
Coresets for k-Segmentation of Streaming Data

Guy Rosman ∗†
CSAIL, MIT

32 Vassar St., 02139,
Cambridge, MA USA
rosman@csail.mit.edu

Mikhail Volkov †
CSAIL, MIT

32 Vassar St., 02139,
Cambridge, MA USA
mikhail@csail.mit.edu

Danny Feldman †
CSAIL, MIT

32 Vassar St., 02139,
Cambridge, MA USA
dannyf@csail.mit.edu

John W. Fisher III
CSAIL, MIT

32 Vassar St., 02139,
Cambridge, MA USA
fisher@csail.mit.edu

Daniela Rus †
CSAIL, MIT

32 Vassar St., 02139,
Cambridge, MA USA

rus@csail.mit.edu

Abstract
Life-logging video streams, financial time series, and Twitter tweets are a few ex-
amples of high-dimensional signals over practically unbounded time. We consider
the problem of computing optimal segmentation of such signals by a k-piecewise
linear function, using only one pass over the data by maintaining a coreset for the
signal. The coreset enables fast further analysis such as automatic summarization
and analysis of such signals.
A coreset (core-set) is a compact representation of the data seen so far, which
approximates the data well for a specific task – in our case, segmentation of the
stream. We show that, perhaps surprisingly, the segmentation problem admits
coresets of cardinality only linear in the number of segments k, independently
of both the dimension d of the signal, and its number n of points. More pre-
cisely, we construct a representation of size O(klogn/ε2) that provides a (1 + ε)-
approximation for the sum of squared distances to any given k-piecewise linear
function. Moreover, such coresets can be constructed in a parallel streaming ap-
proach. Our results rely on a novel reduction of statistical estimations to problems
in computational geometry. We empirically evaluate our algorithms on very large
synthetic and real data sets from GPS, video and financial domains, using 255
machines in Amazon cloud.

1 Introduction
There is an increasing demand for systems that learn long-term, high-dimensional data streams.
Examples include video streams from wearable cameras, mobile sensors, GPS, financial data and
biological signals. In each, a time instance is represented as a high-dimensional feature, for example
location vectors, stock prices, or image content feature histograms.

We develop real-time algorithms for summarization and segmentation of large streams, by com-
pressing the signals into a compact meaningful representation. This representation can then be used
to enable fast analyses such as summarization, state estimation and prediction. The proposed algo-
rithms support data streams that are too large to store in memory, afford easy parallelization, and
are generic in that they apply to different data types and analyses. For example, the summarization
of wearable video data can be used to efficiently detect different scenes and important events, while
collecting GPS data for citywide drivers can be used to learn weekly transportation patterns and
characterize driver behavior.
∗

Guy Rosman was partially supported by MIT-Technion fellowship
†

Support for this research has been provided by Hon Hai/Foxconn Technology Group and MIT Lincoln Laboratory. The authors are grateful for this support.

1

In this paper we use a data reduction technique called coresets [1, 9] to enable rapid content-
based segmentation of data streams. Informally, a coreset D is problem dependent compression
of the original data P , such that running algorithm A on the coreset D yields a result A(D) that
provably approximates the result A(P) of running the algorithm on the original data. If the coreset
D is small and its construction is fast, then computing A(D) is fast even if computing the result
A(P) on the original data is intractable. See definition 2 for the specific coreset which we develop
in this paper.

1.1 Main Contribution
The main contributions of the paper are: (i) A new coreset for the k-segmentation problem (as given
in Subsection 1.2) that can be computed at one pass over streaming data (with O(log n) insertion
time/space) and supports distributed computation. Unlike previous results, the insertion time per
new observation and required memory is only linear in both the dimension of the data, and the
number k of segments. This result is summarized in Theorem 4, and proven in the supplementary
material. Our algorithm is scalable, parallelizable, and provides a provable approximation of the
cost function. (ii) Using this novel coreset we demonstrate a new system for segmentation and
compression of streaming data. Our approach allows realtime summarization of large-scale video
streams in a way that preserves the semantic content of the aggregated video sequences, and is
easily extendable. (iii) Experiments to demonstrate our approach on various data types: video,
GPS, and financial data. We evaluate performance with respect to output size, running time and
quality and compare our coresets to uniform and random sample compression. We demonstrate the
scalability of our algorithm by running our system on an Amazon cluster with 255 machines with
near-perfect parallelism as demonstrated on 256, 000 frames. We also demonstrate the effectiveness
of our algorithm by running several analysis algorithms on the computed coreset instead of the
full data. Our implementation summarizes the video in less than 20 minutes, and allows real-time
segmentation of video streams at 30 frames per second on a single machine.

Streaming and Parallel computations. Maybe the most important property of coresets is that
even an efficient off-line construction implies a fast construction that can be computed (a) Embar-
rassingly in parallel (e.g. cloud and GPUs), (b) in the streaming model where the algorithm passes
only once over the (possibly unbounded) streaming data. Only small amount of memory and update
time (∼ log n) per new point insertion is allowed, where n is the number of observations so far.

1.2 Problem Statement
The k-segment mean problem optimally fits a given discrete time signal of n points by a set of k
linear segments over time, where k ≥ 1 is a given integer. That is, we wish to partition the signal
into k consecutive time intervals such that the points in each time interval are lying on a single line;
see Fig. 1(left) and the following formal definition.

We make the following assumptions with respect to the data: (a) We assume the data is repre-
sented by a feature space that suitably represents its underlying structure; (b) The content of the data
includes at most k segments that we wish to detect automatically; An example for this are scenes
in a video, phases in the market as seen by stock behaviour, etc. and (c) The dimensionality of the
feature space is often quite large (from tens to thousands of features), with the specific choice of the
features being application dependent – several examples are given in Section 3. This motivates the
following problem definition.
Definition 1 (k-segment mean). A set P in Rd+1 is a signal if P = {(1, p1), (2, p2), · · · , (n, pn)}
where pi ∈ Rd is the point at time index i for every i = [n] = {1, · · · , n}. For an integer k ≥ 1, a
k-segment is a k-piecewise linear function f : R → Rd that maps every time i ∈ R to a point f(i)
in Rd. The fitting error at time t is the squared distance between pi and its corresponding projected
point f(i) on the k-segments. The fitting cost of f to P is the sum of these squared distances,

cost(P, f) =

n∑
i=1

‖pi − f(i)‖22, (1)

where ‖ · ‖ denotes the Euclidean distance. The function f is a k-segment mean of P if it minimizes
cost(P, f).

For the case k = 1 the 1-segment mean is the solution to the linear regression problem. If we
restrict each of the k-segments to be a horizontal segment, then each segment will be the mean height
of the corresponding input points. The resulting problem is similar to the k-mean problem, except

2

Figure 1: For every k-segment f , the cost of input points (red) is approximated by the cost of the coreset
(dashed blue lines). Left: An input signal and a 3-segment f (green), along with the regression distance to one
point (dashed black vertical lines). The cost of f is the sum of these squared distances from all the input points.
Right: The coreset consists of the projection of the input onto few segments, with approximate per-segment

representation of the data.

each of the voronoi cells is forced to be a single region in time, instead of nearest center assignment,
i.e. the regions are contiguous.

In this paper we are interested in seeking a compact representationD that approximates cost(P, f)
for every k-segment f using the above definition of cost′(D, f). We denote a set D as a (k, ε)-
coreset according to the following definition,

Definition 2 ((k, ε)-coreset). Let P ⊆ Rd+1, k ≥ 1 be an integer, for some small ε > 0. A set D,
with a cost function cost′(·) is a (k, ε)-coreset for P if for every k-segment f we have

(1− ε)cost(P, f) ≤ cost′(D, f) ≤ (1 + ε)cost(P, f).

We present a new coreset construction with provable approximations for a family of natural k-
segmentation optimization problems. This is the first such construction whose running time is linear
in both the number of data points n, their dimensionality d, and the number k of desired segments.
The resulting coreset consists of O(dk/ε2) points that approximates the sum of square distances
for any k-piecewise linear function (k segments over time). In particular, we can use this coreset
to compute the k-piecewise linear function that minimize the sum of squared distances to the input
points, given arbitrary constraints or weights (priors) on the desired segmentation. Such a general-
ization is useful, for example, when we are already given a set of candidate segments (e.g. maps or
distribution of images) and wish to choose the right k segments that approximate the input signal.

Previous results on coresets for k-segmentation achieved running time or coreset size that are at
least quadratic in d and cubic in k [12, 11]. As such, they can be used with very large data, for
example to long streaming video data which is usually high-dimensional and contains large number
of scenes. This prior work is based on some non-uniform sampling of the input data. In order to
achieve our results, we had to replace the sampling approach by a new set of deterministic algorithms
that carefully select the coreset points.

1.3 Related Work
Our work builds on several important contributions in coresets, k-segmentations, and video summa-
rization.
Approximation Algorithms. One of the main challenges in providing provable guarantees for
segmentation w.r.t segmentation size and quality is global optimization. Current provable algorithms
for data segmentation are cubic-time in the number of desired segments, quadratic in the dimension
of the signal, and cannot handle both parallel and streaming computation as desired for big data.
The closest work that provides provable approximations is that of [12].

Several works attempt to summarize high-dimensional data streams in various application do-
mains. For example, [19] describe the video stream as a high-dimensional stream and run approx-
imated clustering algorithms such as k-center on the points of the stream; see [14] for surveys on
stream summarization in robotics. The resulting k-centers of the clusters comprise the video sum-
marization. The main disadvantages of these techniques are (i) They partition the data stream into
k clusters that do not provide k-segmentation over time. (ii) Computing the k-center takes time
exponential in both d and k [16]. In [19] heuristics were used for dimension reduction, and in [14]
a 2-approximation was suggested for the off-line case, which was replaced by a heuristic forstream-
ing. (iii) In the context of analysis of video streams, they use a feature space that is often simplistic
and does not utilize the large data available effciently. In our work the feature space can be updated
on-line using a coreset for k-means clustering of the features seen so far.
k-segment Mean. The k-segment mean problem can be solved exactly using dynamic programming
[4]. However, this takesO(dn2k) time andO(dn2) memory, which is impractical for streaming data.
In [15, Theorem 8] a (1 + ε)-approximation was suggested using O(n(dk)4 log n/ε) time. While

3

the algorithm in [15] support efficient streaming, it is not parallel. Since it returns a k-segmentation
and not a coreset, it cannot be used to solve other optimization problems with additional priors or
constraints. In [12] an improved algorithm that takes O(nd2k + ndk3) time was suggested. The
algorithm is based on a coreset of size O(dk3/ε3). Unlike the coreset in this paper, the running time
of [12] is cubic in both d and k. The result in [12] is the last in a line of research for the k-segment
mean problem and its variations; see survey in [11, 15, 13]. The application was segmentation of
3-dimensional GPS signal (time, latitude, longitude). The coreset construction in [12] and previous
papers takes time and memory that is quadratic in the dimension d and cubic in the number of
segments k. Conversely, our coreset construction takes time only linear in both k and d. While recent
results suggest running time linear in n, and space that is near-logarithmic in n, the computation time
is still cubic in k, the number of segments, and quadratic in d, the dimension. Since the number k
represents the number of scenes, and d is the feature dimensionality, this complexity is prohibitive.
Video Summarization One motivating application for us is online video summarization, where in-
put video stream can be represented by a set of points over time in an appropriate feature space.
Every point in the feature space represents the frame, and we aim to produce a compact approxima-
tion of the video in terms of this space and its Euclidean norm. Application-aware summarization
and analysis of ad-hoc video streams is a difficult task with many attempts aimed at tackling it from
various perspectives [5, 18, 2]. The problem is highly related to video action classification, scene
classification, and object segmentation [18]. Applications where life-long video stream analysis is
crucial include mapping and navigation medical / assistive interaction, and augmented-reality ap-
plications, among others. Our goal differs from video compression in that compression is geared
towards preserving image quality for all frames, and therefore stores semantically redundant con-
tent. Instead, we seek a summarization approach that allows us to represent the video content by a
set of key segments, for a given feature space.

This paper is organized as follows. We begin by describing the k-segmentation problem and the
proposed coresets, and describe their construction, and their properties in Section 2. We perform
several experiments in order to validate the proposed approach on data collected from GPS and
werable web-cameras, and demonstrate the aggregation and analysis of multiple long sequences of
wearable user video in Section 3. Section 4 concludes the paper and discusses future directions.

2 A Novel Coreset for k-segment Mean

The key insights for constructing the k-segment coreset are: i) We observe that for the case k = 1,
a 1-segment coreset can be easily obtained using SVD. ii) For the general case, k ≥ 2 we can
partition the signal into a suitable number of intervals, and compute a 1-segment coreset for each
such interval. If the number of intervals and their lengths are carefully chosen, most of them will be
well approximated by every k-segmentation, and the remaining intervals will not incur a large error
contribution.

Based on these observations, we propose the following construction. 1) Estimate the signal’s
complexity, i.e., the approximated fitting cost to its k-segment mean. We denote this step as a call to
the algorithm BICRITERIA. 2) Given an complexity measure for the data, approximate the data by a
set of segments with auxiliary information, which is the proposed coreset, denoted as the output of
algorithm BALANCEDPARTITION.

We then prove that the resulting coreset allows us to approximate with guarantees the fitting cost
for any k-segmentation over the data, as well as compute an optimal k-segmentation. We state the
main result in Theorem 4, and describe the proposed algorithms as Algorithms 1 and 2. We refer the
reader to the supplementary material for further details and proofs.

2.1 Computing a k-Segment Coreset

We would like to compute a (k, ε)-coreset for our data. A (k, ε)-coreset D for a set P approximates
the fitting cost of any query k-segment to P up to a small multiplicative error of 1± ε. We note that
a (1, 0)-coreset can be computed using SVD; See the supplementary material for details and proof.
However, for k > 2, we cannot approximate the data by a representative point set (we prove this
in the supplementary material). Instead, we define a data structure D as our proposed coreset, and
define a new cost function cost′(D, f) that approximates the cost of P to any k-segment f .

The set D consists of tuples of the type (C, g, b, e). Each tuple corresponds to a different time
interval [b, e] in R and represents the set P (b, e) of points in this interval. g is the 1-segment mean
of the data P in the interval [b, e]. The set C is a (1, ε)-coreset for P (b, e).

4

We note the following: 1) If all the points of the k-segment f are on the same segment in this
time interval, i.e, {f(t) | b ≤ t ≤ e} is a linear segment, then the cost from P (b, e) to f can be
approximated well by C, up to (1 + ε) multiplicative error. 2) If we project the points of P (b, e) on
their 1-segment mean g, then the projected set L of points will approximate well the cost of P (b, e)
to f , even if f corresponds to more than one segment in the time interval [b, e]. Unlike the previous
case, the error here is additive. 3) Since f is a k-segment there will be at most k − 1 time intervals
that will intersect more than two segments of f , so the overall additive error is small . This motivates
the following definition of D and cost′.

Definition 3 (cost′(D, f)). Let D = {(Ci, gi, bi, ei)}mi=1 where for every i ∈ [m] we have
Ci ⊆ Rd+1, gi : R → Rd and bi ≤ ei ∈ R. For a k-segment f : R → Rd and i ∈ [m]
we say that Ci is served by one segment of f if {f(t) | bi ≤ t ≤ ei} is a linear segment. We de-
note by Good(D, f) ⊆ [m] the union of indexes i such that Ci is served by one segment of f .
We also define Li = {gi(t) | bi ≤ t ≤ ei}, the projection of Ci on gi. We define cost′(D, f) as∑

i∈Good(D,f) cost(Ci, f) +
∑

i∈[m]\Good(D,f) cost(Li, f).

Our coreset construction for general k > 1 is based on an input parameter σ > 0 such that for
an appropriate σ the output is a (k, ε)-coreset. σ characterizes the complexity of the approxima-
tion. The BICRITERIA algorithm, given as Algorithm 1, provides us with such an approximation.
Properties of this algorithms are described in the supplementary material.

Theorem 4. Let P = {(1, p1), · · · , (n, pn)} such that pi ∈ Rd for every i ∈ [n]. Let D be the
output of a call to BALANCEDPARTITION(P, ε, σ), and let f be the output of BICRITERIA(P, k);
Let σ = cost(f). Then D is a (k, ε)-coreset for P of size |D| = O(k) ·

(
log n/ε2

)
, and can be

computed in O(dn/ε4) time.

Proof. We give a sketch of the proof, also given in Theorem 10 in the supplementary material,
and accompanying theorems. Lemma 8 states that given an estimate σ of the optimal segmentation
cost, BALANCEDPARTITION(P, ε, σ) provides a (k, ε)-coreset of the data P . This hinges on the
observation that given a fine enough segmentation of the time domain, for each segment we can
approximate the data by an SVD with bounded error. This approximation is exact for 1−segments
(See claim 2 in the supplementary material), and can be bounded for a k-segments because of the
number of segment intersections. According to Theorem 9 of the supplementary material, σ as
computed by BICRITERIA(P, k) provides such an approximation.

Algorithm 1: BICRITERIA(P, k)

Input: A set P ⊆ Rd+1 and an integer k ≥ 1
Output: A bicriteria (O(log n), O(log n))-approximation to the k-segment mean of P .

1 if n ≤ 2k + 1 then
2 f := a 1-segment mean of P ;
3 return f ;

4 Set t1 ≤ · · · ≤ tn and p1, · · · , pn ∈ Rd such that P = {(t1, p1), · · · , (tn, pn)}
5 m← {t ∈ R | (t, p) ∈ P}
6 Partition P into 4k sets P1, · · · , P2k ⊆ P such that for every i ∈ [2k − 1]:

(i) | {t | (t, p) ∈ Pi} | =
⌊m
4k

⌋
, and (ii) if (t, p) ∈ Pi and (t′, p′) ∈ Pi+1 then t < t′.

;7 for i := 1 to 4k do
8 Compute a 2-approximation gi to the 1-segment mean of Pi

9 Q := the union of k + 1 signals Pi with the smallest value cost(Pi, gi) among i ∈ [2k].
10 h := BICRITERIA(P \Q, k); Repartition the segments that do not have a good approx.
11 Set

f(t) :=

{
gi(t) ∃(t, p) ∈ Pi such that Pi ⊆ Q
h(t) otherwise

.

;12 return f ;

5

Algorithm 2: BALANCEDPARTITION(P, ε, σ)

Input: A set P = {(1, p1), · · · , (n, pn)} in Rd+1

an error parameters ε ∈ (0, 1/10) and σ > 0.
Output: A set D that satisfies Theorem 4.

1 Q := ∅; D = ∅ ; pn+1:= an arbitrary point in Rd ;
2 for i := 1 to n+ 1 do
3 Q := Q ∪ {(i, pi)}; Add new point to tuple
4 f∗ := a linear approximation of Q; λ := cost(Q, f∗)
5 if λ > σ or i = n+ 1 then
6 T := Q \ {(i, pi)} ; take all the new points into tuple
7 C := a (1, ε/4)-coreset for T ; Approximate points by a local representation
8 g := a linear approximation of T , b := i− |T |, e := i− 1; save endpoints
9 D := D ∪ {(C, g, b, e)} ; save a tuple

10 Q := {(i, pi)} ; proceed to new point

11 return D

For efficient k-segmentation we run a k-segment mean algorithm on our small coreset instead of
the original large input. Since the coreset is small we can apply dynamic programming (as in [4])
in an efficient manner. In order to compute an (1 + ε) approximation to the k-segment mean of
the original signal P , it suffices to compute a (1 + ε) approximation to the k-segment mean of
the coreset, where cost is replaced by cost′. However, since D is not a simple signal, but a more
involved data structure, it is not clear how to run existing algorithms on D. In the supplementary
material we show how to apply such algorithms on our coresets. In particular, we can run naive
dynamic programming [4] on the coreset and get a (1 + ε) approximate solution in an efficient
manner, as we summarize as follows.
Theorem 5. Let P be a d-dimensional signal. A (1 + ε) approximation to the k-segment mean of
P can be computed in O (ndk/ε+ d(klog(n)/ε)

O(1)
)) time .

2.2 Parallel and Streaming Implementation
One major advantage of coresets is that they can be constructed in parallel as well as in a streaming
setting. The main observation is that the union of coresets is a coreset — if a data set is split into
subsets, and we compute a coreset for every subset, then the union of the coresets is a coreset of the
whole data set. This allows us to have each machine separately compute a coreset for a part of the
data, with a central node which approximately solves the optimization problem; see [10, Theorem
10.1] for more details and a formal proof. As we show in the supplementary material, this allows us
to use coresets in the streaming and parallel model.

3 Experimental Results
We now demonstrate the results of our algorithm on four data types of varying length and dimen-
sionality. We compare our algorithms against several other segmentation algorithms. We also show
that the coreset effectively improves the performance of several segmentation algorithms by running
the algorithms on our coreset instead of the full data.
3.1 Segmentation of Large Datasets
We first examine the behavior of the algorithm on synthetic data which provides us with easy ground-
truth, to evaluate the quality of the approximation, as well as the efficiency, and the scalability of
the coreset algorithms. We generate synthetic test data by drawing a discrete k-segment P with
k = 20, and then add Gaussian and salt-and-pepper noise. We then benchmark the computed (k, ε)-
coreset D by comparing it against piecewise linear approximations with (1) a uniformly sampled
subset of control points U and (2) a randomly placed control points R. For a fair comparison
between the (k, ε)-coresetD and the corresponding approximations U,R we allow the same number
of coefficients for each approximation. Coresets are evaluated by computing the fitting cost to a
query k-segment Q that is constructed based on the a-priori parameters used to generate P .

6

(a) Coreset size vs coreset error (b) (k, ε)-coreset size vs CPU time (c) Coreset dim. vs coreset error
Figure 2: Figure 2a shows the coreset error (ε) decreasing as a function of coreset size. The dotted black line
indicates the point at which the coreset size is equal to the input size. Figure 2b shows the coreset construction
time in minutes as a function of coreset size. Trendlines show the linear increase in construction time with
coreset size. Figure 2c shows the reduction in coreset error as a function of the dimensionality of the 1-segment
coreset, for fixed input size (dimensionality can often be reduced down to R2.

Figure 3: Segmentation from Google Glass. Black vertical lines present segment boundaries, overlayed on top
of the bags of word representation. Icon images are taken from the middle of each segment.

Approximation Power: Figure 2a shows the aggregated fitting cost error for 1500 experiments on
synthetic data. We varied the assumed k′ segment complexity. In the plot we show how well a given
k′ performed as a guess for the true value of k. As Figure 2a shows, we significantly outperform the
other schemes. As the coreset size approaches the size P the error decreases to zero as expected.

Coreset Construction Time: Figure 2b shows the linear relationship between input size and
construction time ofD for different coreset size. Figure 2c shows how a high dimensionality benefits
coreset construction. This is even more apparent in real data which tends to be sparse, so that in
practice we are typically able to further reduce the coreset dimension in each segment.

Scalability: The coresets presented in this work are parallelizable, as discussed in Section 2.2. We
demonstrate scalability by conducting very large scale experiments on both real and synthetic data,
running our algorithm on a network of 255 Amazon EC2 vCPU nodes. We compress a 256,000-
frame bags-of-words (BOW) stream in approximately 20 minutes with almost-perfect scalability.
For a comparable single node running on the same data dataset, we estimate a total running time of
approximately 42 hours.
3.2 Real Data Experiments
We compare our coreset against uniform sample and random sample coresets, as well as two other
segmentation techniques: Ramer-Douglas-Peucker (RDP) algorithm [20, 8], and the Dead Reckon-
ing (DR) algorithm [23]. We also show that we can combine our coreset with segmentation algo-
rithms, by running the algorithm on the coresets itself. We emphasize that segmentation techniques
were chosen as simple examples and are not intended to reflect the state of the art – but rather to
demonstrate how the k-segment coreset can improve on any given algorithm.

To demonstrate the general applicability of our techniques, we run our algorithm using financial
(1D) time series data, as well as GPS data. For the 1D case we use price data from the Mt.Gox
Bitcoin exchange. Bitcoin is of interest because its price has grown exponentially with its popularity
in the past two years. Bitcoin has also sustained several well-documented market crashes [3],[6] that
we can relate to our analysis. For the 2D case we use GPS data from 343 taxis in San Francisco.
This is of interest because a taxi-route segmentation has an intuitive interpretation that we can easily
evaluate, and on the other hand GPS data forms an increasingly large information source in which
we are interested.

7

Figure 4a shows the results for Bitcoin data. Price extrema are highlighted by local price highs
(green) and lows (red). We observe that running the DR algorithm on our k-segment coreset captures
these events quite well. Figures 4b,4c show example results for a single taxi. Again, we observe that
the DR segmentation produces segments with a meaningful spatial interpretation. Figure 5 shows
a plot of coreset errors for the first 50 taxis (right), and the table gives a summary of experimental
results for the Bitcoin and GPS experiments.
3.3 Semantic Video Segmentation
In addition, we demonstrate use of the proposed coreset for video streams summarization. While
different choices of frame representations for video summarization are available [22, 17, 18], we
used color-augmented SURF features, quantized into 5000 visual words, trained on the ImageNet
2013 dataset [7]. The resulting histograms are compressed in a streaming coreset. Computation in
on a single core runs at 6Hz; A parallel version achieves 30Hz on a single i7 machine, processing 6
hours of video in 4 hours on a single machine, i.e. faster than real-time.

In Figure 3 we demonstrate segmentation of a video taken from Google Glass. We visualize
BOWs, as well as the segments suggested by the k-segment mean algorithm [4] run on the coreset.
Inspecting the results, most segment transitions occur at scene and room changes.

Even though optimal segmentation can not be done in real-time, the proposed coreset is computed
in real-time and can further be used to automatically summarize the video by associating represen-
tative frames with segments. To evaluate the “semantic” quality of our segmentation, we compared
the resulting segments to uniform segmentation by contrasting them with a human annotation of the
video into scenes. Our method gave a 25% improvement (in Rand index [21]) over a 3000 frames
sequence.

Apr−2013 Jul−2013 Oct−2013 Jan−2014
−200

0

200

400

600

800

1000

1200

1400

Date

P
ric

e
(U

S
D

/B
T

C
)

MTGOXUSD

MTGOXUSD D1 closing price
Dead Reckoning segmentation
Local price maxima
Local price minima

(a) MTGOXUSD daily price data

Time

La
tit

ud
e

(t
op

),
 L

on
gi

tu
de

 (
bo

tto
m

)

X1: Latitude (top)
X2: Longitude (bottom)
Dead Reckoning segmentation

(b) GPS taxi data

37.6 37.65 37.7 37.75 37.8 37.85
−122.47

−122.46

−122.45

−122.44

−122.43

−122.42

−122.41

−122.4

−122.39

−122.38

−122.37

Latitude (X1)

Lo
ng

itu
de

 (
X

2)

(c) GPS taxi data
Figure 4: (a) shows the Bitcoin prices from 2013 on, overlayed with a DR segmentation computed on our
coreset. The red/green triangles indicate prominent market events. (b) 4c shows normalized GPS data overlayed
with a DR segmentation computed on our coreset. (c) shows a lat/long plot (right) demonstrating that the
segmentation yields a meaningful spatial interpretation.

Average ε Bitcoin data GPS data
k-segment coreset 0.0092 0.0014

Uniform sample coreset 1.8726 0.0121
Random sample coreset 8.0110 0.0214

RDP on original data 0.0366 0.0231
RDP on k-segment 0.0335 0.0051

DeadRec on original data 0.0851 0.0417
DeadRec on k-segment 0.0619 0.0385 0 5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Taxi ID

co
re

se
t e

rr
or

k−segment coreset (mean and std)
Uniform sample coreset
Random sample coreset
RDP on points
Dead Reckoning on points

Figure 5: Table: Summary for Bitcoin / GPS data. Plot: Errors / standard deviations for the first 50 cabs.

4 Conclusions
In this paper we demonstrated a new framework for segmentation and event summarization of high-
dimensional data. We have shown the effectiveness and scalability of the algorithms proposed, and
its applicability for large distributed video analysis. In the context of video processing, we demon-
strate how using the right framework for analysis and clustering, even relatively straightforward
representations of image content lead to a meaningful and reliable segmentation of video streams at
real-time speeds.

8

References
[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximations via coresets. Combina-

torial and Computational Geometry - MSRI Publications, 52:1–30, 2005.

[2] S. Bandla and K. Grauman. Active learning of an action detector from untrimmed videos. In ICCV, 2013.

[3] BBC. Bitcoin panic selling halves its value, 2013.

[4] R. Bellman. On the approximation of curves by line segments using dynamic programming. Commun.
ACM, 4(6):284, 1961.

[5] W. Churchill and P. Newman. Continually improving large scale long term visual navigation of a vehicle
in dynamic urban environments. In Proc. IEEE Intelligent Transportation Systems Conference (ITSC),
Anchorage, USA, September 2012.

[6] CNBC. Bitcoin crash spurs race to create new exchanges, April 2013.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In Computer Vision and Pattern Recognition, 2009.

[8] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Cartographica: The International Journal for Geographic
Information and Geovisualization, 10(2):112–122, 1973.

[9] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In STOC,
2010. Manuscript available at arXiv.org.

[10] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for
k-means, PCA and projective clustering. SODA, 2013.

[11] D. Feldman, A. Sugaya, and D. Rus. An effective coreset compression algorithm for large scale sensor
networks. In IPSN, pages 257–268, 2012.

[12] D. Feldman, C. Sung, and D. Rus. The single pixel gps: learning big data signals from tiny coresets.
In Proceedings of the 20th International Conference on Advances in Geographic Information Systems,
pages 23–32. ACM, 2012.

[13] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Fast, small-space
algorithms for approximate histogram maintenance. In STOC, pages 389–398. ACM, 2002.

[14] Y. Girdhar and G. Dudek. Efficient on-line data summarization using extremum summaries. In ICRA,
pages 3490–3496. IEEE, 2012.

[15] S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for histogram construction
problems. ACM Transactions on Database Systems (TODS), 31(1):396–438, 2006.

[16] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing Co., 1996.

[17] Y. Li, D. J. Crandall, and D. P. Huttenlocher. Landmark classification in large-scale image collections. In
ICCV, pages 1957–1964, 2009.

[18] Z. Lu and K. Grauman. Story-driven summarization for egocentric video. In CVPR, pages 2714–2721,
2013.

[19] R. Paul, D. Feldman, D. Rus, and P. Newman. Visual precis generation using coresets. In ICRA. IEEE
Press, 2014. accepted.

[20] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics
and Image Processing, 1(3):244 – 256, 1972.

[21] W. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
Association, 66(336):846–850, 1971.

[22] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In
ICCV, volume 2, pages 1470–1477, Oct. 2003.

[23] G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and D. Vaccaro. On-line data reduction and the
quality of history in moving objects databases. In MobiDE, pages 19–26, 2006.

9

	Introduction
	Main Contribution
	Problem Statement
	Related Work

	A Novel Coreset for k-segment Mean
	Computing a k-Segment Coreset
	Parallel and Streaming Implementation

	Experimental Results
	Segmentation of Large Datasets
	Real Data Experiments
	Semantic Video Segmentation

	Conclusions

