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Abstract—Among traffic accidents in the US, 23% of fatal and
32% of non-fatal incidents occurred at intersections. For driver
assistance systems, intersection navigation remains a difficult
problem that is critically important to increasing driver safety.
In this paper, we examine how to navigate an unsignalized
intersection safely under occlusions and faulty perception. We
propose a real-time, probabilistic, risk assessment for parallel
autonomy control applications for occluded intersection scenar-
ios. The algorithms are implemented on real hardware and
are deployed in a variety of turning and merging topologies.
We show phenomena that establish go/no-go decisions, augment
acceleration through an intersection and encourage nudging
behaviors toward intersections.

Index Terms—Intelligent Transportation Systems; Human Fac-
tors and Human-in-the-Loop; Autonomous Vehicle Navigation

I. INTRODUCTION

INTERSECTIONS present one of the most challenging
driving scenarios because a vehicle must interact with

others to navigate safely. In 2016, 23% of fatal and 32% of
non-fatal traffic incidents in the U.S. occurred at intersections1.
Recent advances in robotic perception and control routines
promise to enhance the safety of passengers on the road
through fully autonomous cars or by augmenting the human
with advanced driver assistance systems (ADAS). However,
reasoning about intersections remains a major challenge.

Perception systems may fail to detect other vehicles as a
consequence of occluded views. Causes of these occlusions
may stem from cross-traffic behavior, buildings or road geome-
tries that cause poor visibility [2]. As a consequence, tracking
and detecting other road objects may fail in unpredictable
ways. New models must account for the resulting uncertainty
and risk while ensuring robustness to imperfect perception and
remaining computationally efficient.
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Fig. 1: An unsignalized intersection with an occluded view,
shown above, presents a risky scenario for performing unpro-
tected turns across traffic. Below, vertical bars show the risk
per discretized road segment, while horizontal bars show the
occupancy estimation belief, described in Section II.

With respect to human drivers, collisions at intersections
often occur due to inattention or misjudgment of the other cars’
dynamics [3]. This remains an open problem for autonomous
vehicles, which can struggle to navigate intersections without
incident [4] or to interact naturally with cars driven by
humans [5]. In this paper, we aim to address this challenge.
Our goals include modeling the risk of collision at junctions
and deploying both full and shared autonomous systems to
enhance vehicle safety. Our driver-assistance framework em-
bodies a parallel autonomy system, where the human maintains
primary control of the vehicle, but the autonomous system can
intervene for safety.

We propose a risk model that reasons about several crucial
aspects of road interactions. It accounts for cross traffic, occlu-
sions, sensor errors and driver attentiveness. This work focuses
on intersections that do not contain a stop light to regulate the
traffic flow, and where the ego-vehicle must yield to all cross
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traffic. Figure 1 provides an example of such an occluded,
unsignalized intersection that presents difficulty for human-
operated and autonomous systems alike. In this scenario, the
ego-vehicle attempts a left turn maneuver into crossing traffic.
Houses abutting the intersection obstruct the views of the
ego-vehicle and crossing vehicles, creating uncertainty in the
estimation of each others’ poses.

The proposed algorithm estimates the risk for the ego-
vehicle and we demonstrate the use of this estimate in a
parallel autonomy framework [6] to increase driver safety.
Generalizing beyond the left turn scenario, the approach
we present extends to various junction topologies, including
roundabouts and merge lanes. The main contributions of the
paper are summarized as follows:

1) A model and an algorithm to estimate the risk at
intersections in the presence of occlusions and uncertain
sensor measurements;

2) Integration of our estimator into an online, shared con-
trol method for negotiating intersections; and

3) Demonstration on a physical hardware platform in both
fully autonomous and parallel autonomy modes.

Related Work: Human drivers negotiate intersections
through arrival times of oncoming traffic [7]. Outlined by [8],
usual intersection behavior consists of identifying gaps, assess-
ing risk and mitigating threats. Gap estimation [9] is a crucial
aspect in making go/no-go decisions at junctions, providing
a common metric for making turns. In assessing risk, the
critical times to cross an intersection also play a vital role in
decision making [10]. This risk aware decision making process
varies based on the attention that human drivers give to the
situation [11] and these differences have a major influence on
how active safety systems interact with human drivers [8], [12]
to reduce threats. Notably, current gap estimation methods lack
real time applicability [13].

Successful ADAS deployment requires accurate assess-
ment of the intersection topology and turning prediction.
Increased fidelity in lane-level maps can improve turning
predictions [14], and studies on human drivers have identified
typical distances for turning decisions [15]. Predicting when
to warn the driver serves as a key feature of ADAS systems.
In [16], the authors combine SVM-based intention prediction
with an RRT-based threat assessment to evaluate potential risks
and warn the driver. Augmented reality systems may prove
useful in warning and assisting the driver [12], [17].

We use techniques from fully-autonomous control to im-
prove our parallel autonomy system. Autonomous vehicle
systems often often utilize a model-based cost function in
reasoning about lane changes and merges [18], [19]. Recent
work shows promise in using deep reinforcement learning for
intersection navigation [20]. In addition, if cars communicate
via a vehicle-to-vehicle (V2V) network, higher-level intersec-
tion management techniques can mediate this traffic flow from
reservations or auction systems [21]. Our presented work
relies on local information and existing topology maps, instead
of V2V communication.

Similar to previous work [22], [23], we address the problem
of occluded traffic in the environment. Our method accom-
modates sensor and motion uncertainty, as opposed to over-

approximation of predicted occupancies and possible states in
the set based verification method of [22]. Additionally, our
model can estimate risk due to unlikely distracted or highly
speeding traffic agents. Like [23], we provide a simple control
mechanism for accelerating and decelerating in the presence
of risk before and after an intersection, while approaches in
similar occluded scenarios use only braking [24].

The remainder of the paper is organized as follows: in
Section II, we describe our model of intersections and prob-
abilistic approaches to traffic arrival, sensor observations and
driver inattention. We quantify risk by using a probabilistic
graphical model and considering the likelihoods at all potential
cross traffic locations. Section III details our control strategy
for leveraging the estimation of risk at an intersection. In
Section IV, we describe our experimental design, including
algorithm and discretization choices. We show risk estimation
results for both simulated and real world scenarios. By testing
on one-tenth model scale cars, we show the performance of
the model for both fully autonomous and driver assistance
(parallel autonomy) operating modes. Finally, we present our
conclusions in Section V.

II. RISK ASSESSMENT MODEL

In this section, we describe our model for assessing risk
at unsignalized intersections. We define unsignalized inter-
sections as road junctions that do not have lights or signs
mediating traffic. This includes an unprotected left turn across
traffic, as well as merges and roundabouts. We represent the
intersection as a junction node with lanes of traffic entering
and exiting the node, and Figure 2 illustrates various topo-
logical representations. We compute our risk assessment by
incorporating (i) traffic density, (ii) sensor noise and physical
occlusions that hinder observations of other vehicles and
(iii) attention limitations of other drivers. We use this risk
assessment in determining a “go” or “no-go” decision at an
intersection.

One common approach to intersection risk assessment is
to use gap estimation, where the car uses a pre-selected
critical gap size to determine its go and no-go decisions.
This gap is defined by the spacing between two vehicles in
the desired traffic lane, with the critical gap size being the
minimum tolerated spacing for safe maneuvers [25]. When
the car sees a critical gap opening, go and no-go decisions are
equally likely [26]. Gap estimation algorithms perform well in
intersections without occlusions and under the assumption of
perfect observability. By incorporating occlusions and noisy
observations, in Section IV we show our model outperforms
a baseline gap estimation algorithm.

A. Modeling Risk

Consider an ego-car moving across an intersection. During
its maneuver, it must move from an origin lane to a new lane,
passing through a junction, while avoiding incidents with other
vehicles. We define an incident to include collisions, near-miss
braking incidents, traffic conflicts [27], small gap spacing [15],
or the threat of accident from other vehicles [13]. The risk to
the ego-car at time t, denoted rt , is computed as the expected
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Fig. 2: The ego-car traverses from its original lane (blue
lines), over crossed lanes (green lines), to its new lane (dashed
green and blue). Red circles mark lane origins, with thin red
lines showing the ego-car’s path from the original lane to
the new lane. Exemplary road distances, marked with d, and
an occlusion, Ω1, are visualized. For each discretized road
segment, shown in (b), we maintain the belief state P(Ci) of
other cars and the conditional risk P(Ei|Ci).

number of incidents that will occur if the ego-car enters the
intersection at time t.

For an intersection with nl lanes, we discretize each lane l ∈
{1, ...,nl}, into ns segments of length δ meters. For a segment
i in lane l, the distance from the segment to the intersection
is denoted di. We assume that traffic in each lane, l, has some
average velocity vl , such that for sampling intervals ∆t, δ =
vl∆t. For the ego-car, we denote its velocity as ve and its
distance to the intersection as de.

By construction, we compute the overall risk by summing
over all segments in all lanes. Thus, we formulate the proper-
ties of incident probability, occupancy and observation noise
per road segment. This formulation is Eulerian, computing risk
properties for traversible space, unlike Lagrangian techniques
[28], that reasons about vehicle tracks [29]. As the identity
of the individual objects is unimportant, this Eulerian model
provides computational efficiency [30].

We denote the event of an incident within segment i of lane l
at time t as Et

i,l ∈ {0,1}. We condition Et
i,l on the occupancy of

a segment, with the occupancy denoted Ct
i,l ∈{0,1}. We denote

Ot
i,l ∈ {0,1} as the observation of another vehicle in segment

i of lane l at time t. For clarity, when the target lane and time
are fixed, we use the shorthand notation Ei and Ci. Figure
2 illustrates the lane topologies and maintained probabilities
within an intersection.

The overall risk rt is the sum over all segments and lanes,

rt =
nl

∑
l=1

∑
i∈l
E[Et

i,l |O−t ], (1)

where O−t denotes the observations seen until time t over
all lanes in nl . Note that in this model, we consider the
expected number of incidents, E[Et

i,l |O−t ], in separate lanes
and segments. In Section III, we use this risk to determine
when it is safe for the vehicle to move through the intersection.
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Fig. 3: A graphical model describing the belief about cars per
road segment over time. Shaded nodes represent observations
of vehicles, and a node represents the event of a vehicle
occupying road segment i at time t.

Our formulation of approximate risk serves as a union
bound on risky incidents, since the event of at least one risky
incident is no more likely than the sum of all risky events.
Thus, rt is an upper bound on expected incidents. It becomes
accurate in the case of low risk levels, where correct estimation
of the risk is important. For high-risk situations, the ego-car
should avoid the intersection, determined as risk rt greater than
a safety threshold, rgo.

B. Occupancy Estimation

Here, we discuss how the probability of occupancy depends
on the velocity and traffic. We use a dynamic Bayesian
network [31], which allows us to reason about probability
and model the likelihood of occupied segments. This network
is depicted in Figure 3. We initialize the probability of
occupancy at the lane origin, P(Ct

0,l), with emission rate λl
since theoretical and real world studies show that the Poisson
model captures vehicle arrivals at uncontrolled intersections
[32], [33]. With λl = 1, road segments are marked occupied
until a free space observation is made.

We define occupancy belief update as P(Ct+1
i ), based on

P(Ct
i |Ct)P(Ct), where Ct denotes the occupancy over all sur-

rounding segments, in the following manner. Lane velocities
at each road segment are normally distributed, such that
vl ∼N (v̂l ,σl). With Km as a discrete Gaussian convolution
kernel with variance σl and window size, m, we compute
P(Ct+1

i |Ct) = ∑m P(Ct
i−m) ·Km. Thus, the estimate of occu-

pancy, P(Ct+1
i ), is conditioned on the occupancy belief of

surrounding segments at the previous timestep.

C. Driver Attention

When the ego-car enters the intersection, other vehicles may
not notice due to limited attention. Failure to react to the ego-
car may result in an incident. Here, we present how our model
of the conditional risk of an incident, P(Ei|Ci), incorporates
driver attention. Consider a vehicle at distance di from the
intersection. Let tc denote the time it takes the ego-car to clear
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Fig. 4: The risk conditioned on an unaware car as a function
of location, with an exact constant velocity (blue line), and
with a velocity distribution (red error bars). It is reasonable to
assume constant velocity for expected risk.

the intersection, which is a function of the path length through
the intersection and velocity ve.

We define the conditional risk as

P(Ei|Ci) =

 0 di > vl · tc
1 di < ds

exp(−λa (di−ds)) otherwise
, (2)

where λa > 0 is a parameter modeling the attention of the other
vehicle and ds is defined as the comfortable stopping distance.
This exponential decay is motivated by [34]. If the other
vehicle will take longer than tc to arrive at the intersection,
P(Ei|Ci) = 0. Note that, as tc increases, so does the number
of road segments needed to model the lane. Conversely, if the
other vehicle is within its comfortable stopping distance ds,
then P(Ei|Ci) = 1. This does not imply a collision, but possible
cut-offs, tailgating and other unsafe situations included in our
definition of incidents. The conditional risk for an ego vehicle
crossing a lane of traffic is shown in Figure 4.

We also define dF
s as the required forward distance between

the ego-car and other vehicles in the target lane. For incidents
with other vehicles in the new lane, the conditional risk is
an indicator function, P(Ei|Ci) = 1(di < dF

s ). This implies the
ego-car must also maintain a comfortable stopping distance
behind the car it is following.

D. Occlusions and Noisy Observations

The occupancy probability depends on both noisy obser-
vations as well as line-of-sight occlusions that may prevent
the ego vehicle from seeing the road segment. Road segments
beyond the vehicle’s sensor range are considered occluded.
We compute the likelihood of an observation conditioned
on the presence of a vehicle at segment i with probability
P(Ot

i,l |Ct
i,l) by incorporating both occlusions and a model of

noisy observations. For an environment with no occlusions,
let Ωk for k = {1, ...,no} represent an occlusion. We define
the occlusion as blocking some segments a to b from the
ego car’s view, Ωk = [da

k ,d
b
k ]. We refer to the set of all

occlusions as Ω, and use the notation i ∈ Ω to refer to a
segment i that is occluded from view. For occluded segments,
P(Ot

i|Ct
i , i ∈Ω) = 0.

For unoccluded segments, we model standard perception
and tracking pipelines with noisy observations. Observed cars
are associated with a single segment in the lane, and a belief
update is computed for unoccluded i /∈Ω as

P(Ct
i = 1|Ot

i, i /∈Ω) =
P(Ot

i|Ct
i = 1)P(Ct

i = 1)
∑ j∈[0,1] P(Ot

i|Ct
i = j)P(Ct

i = j)
, (3)

where P(Ct
i = 1) is computed based on the distribution of vl ,

and the belief from the previous time step. In our experiments
presented in Section IV, we set P(Oi = 1|Ct

i = 1) = 0.85 and
P(Oi = 1|Ct

i = 0) = 0.05.
Using the probability of an event of an incident in each

lane, we act based on the expected number of incidents. The
expected risk from lane l is the inner product of the conditional
risk and vehicle occupancy estimate,

El [Et |O−t ] = ∑
i

P(Et
i |Ct

i )P(C
t
i |O−t), (4)

where P(Ct
i |O−t) denotes the belief of a car in segment i given

observations until time t at all segments observed by the ego-
car.
E. Combined Risk Algorithm

From (4), we sum the expected number of incidents over
the new and crossed lanes to find the overall risk, rt in (1),
rt =∑

nl
l=1 ∑i∈l E[Et

i,l |O−t ]. Algorithm 1 outlines our process for
updating the conditional risk using driver attention, occupancy,
occlusions and noisy observations. Observations Ot

i of a car
in segment i are made for a discrete time t. Our risk model is
evaluated every ∆t seconds, and in both our simulations and
experiments, ∆t = 0.1. An example of our risk calculation in
simulation is shown in Figure 6.

Algorithm 1 Risk model estimation
Input: Observations at time t
Output: Overall risk estimate at time t

for t=1.. do
Update car beliefs P(Ci) according to (3)
Compute conditional risks P(Ei|Ci) according to (2)
for all tc do

for all l do
Integrate risk, finding El [Et |O−t ], per (4)

end for
Integrate risk to find rt according to (1)

end for
end for

Key variables in our model include vehicle velocities and
environment visibility. Here, we discuss how our model be-
haves as these variables are taken to their limits.

1) No Occlusions: With no occluded regions, Ω = /0, the
problem is akin to gap estimation. Here, our model also in-
cludes the uncertainty estimates from P(Ci|Oi), vl ∼ N(v0

l ,σl)
and λa.

2) Fully-Occluded View: For Ω = {(−∞,0]}, the other ve-
hicles and ego-car cannot observe each other until the ego-car
enters the intersection. The model then estimates P(Ci) = λl
for all points i since P(Oi = 1) = 0 when i is occluded, and
the lane is initialized with likelihood λl for a Poisson emission
rate. Thus, rt = ∑l λl ∑i P(Ei|Ci).



MCGILL et al.: PROBABILISTIC RISK METRICS FOR NAVIGATING OCCLUDED INTERSECTIONS 5

(a)

(b)

(c)

Fig. 5: Left: For all times to clear the intersection, tc, the risk
decreases as the ego-car approaches the intersection. Right:
Shown are the occluded road segments (blue) and visible road
segments (red) for various positions of the ego-car, de.

3) High-Speed Traffic: When other vehicles travel at high
velocity, vl → ∞, the model yields the same expected risk as
in the no observability case, since the ego car can never clear
the intersection in time with ds > tc · vl .

4) High-Speed Ego Car: As tc→ 0, the risk integration is
performed over a single road segment per lane. Per (1), if the
accumulated risk over intersecting lanes l becomes less than
rgo, the car can occupy that road segment on the lane.

5) Low-Speed Ego Car: With tc→∞, the model integrates
risk over an infinite number of road segments. Thus, any other
cars in view of the ego car, regardless of position, would
prevent the ego car from entering the intersection.

III. SHARED CONTROL APPROACHES

We leverage our risk model for control policies before and
after entering an intersection. Before the intersection, the ego-
car uses the risk to determine if it can proceed, or if it must
to nudge toward the intersection to reduce uncertainty. Once
the ego-car enters the intersection, we use the risk to adjust its
velocity along the path through the intersection. We summarize
the overall control algorithm in Algorithm 2.

A. Nudging into Intersections

Figure 5 shows an ego-car approaching an intersection with
occlusions on either side of its origin lane. The risk decreases
as the car approaches the intersection, due to the increase in
visible road segments. The risk is dependent on the time it
takes the ego-car to clear the intersection, tc. Figure 5 plots
several values of tc and the corresponding risks.

In the presence of occlusions or noisy observations, the ego-
car should spend time in high visibility positions to reduce
uncertainty in occupancy estimation. This desire to reduce
uncertainty and to prevent risky go/no-go decisions motivates
our nudging control policy,

v′e =

{
de

dnudge
ve (rt > rgo) and (de < dnudge)

ve otherwise
, (5)

where v′e is the regulated velocity, bounded by the original
desired velocity ve, and dnudge is the location where the
vehicle begins to nudge towards the intersection. The value
rgo provides a threshold for how much risk is tolerated before
going into an intersection. When de > dnudge, or the risk is
low, the regulated velocity matches the commanded velocity,
v′e = ve. Otherwise, the vehicle slows to a stop before the
intersection, while gathering more observations.

B. Clearing the Intersection

Once the risk rt < rgo, the ego-car enters the intersection
and follows a pre-computed trajectory to clear the intersection.
Let Lp represent the length of the remaining path, p, from
the original lane to the new lane through the intersection. We
assume the ego-car cannot move backwards along its path,
thus Lp monotonically decreases over time. The minimum
time it takes the ego-car to cross the intersection is given by
tmin
c =

Lp
vmax , for some maximum velocity vmax. The maximum

time to clear the intersection, while keeping risk under the
threshold rgo, is tmax

c , and depends on other traffic approaching
the intersection. We impose an upper bound on tmax

c to require
the ego-car to complete its turn and not to stop within the
intersection. Thus, the regulated velocity after the ego-car
enters the intersection is given as

v′e = max
(

Lp

tmax
c

,ve

)
. (6)

We combine the nudging policy and clearing policy together
in Algorithm 2 for the ego-car’s overall control policy through
the intersection. In Algorithm 2, we assume the path through
the intersection p is pre-defined, and a Pure Pursuit algorithm
[35] is used to control the steering commands θe.

While the above methods establish low level control mech-
anisms, opportunities exist to utilize high level planners that
utilize risk during planning e.g., to maximize tc for comfort,
as in [23].

IV. EXPERIMENTAL RESULTS AND VALIDATION

To evaluate this model, we perform both simulations and
physical experiments on the one-tenth scale MIT racecar
platform [36]. We show that full and parallel autonomy control

Algorithm 2 Ego-Car Control
Input: Turning path, p, desired velocity, ve
Output: Steering, θe, and modified velocity, v′e, commands

while Lp > 0 do
Update the risk according to Algorithm 1
if Before intersection (de < 0) then

Bound velocity ve to v′e according to (5)
else

Bound velocity ve to v′e according to (6)
end if
Find pure pursuit steering, θe, based on p
Command vehicle according to v′e and θe

end while
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(a) Occluded View (b) Risk increasing

(c) No Gap Found (d) Risk decreasing

Fig. 6: Until (a), the ego-car sees only an occluded view of the traffic. At point (b), the ego-car observes cars, and the risk
begins to increase. At point (c), the baseline system finds no gap. At point (d), the risk decreases, while the baseline system
finds a gap between exiting vehicles. Our method assesses risk for multiple values of tc, and establishes a go/no-go threshold,
rgo for shared control.

systems, when leveraging our model’s integrated risk, can
avoid accidents at occluded junctions.

A. Simulations

We simulate topologically distinct environments to proto-
type our methods. To verify risk calculations, we vary cross
traffic densities (λl), velocities (vl) and environment occlusions
(Ω), while generating test trajectories for the ego-cars and
other cars. At an unsignalized, occluded left turn junction,
the ego car approaches an intersection with two lanes of cross
traffic.

Topological adaptions, such as those shown in Figure 7,
demonstrate the flexibility of our theory and how the risk
model extends to other motions and occlusions. Mimicking
blind merges exiting tunnels or on-ramps, the merging scenario
requires the ego-car to enter a lane of traffic with occlusions
blocking the view until near the merge. For the roundabout,
the ego-car must enter the roundabout, but features within the
roundabout occlude the car from knowing the positions of the
other cars. We refer the reader to our video supplement for
animations of risk, akin to Figure 6, for these topologies.

B. Experiments

To benchmark our system, we consider five separate sce-
narios, including two full autonomy scenarios, two parallel
autonomy scenarios and a fully manual scenario. In the parallel
autonomy and manual control cases, the expert human operator
utilizes a first-person view from cameras mounted on the
vehicle. Each autonomy scenario is evaluated with our risk-
based controller and a baseline gap-acceptance controller. All
scenarios include a pre-planned path, with the computer and
human supplying velocity commands in time.
• Human Expert: An expert fully controls the vehicle

velocity.
• Full Autonomy (Ours): The car uses Algorithm 2,

setting the desired velocity ve to vl of the new lane.

• Full Autonomy (Baseline): The car uses the baseline
gap-acceptance algorithm, similar to the warning system
of [37], where other vehicles need to stop only within a
time gap. In place of a warning, the vehicle stops. The
time gap is chosen based on lane speed and car length.

• Parallel Autonomy (Ours): An expert sets the desired
velocity, ve, which the risk assessment system may over-
ride, per Algorithm 2.

• Parallel Autonomy (Baseline): An expert controls veloc-
ity, but the gap-acceptance system may override to stop
the vehicle.

Tables I and II summarize the run time and success rates,
where a success indicates that a vehicle completes a turn
without incurring contact with another vehicle.

C. Full Autonomy

To validate our model on a fully autonomous system, we
first implement a motion controller that executes turns at
junctions. Given the task of moving across traffic into a new
lane, the control policy executes a pure pursuit controller [35]
to follow a path, with no ability to stop for cross traffic. Pure
pursuit sets the steering angle, θe, but not velocity ve, which
is set to vl in the case of full autonomy. It is set by the human
in the case of parallel autonomy and manual control.

We then run two turning aids for making a go/no-go
decision: a gap estimator and our risk model. We set ds = 0.2m
as the gap size in the baseline estimator and set dF

s = 0.6m
to accommodate the wheel-base length between vehicle pose
and its front bumper. To model arrivals and attention, we set
λl = 0.05 and λa = 0.5. We evaluated six tc values between 2
and 4.5 seconds, with a risk tolerance of rgo = 0.02, such that
the ego-vehicle will not wait indefinitely at the intersection. By
applying (5) and (6), the controller will slow down or speed up
the ego-car along the trajectory to minimize risk. For the gap
estimator, if a gap in traffic exists, then the car will attempt
to turn; otherwise, the ego velocity is set to zero.
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(a) (b) (c)

Fig. 7: Merge (a) and roundabout (b) scenarios of Figure 2
have been tested in addition to left turns (c).

We tested making left turns into a crowded two lane road-
way with an unsignalized intersection, shown in Figure 2b, and
applied our control approach. To simulate a stream of traffic,
we used six other vehicles driving in a loop at vl = 0.75 m/s
under ground truth information from a motion tracking system,
shown in Figure 1. Virtual occlusions were added to preclude
observations. A computer program chose the start time for the
ego-car to approach the intersection uniformly at random, with
no advance information about the positions of the looping cars.
For every example, the ego car started approximately 75 cm
before the junction, with its view occluded. The baseline gap
estimation system completed 70% of left turns, while the risk
based model successfully completed 90% of trials.

Slowing vl to 0.5 m/s, the risk based model performance
dropped to 70%. However, the gap estimation system could
not complete a single trial without collision when other cars
were in proximity. This is because the gap estimation system
attempts a turn as soon as it sees a gap without regard for the
risk of occluded vehicles. To test this, we increased ds to 0.6m,
which effectively causes the gap estimation system to require a
larger gap in traffic. This resulted in the gap estimation system
scoring 80%, while our risk estimation system maintained a
70% success rate.

TABLE I: Results Across Control Modes

Trials Success Avg
Time

Std
Dev

Human Expert 20 90% 9.96s 5.25s
Parallel Autonomy (Ours) 20 85% 9.68s 3.36s
Full Autonomy (Ours) 30 77% 5.89s 1.29s

TABLE II: Comparing the Risk Model and the Gap Baseline

Autonomy Trials Success Avg
Time

Std
Dev

Ours Full 30 77% 5.89s 1.29s
Baseline Full 20 75% 3.79s 1.03s
Ours Parallel 20 85% 9.68s 3.36s
Baseline Parallel 20 65% 8.93s 3.43s
Ours Full & Parallel 50 80% 7.41s 2.12s
Baseline Full & Parallel 40 70% 6.36s 2.23s

D. Parallel Autonomy

To validate our model on a parallel autonomy system, we
leverage the same motion controller as in the fully autonomous
case. However, a human controls velocity ve with a remote

Fig. 8: The ego-vehicle viewpoint from three cameras corre-
sponds to the configuration shown in Figure 1. Note there is
a vehicle to the left completely occluded by the blue house.

controller. For visual feedback, three camera streams are sent
from the car to remote displays to provide the human with
situational awareness, as shown in Figure 8. The human
operator cannot see the physical cars, which ensures they share
the occluded viewpoint from the vehicle’s sensors. On average,
over 60 trials, the human took 9.96 seconds to execute a turn
(including collisions). In contrast, for over 50 autonomous
trials, the autonomous system took only 4.49 seconds to
execute a turn. Human operators took far longer because they
often missed opportunities that the autonomous controllers
deemed safe.

As an additional test, the human was required to steer the
vehicle in addition to choosing its speed, ve. 80% of turns
were completed safely without any aid. However, when the gap
estimation system was active in the parallel autonomy mode,
the human operator achieved only 60% success. A similar
set of parallel autonomy trials with our risk based model
allowed the human to safely complete 70% of turns. This
experiment demonstrates that a parallel autonomy system that
intervenes only on speed, with the human operator responsible
for steering, does not perform well, since the vehicle controls
are not coordinated. Parallel autonomy performed best when
the human and system collaborated on the same control inputs.

We set vl to 0.75 m/s for the parallel autonomy tests. In
these tests, the gap estimation system enabled the human to
complete 80% of trials without a collision, while our risk
model based controller enabled the human to complete 100%
of trials. The unaided human operator, controlling only the
speed, performed almost as well with a success rate of 90%
but took an average 22% longer to complete the maneuver.

V. CONCLUSIONS

In this paper, we have presented a probabilistic model for
assessing risk at occluded intersections with uncertain per-
ception data. Whereas previous approaches typically adopt a
Lagrangian perspective, based on the trajectories of perceived
vehicles, our Eulerian approach reasons about the risk for
road segments. This enables us to handle occluded junctions
efficiently with limited perceptual data. We have deployed the
risk assessment algorithm on scale model cars, testing for both
autonomous control and remote human interaction (parallel
autonomy). When a vehicle enters an occluded intersection,
the risk assessment algorithm augments the commanded inputs
to improve the safety of maneuvers, while also reducing the
amount of time the vehicle waits before crossing traffic.

For future work, we will explore integration of our risk
metrics into complete planning approaches, including more
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diverse vehicle platforms. Additionally, we plan to explore
ways to adapt our algorithm with respect to additional road
topologies and naturalistic data, as well as learning optimal
model parameters.
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