Overview

1. Adaptive 3D sensors via focused mutual information (MI) maximization.
3. Estimate MI, demonstrate pattern selection for
 - (a) Pose estimation ("localization")
 - (b) Range estimation ("mapping").

Model

- A, G - Global appearance and geometry, respectively.
- A_k, G_k - Local (viewpoint-) appearance and geometry.
- I - the decision of which pattern to project.
- I_p - the projector image
- I_c - camera image.

We use an affine-Gaussian illumination model per pixel,

$$I(x) = a(x)I_p(b(x)G + l(x) + y(x)),$$

a, b, y have a Gaussian distribution.

Using this model we compute pixelwise mutual information

$$I(G, \theta) = \sum_{l,i,j} \log \frac{p(I, G, \theta)}{p(I, l)}.$$

Computation per pixel via GPU – two loops:

- Estimate $p(I_c)$.
- Estimate $p(I_c|G, \theta)$, aggregate $I(G, \theta) = \sum_{l,i,j}.$

Greedy MI Pattern Selection

Estimate MI gain for the next pattern, then project the best one:

Results - Range Estimation

- (Mapping phase in SLAM)
 - Uncertainty in XY plane
 - Isotropic Uncertainty
 - Uncertainty in Z

Results - Pose Estimation

- (Localization phase in SLAM)
 - Assume scene is approximately known.
 - Localize scanner with some initial uncertainty. (look at translation because it is intuitive).

- Initial uncertainty is in XY translation

- Informative areas are the sloped regions. (depends on initial uncertainty)
- Analogue to the aperture problem.

Conclusion

- Sensor planning at the sensor level for 3D scanners.
- Adapt sensing to context and task. Examples: Localization and mapping. Applicable to other tasks / modalities.
- Focused-information for range sensing - 50% reduction in required frames.
- Focused-information for pose estimation - shows the informative areas.

Contact Information

{rosman|rus|fisher}@csail.mit.edu

The authors thank Christopher Dean for general and helpful discussions. Support for this research has been provided by ONR MURI N00014-09-1-051, N00014-11-1-0688, and ARO MURI W911NF-11-1-0391. We are grateful for this support.