-
clude [7, 13, 29]. To our knowledge, no previous method
for 3D reconstruction combines geometry and appearance
information within a joint probabilistic model.

The work presented herein is closest in spirit to the vari-
ational approaches of [18, 37]. The primary differences be-
ing the use of LiDAR and probabilistic modeling as well
as the use of multi-image color differences as a comparison
metric rather than pairwise image correlation.

LiDAR is an optical remote-sensing technology that
measures distance and/or material properties of a point of
reflection. For airborne collections, the system is mounted
on an aircraft along with a position tracking system such as
GPS. During collection, the ground is scanned continuously
with light pulses. Combining the return delay of a pulse
with the platform position and velocity yields accurate 3D
point measurements with errors on the order of a few cen-

Figure 2: Graphical Model Representation.

timeters. Collecting a dense set of such measurements over
a large area facilitates automated methods for scene model-
ing by providing a rich source of geometric information.

3. The Probabilistic Model
The proposed model consists of the following latent pa-

rameters: a collection of 3D primitives described by their
geometry and appearance; a camera-trajectory model (de-
scribed by camera extrinsic and intrinsic parameters), as
well as several observation models that couple the latent
variables with observed data.

3.1. The Proposed Model

The graphical model in Fig. 2 depicts the generative
probabilistic model used herein. The latent 3D model con-
sists of the variablesG, V , andAwhich collectively explain
the geometry and appearance of the underlying scene. In-
trinsic and extrinsic camera parameters are denoted by K
and T , respectively. Observations are LiDAR points (L),
images (I), and (if available) GPS positions (Z). The ob-
servations are assumed to be statistically independent con-
ditioned on the latent variables. Conceptually, the model
may be divided into two parts. The first part (the leftmost
and middle plates in Fig. 2) encodes the 3D scene structure,
while the second (the rest of the plates in Fig. 2) encodes
the multi-modal observations.

The scene structure consists of NP geometry primitives
G = {Gm}NP

m=1 and associated canonical appearances
A = {Am}NP

m=1. The appearance variable, Am, represents
a square image of known size which contains the texture
information for Gm. For each m ∈ {1, . . . , NP }, θm en-
codes the choice of vertices (for the primitive Gm) among
V = {Vk}NV

k=1, the set of all vertices in the scene (as a short-
hand we also write θ = {θm}NP

m=1). This enables different
connectivity assumptions and primitive types to be used in
the model, and allows us to represent triangulated meshes,
quad-meshes, and polygon-soup models. For concreteness
we will focus on triangular meshes.

The LiDAR measurements, L = {Ll}NL

l=1, are expressed
in the bottom plate of Fig. 2 as conditionally indepen-
dent points. The rightmost plate explains image measure-
ments arising from NC independent cameras, each with
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its own intrinsic parameters Kc and extrinsic camera tra-
jectory T c. The set of all intrinsic parameters and extrin-
sic trajectories are denoted by K = {Kc}NC

c=1 and T =
{T c}NC

c=1 respectively; note that set complements are de-
noted using subscript \ (e.g., T\n = {T c}NC

c=1,c6=n). Hence-
forth, we reserve superscript notation for camera indices un-
less clear by context; all other indices appear in subscript.
Each camera c generates N c

I independent images, denoted
by Ic = {Icn}

Nc
I

n=1, and GPS measurements, denoted by
Zc = {Zc

n}
Nc

I
n=1. The ensembles across all cameras are

denoted by I = {Ic}NC
c=1 and Z = {Zc}NC

c=1.
The probability model depicted in Fig. 2 is

p(L, I,Z,G,V,A,T,K; θ) = p(V,A,T,K)

NL∏
l=1

p(Ll|G)

×
NC∏
c=1

Nc
I∏

n=1

p(Icn|G,A,Kc, T c)p(Zcn|T c)
NP∏
m=1

p(Gm|Vθ) , (1)

where

p(V,A,T,K) =

NP∏
m=1

p(Am)

NC∏
c=1

p(T c)p(Kc)

NV∏
k=1

p(Vk).

Next, we explain the individual terms of Eq. (1).

3.2. Camera Trajectories

Assuming a rigid attachment, the airborne platform and
camera trajectories are the same. Let T c denote the tra-
jectory of such a camera c. We use a Gaussian Process
(GP) as a prior over T c; see our Supplemental Material for
details [6]. This serves as a prior model on smooth trajec-
tories and enables efficient inference. While SfM and/or
aerial-imagery-based methods may also incorporate such a
prior over camera trajectories (even if they do not exploit Li-
DAR information), we are not aware of any published works
which do so.

3.3. LiDAR Observation Model

LiDAR measurements are modeled as either being gen-
erated by some point on a primitive and corrupted by ad-
ditive Gaussian noise or as outliers (as in the case of spu-
rious measurements). Mathematically, we write the for-
mer case as Ll = L

m(l)
l + W , where Lm(l)

l is the point
on primitive Gm(l) that generated the measurement, and
W ∼ N (w; 0, σ2I). Thus, Ll|Lm(l)

l ∼ N (Ll;L
m(l)
l , σ2I).

A-priori, it is unknown which primitive, let alone which
point on the primitive, generated each observation. We
address this data association problem by sampling the
measurement-to-primitive association, and assuming that
the measurement is always generated by the closest point on
the generating primitive. The LiDAR statistical model then
becomes p(Ll|G) = p(Ll|Gm(l)) = p(Ll|Lm(l)

l ) where
m(l) ∼ Cat(αp(Ll|G1), ..., αp(Ll|GNP

), 1−α) and 1−α
is the probability of an outlier (set to a small value).

3.4. GPS and Image Observation Models

The GPS observation model is an additive Gaussian
model, Zc

n = T c
n + W where W ∼ N (w; 0, σ2

wI) and
T c
n = T c(tn) is the location of camera c at tn, the time

of the nth measurement. This leads to a Gaussian likeli-
hood, Zc

n|T c ∼ N (z;T c
n, σ

2
wI). We model color intensity

of image Icn at pixel (u, v) via a Gaussian noise model,

Icn(u, v) ∼ N (icn(u, v);Am∗(u′, v′), r2m∗) (2)

whereAm∗ is the mean of the appearance ofGm∗ (the prim-
itive that generated Icn(u, v)) at some coordinate (u′, v′),
r2m∗ is the variance of the noise which depends on the an-
gle between Gm∗ and the camera’s viewing direction (see
[6] for more details). Importantly, m∗, u′ and v′ are func-
tions of u, v,Kc, T c, and G; this can be seen by interpreting
Eq. (2) as a mapping of color values from an image pixel
to the appearance of the primitive m∗. This map depends
on camera parameters and the visibility of pixel (u′, v′) of
Gm∗ . With these choices,

p(Icn|G,A,Kc, T c) =
∏
k∈Sc

n

N (ik; am∗(k), r
2
m∗(k)) (3)

where Scn is the set of pixels in image Icn.

3.5. Lie Algebraic Representation of Primitives

Here, we describe the representation for the geometric
primitives in the model. Since we wish to allow surfaces to
be composed of planar primitives, it is intuitive to handle
the transformation of each primitive rather than treat dis-
placements of each primitive’s vertex separately and then
enforce primitive planarity via constraints. Motivated by the
differential-geometric tangent-plane approach, we constrain
the representation to linear maps between planar primitives
that preserve the primitive’s orientation. In the case of trian-
gulated meshes (the type used in our implementation), these
maps capture the full range of triangle transformations in
R3. For triangular meshes, one choice of parameterization
of these transformations is the approach suggested in [14],
which conveniently decomposes local transformations into
their translation, rotation, scale and skew components. This
decomposition is exploited in our inference algorithm, by
allowing us to make coordinate descent steps along more
meaningful directions. Due to space limitations, we pro-
vide the mathematical details in [6].

4. Inference
We now describe our inference algorithm. To simplify

notation and without loss of generality, the explanation be-
low assumes that only one camera is used, NC = 1, and we
thus drop the superscript c. For computational reasons, we
focus on Maximum-a-Posteriori (MAP) estimates.
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Algorithm 1 General Inference Procedure

1: Initialize world primitives (see Sec. 4.4).
2: Initialize camera pose (see Sec. 4.4).
3: for iter = 1 : Niter do
4: Estimate Appearance using Eq. (5).
5: Optimize over each camera pose using Eqs. (6-7).
6: Estimate Appearance using Eq. (5).
7: Optimize over each world primitive using Eq. (8).
8: end for

4.1. Appearance
The posterior distribution over the appearance is

p(A|I,G,K, T ) ∝
NI∏
n=1

p(In|G,A,K, T )
NP∏
m=1

p(Am) . (4)

By Sec. 3.4, the first term in the RHS of Eq. (4) is nor-
mally distributed. Selecting the prior on Am to be Gaus-
sian, Am ∼ N (a;µ, σ2), leads to a closed-form Gaussian
posterior; i.e., p(A|I,G,K, T ) = N (a; µ̂, σ̂2) where

µ̂ =
µ+ σ2

∑n−1
i=0

zi
r2i

1 + σ2
∑n−1

i=0
1
r2i

; σ̂ =
σ√

1 + σ2
∑n−1

i=0
1
r2i

, (5)

and zi are observed pixels generated by the same primitive
appearance pixels (see [6] for derivation). This is weighted-
least-squares estimation with weights that are inversely pro-
portional to the variance of the pixel likelihood.

4.2. Camera Parameters

Inference over camera parameters is decomposed into in-
ference over intrinsic and extrinsic parameters.
Intrinsic Parameters. The posterior distribution is

p(K|I,G,A, T ) ∝ p(K)

NI∏
n=1

p(In|G,A,K, T ) . (6)

Note that Eq. (6) does not have a closed-form solution due
to the intricate dependency of p(Ii|G,A,K, T ) onK. This
dependency, implicit in Eq. (2), necessitates the computa-
tion ofAm∗ and (u′, v′) which requires reasoning over both
a projective transformation and occlusions and cannot be
achieved in closed form. However, we can optimize numer-
ically to obtain a MAP estimate of K.
Extrinsic Parameters. The posterior distribution related to
extrinsic parameters is given by

p(Tn|G,A, In,K,T\n, Zn)

∝ p(In|G,A, Tn,Kn)p(Zn|Tn)p(Tn|T\n) . (7)

Note that Eq. (7) contains not only the image and GPS like-
lihoods, but also the likelihood of the current camera pa-
rameters conditioned on all the other latent camera param-
eters in the trajectory. This is due to the GP prior placed

on T (Sec. 3.2), which can be evaluated as shown in [6].
Intuitively, p(Tn|T\n) favors an extrinsic-parameters con-
figuration that fits well with the rest of the trajectory.

4.3. Geometry

The posterior distribution over geometric parameters is

p(V|I,L,G; θ) (8)

∝
NI∏
n=1

p(In|G,A,K, T )
NL∏
l=1

p(Ll|G)

NP∏
m=1

p(Gm|V; θ) .

The complicated form of p(In|G,A,K, T ) prevents
closed-form exact-inference solutions for Eq. (8). More-
over,

∏NL

l=1 p(Ll|G) is computationally intensive as the data
association problem requires computing distances for each
LiDAR observation to every world primitive. We seek MAP
solutions for the scene geometry using the representation
from Sec. 3.5 which, as mentioned earlier, enables us to
optimize over a linear space. Empirically, when compared
with a naive 3D vertex representation, the Lie-algebraic rep-
resentation produced results that are either similar or better
– in equivalent run-times. Importantly, the transformation
decomposition property is utilized to reduce local optima
by first searching over rotations and translations, then op-
timizing over all deformations, i.e., rotation, translations,
scale and skew.

4.4. Practical Considerations

Thus far we have discussed inference for individual la-
tent parameters; this section combines them and discusses a
few implementation details (see [6] for more details). The
full inference procedure can be seen in Alg. 1. In a fully-
Bayesian model the initialization of parameters can be done
by sampling from the prior distributions; however, due to
the high complexity of the model, these poor initializations
are likely to produce equally-poor parameter estimates. As
a result, in this work the model parameters are initialized
from the input data. World primitives are initialized by tri-
angulating a subsampled input LiDAR data at the ground
level. The camera parameters are initialized from GPS in-
formation, if available, or by first registering the images
and LiDAR [25]. As a final note, the optimization scheme
used in this work was downhill simplex optimization [26].
Source code for our implementation can be downloaded
from: http://people.csail.mit.edu/rcabezas/code

5. Experiments
In our experiments we use the CLIF 2007 dataset [36]

and LiDAR from [27]. The CLIF dataset is partitioned into
three scenes: intersection, stadium and multi-camera. See
[6] for detailed scene descriptions, parameters used in our
experiments and more results.
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Figure 3: Reconstruction as a function of number of images used (2 views). From left to right: 49, 24, 10 and 5 images (fixed
world geometry and LiDAR, same number of optimizations run for all).

5.1. Appearance and Geometry

LiDAR and images complement each other as the former
provides geometric information while the latter primarily
provides information about the appearance (though images
also convey implicit geometric information). We character-
ize this property by comparing reconstruction quality as a
function of images used for a fixed set of LiDAR points.

In this experiment we use a single camera and vary the
number of images used to reconstruct the scene between
5, 10, 24, and 49. Images were chosen (equally spaced in
time) from the observation sequence always beginning and
ending with the same images. This ensured that the base-
line was maintained between reconstructions, but also that
there was maximal separation between images used. We
optimized over the camera pose for each image in each set
while maintaining all other model parameters fixed. Each
set of camera poses was optimized using three runs of ten
batches with image noise standard deviation of 10, 5, and 2
respectively. This was followed by a final run of five batches
with a smaller optimization step-size. The term batch refers
to updating all the poses in the set once. Empirically, we
found that varying image-noise level had no noticeable ef-
fect on the reconstruction output, but decreasing the number
of batches could have significant impact.

Two views for each of the image sets are shown in Fig. 3.
Note that the reconstruction quality degrades very little
when reducing the number of images from 49 to 10. This
degradation is manifested as black pixels which occur due
to missing information in the latent appearance model (i.e.,
no observation pixel is mapped to that particular appearance
location). While mildly distracting, this is easily mitigated
by either increasing the number of appearance pixels each
observation pixel is allowed to affect or by post-processing
the appearance maps to fill in missing data. Despite the
aforementioned artifacts, the first three sets of images con-
verged to a similar configuration of camera parameters, and
are aligned well with each other; e.g., note the sharp fea-
tures in Fig. 3. When we further decrease the number of im-
ages to 5, the figure shows that this no longer holds. We hy-

pothesize that the limited image evidence, together with the
wide-baseline and the high uncertainty in the initial camera
pose caused the optimization to converge to an undesired
local optimum.

5.2. SfM comparison

In this section the reconstructions obtained with
the proposed model are compared with the results of
Bundler+PMVS2 [16, 31]. As pointed out earlier, these re-
constructions are fundamentally different, beginning with
the choice of primitives. Due to such variations and the
lack of ground truth of real-world large-scale urban scenes,
only qualitative comparisons are considered.

The three scenes of the CLIF dataset were used to com-
pare the reconstruction quality between SfM and the pro-
posed approach. For brevity, only the results of the multi-
camera scene are shown here; see [6] for more reconstruc-
tions. The results of Bundler+PMVS2 (top row of Figs. 4-
5) contain over 151k points and were obtained using 77 im-
ages out of the 100 given as their algorithm failed to identify
camera pose for the remaining cameras. From a far-off dis-
tance the point cloud lets us see the underlying scene struc-
ture. Horizontal surfaces are well reconstructed, leading to
excellent ground coverage; building sides are fairly dense
and vary from being highly vertical to slightly inclined (e.g.,
the front wall of the stadium or the towers, as seen in Fig. 5).

The results using the proposed method are shown on the
bottom row of Figs. 4-5. Note that we can easily identify
fine scene details such as pavement markings, roof details
and cars. Moreover, horizontal and vertical surfaces are
well reconstructed. We note that foliage typically does not
follow the locally-planar assumption made in this model; as
such, reconstructions of trees are highly irregular. All im-
ages are used in this model, yielding more ground coverage
of the scene than the SfM counterpart. Furthermore, note
that small but crucial scene details can be identified from
the reconstructions obtained using the proposed method.
Computation Time. Runtimes of Bundler+PMVS2 and
the proposed method are shown in Table 1 (see [6] for de-
tailed timing breakdown). The Bundler+PMVS2 compu-
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Figure 5: CLIF reconstruction, 3 views. Top: Bundler+PMVS2, (151k points using 77 out of 100 images since not all camera
pose parameters were found). Bottom: proposed method (280k visible primitives).

Figure 4: CLIF reconstruction. Top: Bundler+PMVS2.
Bottom: proposed method. Note that small details can be
easily seen in the reconstruction obtained using the pro-
posed approach.

tation time for each of the scenes is quite low; this is un-
surprising as SfM typically requires many images, on the
order of thousands, and hence implementations are highly
efficient. The proposed method is considerably slower;
the main contributing factor is the large number of vis-
ible primitives needed to reason about in order to com-
pute scene geometry. Recall that scene geometry requires
reasoning about projective transformations and occlusions.
This places significant computation burden on the rendering
pipeline. Optimizing the rendering pipeline should signif-
icantly reduce computation times of the proposed method.
As an additional note, the probabilistic model allows one to
reason about uncertainty; this feature can be used to allocate

Scene Bundler+PMVS2 Proposed Model

Intersection 8.15 37.72
Stadium 51.90 445.08
Multi-Camera 143.80 2,238.97

Table 1: Running Time Comparisons (all times in minutes).

computation resources given a fixed budget (e.g., given such
a budget, the model can be used to identify and rank scene
parts that could benefit the most from added computation).

5.3. Beyond Reconstructions

This section discusses two aspects of the proposed model
that go beyond 3D scene reconstruction. These added fea-
tures are: (1) having absolute scale and orientation; and (2)
being able to identify moving objects in the scenes. In our
model, these features are obtained directly as a simple by-
product of the inferred model. This is in sharp contrast to
traditional SfM.
Absolute Scale and Orientation. LiDAR measurements
may be used to identify the absolute scale and orientation
of reconstructions. This is possible since the measurements
are geocoded, and allows us to recover the scale factor that
is unknown in traditional SfM. Of course, additional met-
ric information can also be used for similar purposes in
SfM; however, unlike the proposed method, this informa-
tion must be explicitly incorporated in SfM. Knowing the
absolute scale and orientation is important in many appli-
cations where measuring distances are crucial (e.g. route
planning). Furthermore, being able to reason about physical
units via remote sensing, as opposed to traditional surveying
techniques, can result in both financial and time savings. As
an example of how scale and orientation knowledge may be
used within the proposed model, we demonstrate the ability
to measure distances in the stadium scene; see Fig. 6. The
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Figure 6: Two distance annotation examples of OSU Stadium. Left: Field, Right: Stadium

figure shows the measured dimensions of the football field
to be 359.2 × 158.5 [ft], which corresponds to the actual
dimensions of 360 × 160 [ft] for the field; this estimate is
consistent with the uncertainty measurements. We can use
the same distance measuring tools to directly measure un-
known quantities such as the size of the “O” in the field or
the height of the stadium (see Fig. 6).
Identifying Moving Objects. An implicit assumption of
traditional reconstruction algorithms is that the scene is
static. In practice, however, this assumption is often vio-
lated and, as a result, moving objects are often pruned or
treated as outliers. In contrast, having a complete model
for the measurement process allows us to reason about, and
detect, moving objects as part of the inference process.

To demonstrate this ability, we computed image likeli-
hood of the intersection scene after inferring the model pa-
rameters. Typical results are shown in Fig. 7, where low
likelihood pixels have been color-coded in red on the origi-
nal images. We see that the model captures cars traversing
the intersection fairly well. Some low likelihood pixels do
not correspond to movers, e.g., building edges; these sharp
discontinuities have a low likelihood due to poor geometry
reconstruction. Despite these outliers, it is clear that movers
are reliably detected.

6. Conclusion

We proposed a Bayesian data-fusion approach for scene
reconstruction from multi-modal data, specifically LiDAR
and aerial imagery. We defined a novel generative model
for combining the data sources and showed that it leads to
not only fast approximate inference but also to several im-
portant advantages when compared with traditional image-
based approaches. First, our method requires fewer images
to achieve reconstruction results that are qualitatively sim-
ilar (and sometimes superior). Second, the use of higher-
order geometry primitives and dense appearance allows
small but crucial scene details to be detected and visual-
ized. Third, as presented, the model allows scene reason-
ing to extend beyond reconstruction, e.g., the model allows

Figure 7: Low likelihood regions colored in red. Regions
correspond to moving objects and sharp edges (sequence
left to right CLIF Intersection images 19-27)

effortless detection of moving objects and reasoning about
scene dimensions in absolute scale and orientation.

An important extension to the work presented here is
to perform quantitative model evaluation and comparisons.
These evaluations were not carried out due the lack of
ground truth data or standard performance metrics for large-
scene reconstruction algorithms. Future work should either
obtain ground truth data to validate the reconstructions or
outline a comprehensive set of criteria in which to quantify
reconstructions. An additional avenue to consider is the in-
corporation of other modalities. The two observation types
currently in the model complement each other, but more re-
alistic reconstructions could be achieved if material proper-
ties and/or lighting conditions were added. Additional prior
beliefs should also be investigated; particularly, smoothness
priors on scene primitives might help regularize the opti-
mization and reduce sensitivity to initialization.
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