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Abstract— When performing multi-robot tasks, sensory feed-
back is crucial in reducing uncertainty for correct execution.
Yet the utilization of sensors should be planned as an integral
part of the task planning, taken into account several factors
such as the tolerance of different inferred properties of the
scene and interaction with different agents.

In this paper we handle this complex problem in a principled,
yet efficient way. We use surrogate predictors based on open-
loop simulation to estimate and bound the probability of
success for specific tasks. We reason about such task-specific
uncertainty approximants and their effectiveness. We show
how they can be incorporated into a multi-robot planner, and
demonstrate results with a team of robots performing assembly
tasks.

I. INTRODUCTION

For mobile manipulation in multi-robot tasks such as
assembly operations (e.g. inserting fasteners), fixed sensors
are often insufficient, due to occlusions, and resolution lim-
itations. Planning algorithms can exploit mobility to ensure
that the sensor is positioned in a way that is useful according
to the current task. Such algorithms must contend with
changes of critical positions and aspects of interest as a
function of sub-tasks.

For example, inserting a part with a protrusion into a hole
is more compliant in some directions than others, requiring
specific point of views in order to predict the successful
termination of the operation. Sensor planning has to further
take into account the parts and other robots’ positions in
order to avoid occlusion of the sensor and collisions between
robots and parts during plan execution. We approach this
challenging multi-robot complex planning problems using an
estimation approach, by reasoning about a virtual sensor and
how it would reduce uncertainty of the assembly operation,
as part of the overall multi-robot planner.

We present an example scenario in Figure 1. In this setup,
multiple assembly robots plan to grasp the parts (a peg and
a block with a hole) and bring them to assembly config-
urations, such as the one seen in the figure. The position
of the sensor and the configuration of the robot carrying it
is also planned. The sensor is used at this step to estimate
the poses of the parts. Then, according to the estimates, the
robots that are carrying the parts correct their configurations
to better align the parts with each other. After this alignment,
a local controller moves the robots on a straight line to mate
the parts and uses force-feedback to stop this motion. Our
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goal is to plan the assembly configuration for both robots and
sensors. The problem of manipulation planning and sensor
positioning is intertwined: a good sensor position to view
the parts may not leave any room for the assembly robots to
grasp parts, and good grasping poses for robots may occlude
the view of the sensor. Therefore, we present a planner
which simultaneously solves the manipulation and sensor
positioning problem. Within the planner, each sensor position
is evaluated using the fast task-specific metrics described
above.

While planning and state estimation are often approached
hierarchically, sensor planning was so far limited to aid low-
level tasks — such as estimating geometry, and localizing the
robot. We aim to narrow this gap by performing 3D sensor
planning for elementary tasks. We then utilize the resulting
estimator within a manipulation planner for assembly tasks.
By elementary tasks we refer to tasks with few motions,
that are stable enough to be controlled in an open-loop
manner – e.g. placing fasteners, pushing buttons, pulling
levers, to name a few. For such tasks we can reason about
sensor positions in terms of the task at hand, given initial
uncertainty, the scene structure, and other factors.

In order to plan sensors’ positions, we must estimate task
success and uncertainty as a function of sensor position. We
employ a surrogate open-loop task success function, with
the same measurements model used in robot and object pose
estimation from range images. This allows us to plan for
3D sensor poses as part of an assembly planner. We show
that under certain conditions our estimate is a lower bound
on the probability of success of the real operation, thereby
providing guarantee for planning purposes.

While we focus on assembly tasks as an example, other
manipulation tasks could easily be accommodated, such as
pressing buttons, or closing valves. We look at short-horizon
elementary actions, and leave persistent operation, including
online state estimation to future research.

The main contributions of the paper are as follows,
1 A model that enables the use of surrogate functions for

planning to position a mobile 3D sensor for specific
robotic tasks, with a well-defined probabilistic framework.
We show conditions under which these surrogate functions
bound the task success.

2 An algorithm estimating the utility of sensor configura-
tions in combination with robotic manipulators.

3 An end-to-end system that uses mobile sensors to assist
with fixture-less assembly tasks. We show how we si-
multaneously perform manipulation planning and sensor
positioning for fixture-less assembly tasks.
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Fig. 1: (a) A team of robots assembling a peg into a hole. The rightmost
robot carries a sensor to localize the assembly parts and provides feedback.
The grasps, robot base/arm configurations, and the sensor position are all
planned to avoid collisions and to position the sensor optimally for the task.
(b) Example tasks - block stacking, block assembly, peg in hole.

In Section III we describe our model of the sensing pro-
cess, and the probabilistic modeling of the objects and sensor,
including uncertainty estimation for various quantities. Given
a scene such as the one in Fig. 1, this model allows us
to quantify how useful the sensor pose is for the specific
task. In Section IV we reason about how to incorporate
uncertainty estimation into a high-level robotic planner, so
as to choose configurations for all the robots which are both
feasible and informative. In Section V-A we describe a model
system for multi-robot tasks, used in our experiments, based
on the integration of uncertainty estimation into the high-
level assembly planner. In Section V-B we demonstrate in
several experiments how uncertainty estimation from our
model allows us to compute meaningful and efficient plans
for our robots.

II. RELATED WORK

There is an extensive literature on reasoning about sensor
placement. In computer vision this is often addressed as part
of active perception [3], [5], [34]. In robotics, such efforts are
part of next-best-view planning and dynamic planning [1],
[15], [41], [24], [33], [19], although in our case we estimate
planner-level notions (task success) rather than lower-level
ones (geometric or classification uncertainty). Estimating the
uncertainty of an event given a set of observations has been
a key topic in information-theoretic research [27], [9], with
uses in various fields. Especially a greedy sensor selection
methods such as ours has been shown to approximate the
optimal approaches for sensor planning [43], within some
factor. Finally, sampling over physical simulations has been

utilized for applications such as grasp planning [23] and
agent-based object recognition [6].

In these efforts however, there is still a gap between task-
planning and sensor planning. Sensor planning should model
the reduction in uncertainty related to task success based on
the same models used to plan the tasks. It is this gap which
our approach explores.

As our work reasons about possible actions in a continuous
information space under uncertainty, it relates to partially
observable Markov decision processes (POMDPs) and ways
to approximate them (see for example [28], [31], [35],
[37]), under the right constraints in configuration space and
time, and cost function choice. However, our approach is
more tailored to the nature of problems common to robotic
assembly and other manipulation tasks. Here the state is
continuous, uncertainty is captured well in terms of the
geometry, and sensing from the right viewpoint allows us to
capture most of the uncertainty in task success. This gives
us a different solution, with a bound that differs from the
related QMDP approach, and is described in the Section III.

In terms of the sensors and perception subsystems, tra-
ditionally a monocular camera with fiducials or 3D object
models have often been used to establish object poses. In
recent years, the spread of RGB-D sensors has made them
reliable and robust sources for many applications in robotics
such as object localization [2], [13], object recognition [25],
and Simultaneous Localization and Mapping (SLAM) [26],
[30], [20]. Iterative Closest Point (ICP) algorithms usually
assume some knowledge of an initial location. Starting
from a coarse initial estimate, the ICP algorithm minimizes
some distance criterion such as point-to-point [10], point-to-
plane [12], or more general ones [29].

Our work is also related to grasp planners that take into
account task constraints [7], [8], [17] and multiple robots
[40]. Particularly, the planner we present in Section IV is
an extension of the planner from [18]. We build on this
literature and extend it to plan simultaneously for multi-
robot constraints and sensor positioning. This enables our
multi-robot system to take into account uncertainty during
manipulation, a topic which is also addressed in [11], [22],
[14].

III. POSTERIOR UNCERTAINTY ESTIMATION

We now describe how to evaluate sensor poses. Our main
goal is to find sensor poses that will provide range images to
guide fine manipulation tasks as in assembly operations. We
assume global robot positions are usually available. However,
we need to sense the fine-grained poses of the objects and
manipulators that are crucial for successful manipulation, and
this is where range sensors have proven very useful in recent
years. We wish to quantify the utility of possible sensor poses
so that we can place the sensors as part of the assembly plan.

Let us first describe task-agnostic measures of uncertainty.
We then describe reasoning about task-specific uncertainty
measures obtained by sampling possible control trajectories,
their likelihood given observations, and their success prob-
ability. These measures are used by the high-level planner



as described in Section IV to decide which sensor pose is
preferred, along with the configurations of the other robots,
picking configurations which are both feasible and infor-
mative. While we mention a prior uncertainty, uncertainty
estimates are usually the result of state updates and prior
knowledge. In our case we assume they are given.

We mark a configuration of the system as x, e.g. the
pose of the robots and objects they interact with and ob-
serve. The space of all possible configurations is known as
the configuration space X for the system. o denotes our
observations of the scene, i.e. range images, and possibly
other measurements, e.g. localization systems such as GPS
or VICON.

In order to reason about the range sensor viewpoints we
employ a likelihood term from the ICP [29] and SLAM
literature [39] — we assume the range observations o = {zi}
are Gaussian i.i.d. given the state x, with mean given by the
transformed model points in the scene.

p(o|x) ∝
∏
i

exp
{
−d2(zi, Tx(Smodel))

}
, (1)

where Smodel denotes the objects in the scene, for which
we assume a model (e.g. a mesh representation), as well as
the robots’ bodies. i denotes the pixel index in the image.
Tx denotes the transformation of each object according to
the pose values. In our case, the state of the system x is
defined as the poses of all objects and the sensor, typically
SE(3)N+1 where N is the number of objects. d2(·, ·) is the
quadratic depth difference, often replaced by robust distance
functions in the ICP and SLAM literature.

Using this observations model, we can estimate several
quantities—such as posterior uncertainty in the poses after
observing the objects and its effect on the probability of
success of various manipulation tasks. We differentiate be-
tween several configurations of interest. We denote by xp the
(determininistic) planned configuration, given by the planner
at the beginning of some step. We denote by xT the true
configuration after the last motion step. xS is the sensed
state, estimated given sensor observations, representing our
posterior belief of the robot and scene. We assume xS and xT

are distributed around xp, and p(X) denotes the distribution
of the true state at a certain moment. Let f(xS ,xT ) denote
any discrepancy function between xS and xT . f describes
the cost associated with assuming state xS while state xT is
the true state. It can include error terms of xS and xT , or of
xS and the observations given xT , o(xT ). E(f) is a function
of the sensor location in xp, and our goal is to optimize it
by choosing a suitable xp. We can obtain the expectation of
f by total expectation

E(f) =
∑

xT∼p(X)
xS∼p(X|o(xT ))

f(xS ,xT ). (2)

Suppose that our planner attempts to place the sensor at
location xp. o(xT ) is the set of observations seen given state
xT , and we assume it to be a deterministic function. Samples
of xS , for a specific xT , are illustrated in Figure 2(b).

We now go over several choices of f , and show their merit
in the context of task planning.

A. Pose Uncertainty

Several forms of conditional uncertainty estimates are
captured by Equation 2. As a specific example com-
mon to sensory planning, plugging in f(xS ,xT ) =
− log(p(xS |o(xT ))) we get the conditional entropy of the
pose given measurements

H(X|O) =
∑

xT∼p(X)
xS∼p(X|o(xT ))

− log p (xS |o(xT )) , (3)

which can be computed by sampling different xT values
and their observations o(xT ), and integrating the conditional
entropy. Here capital letters such as X,O emphasize the
random variable, as opposed to sampled values of that
variable. Entropy estimation for non-parametric distributions
has been studied intensely (see [21] [38], and references
therein). In our case, for numerical efficiency and stability
we chose a parametric approximation by a Gaussian in
the Lie algebra se(3) of each object, assuming objects to
be statistically independent. The entropy of a multivariate
Gaussian distribution is given by [16]

H(xS |o) =
d1
2

(1 + log (2π)) +
1

2
log (|ΣS |) , (4)

where ΣS is the empirical estimate of the variance of xS ,
and d1 is the dimensionality. Equation 2 therefore becomes

ExT

{
d1
2

(1 + log (2π)) +
1

2
log (|ΣS(xT )|)

}
. (5)

We obtain our samples of p(X|o) by sampling from p(X),
using Bayes’ rule, and using p(o|xS) to reweight the samples
of xS , up to a normalization constant. While the number of
samples required to depict distributions in 6N degrees of
freedom (DOF) is prohibitively high, in our case, assuming
i.i.d. distribution of the objects was sufficient in terms of
accuracy and efficiency.

Other measures that would be interesting to estimate
are the squared Frobenius error between xS and xT as
f(xS ,xT ) = ‖xT − xS‖2F , and the mutual informa-
tion between o and xS as f(xS ,xT ) = log p(xS) −
log p(xS |o(xT )).

B. Task-Specific Estimator

Perfect pose information is often not required for a specific
task. Hence, uncertainty measures such as entropy of the
full state space may not be the right criteria to plan for.
Consider for example inserting a key in a hole — the angle of
rotation around the cylinder axis (see illustration in Figure 2)
is crucial for determining whether the key would go in, but
excess translation along the cylinder axis is less crucial as it
will be countered by the lock. In fact, from some viewpoints
(behind the key), some DOF may be barely observable,
even though they are important to the task. This motivates
assessing viewpoints according to a task-specific measure.
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Fig. 2: a) An illustration of the likelihood model. Tx(Smodel) describes
the state of scene objects, captured by the red and blue cubes. zi defines
the point at range image location i, captured by the green dot. b) A set of
sampled poses for key insertion (translation uncertainty only). Some poses
(green) would allow successful insertion with an open-loop controller, unlike
other poses (red). c) Inserting a key into a keyhole is sensitive to the rotation.
d) Translation along the axis of approach is less critical as excess force is
usually countered by the keyhole. e) A possible success region for inserting
a key into a hole, with varying tolerances in different DOF.

We would like to maximize task success directly, by choosing
as f the probability of task failure having placed the sensor
at position xp and minimizing E(f).

Consider an elementary robotic task, such as assem-
bling two parts. We denote the success of that task by
S(xS ,xT , u). It is a function of the system state xT and
the control signal u chosen to get us to the planned state.
The control signal u may depend on the believed system state
xS and some strategy for planning. We will use the control
signal interchangeably with the planner and controller that
creates it. In order to reason about S, we have to consider
expected future observations and their effect on the control
signal, given that in practice, the initial state was actually
xT .

We claim that in many intermediate-level planning sub-
tasks of assembly, taking an open-loop approach, combined
with a plausible surrogate planner, can efficiently estimate
informative sensor positions for the task. For example, for the
task of insertion, we propose the following approximation:
given two objects, A and B to be assembled, we take the
following, open-loop plan (see Figure 3): 1) Compute a
direction of insertion, vAB . 2) Align objects so that object
A is at a safe distance along vAB from object B, and
both of the objects are aligned. 3) Move object A towards
object B in direction vAB . The surrogate planner described
in Algorithm 1, and illustrated in Figure 3.

Since the proposed strategy is open-loop, we can estimate
its success by planning for believed state xS , but applying
it to initial state xT . This approximation acts as a surrogate
to the real control law in use by the robots. The collisions
incurred by the execution and their location allow us to
approximate whether a task is likely to succeed, and form
Ŝ, an approximate success criteria which we will now use.
While the checks for collisions are similar to guarded moves

(a) (b) (c) (d)

Fig. 3: An open-loop plan for part insertion. a) Initial (believed) position
xS . b) Initial alignment. c) After insertion. d) Performing the open-loop
plan for xS whereas the real initial pose is xT could result in a collision
(shown in red), or task failure.

[42], we also look at the colliding surfaces, to discount
collisions at small angles, where surfaces are likely to slide
off one another.

As long as the simulation and criteria of success are
accurate enough, the approach we take computes a lower
bound on the probability of success, shown as Lemma 1. The
assumptions we make in the lemma are fulfilled in practice
for many relatively short horizon actions in assembly and
other fine manipulation tasks. Having observed the world
modifies the (posterior) distribution of xS . The chance of
success for a given sensor location is therefore given by

E
xS ,xT

(p(S|xS ,o(xT ))) ≈
∑

xT∼p(x)
xS∼p(x|O(xT ))

Ŝ(xS ,xT , û) (6)

where p(X|O) can be sampled by importance weights using
p(X). The sampling order is defined as Algorithm 2, and
provides us with a cost for a specific sensor pose, to be
used by the planner in Section IV. f is computed via
our approximation for task success Ŝ(xS ,xT , û), described
in terms of planning insertion/attachment of object A to
object B, as Algorithm 1. We assume the definition of the
assembly task includes a known approach direction vAB for
the insertion procedure.

Algorithm 1 Estimating success of inserting object A into
object B, with approach direction vAB

1: Let waypoint w1 = (R1, t1) mark the initial state of A
2: Let waypoint w3 = (R3, t3) mark the final state of A
3: Construct waypoint w2 by rotation R3 and a translation

component created by projecting t1 − t3 onto vAB

4: Simulate the trajectory of the object by interpolating
between (w1, w2, w3).

5: If any obstructive collisions are encountered, return
failure, S = 0.

6: Otherwise, return S = 1

Lower Bound Interpretation Under certain conditions,
Algorithm 1 provides a lower bound for the task success
of the real planner and robot, beyond the bounds that are
available for approximate POMDP solvers such as QMDP
[35]. To see this, we re-examine the proposed approach.
We denote by u(xS) the actual planner of our robot, and
uopt(xS) denotes a the closed-loop optimal plan starting at
state xS . We compute an approximate open-loop surrogate



Algorithm 2 Estimating uncertainty for a sensor pose

1: for i = 1, 2, . . . , NT do
2: Sample state xT from p(x)
3: for i = 1, 2, . . . , NS do
4: Sample state xS from p(x), estimate the partition

function / integration constant.
5: for i = 1, 2, . . . , NS do
6: Sample state xS from p(x),
7: Estimate p(O|xS), aggregate an estimate for

p(x|O) (Subsec. III-A), or
8: Estimate f(xS ,xT ), aggregate ExS ,O f (Sub-

sec. III-B)
9: aggregate ExT

ExS ,O f
10: Output ExT

ExS ,O f

strategy û for a given start state xS , such as the one
shown in Algorithm 1. Given the strategy we compute an
approximate success criteria Ŝ(xS ,xT , û) by simulating the
system, checking for errors and collisions. Marginalizing this
term over all true states xT and believed states xS gives us
a lower-bound estimate of the sensor location utility.

We make the following assumptions:
1) The robots’ planner provides plans u close enough to an

optimal closed-loop planner uopt. Due to the tasks we
explore and static scene except for our robots, sufficient
knowledge of the scene affords a successful plan. Our
planner can provide such a plan, and the objects can be
localized using ICP from our 3D sensor to a reasonable,
yet not always sufficient, degree of accuracy.

2) The environment changes slowly enough so that the op-
timal closed-loop uopt planning is better in expectation
than the optimal open-loop planning. Specifically it is
better in expectation than other open-loop planners such
as û.

3) The success estimator Ŝ(xS ,xT , ·) is accurate enough
in predicting the success of a strategy in the real world
under initial state uncertainty.

4) The surrogate planner û(xS) is open loop.
Assuming an open-loop control model and sub-optimal

planner provides the following lower bound on planner
success probability.

Lemma 1: If conditions (1)-(3) above hold, the surrogate
estimator in Algorithm 2 provides a lower bound for the
success rate of an the system planner.

Proof:

ExS ,xT Ŝ(xS ,xT , û)
(3)
≈ ExS ,xT S(xS ,xT , û)

(2)

≤ (7)

ExS ,xT S(xS ,xT , uopt)
(1)
≈ ExS ,xT S(xS ,xT , u)

Different assumptions used are written in pararentheses
above each relation in the equation.

IV. SIMULTANEOUS PLANNING FOR MULTI-ROBOT
ASSEMBLY AND SENSOR POSITIONING

We now describe the use of task-specific uncertainty esti-
mation within a planner for multi-robot assembly tasks. The

planner we used is an extension of [18], which formulates
multi-robot planning as a constraint satisfaction problem.
The work of [18], however, does not reason about sensing
and assumes perfect observability. We extend the planning
algorithm to simultaneously solve the multi-robot planning
and the sensor placement problem, by choosing the feasible
plan with the most informative sensor pose. The resulting
planner provides plans where the robots can perform the
assembly, and the sensor is located to improve task success.

A. Problem

In our formulation, an assembly is a collection of simple
parts at specific relative poses. Robots perform an assembly
operation by grasping each part and bringing them together
in space at these poses. An additional robot carries a sensor,
e.g. a camera, to observe the parts and provide feedback to
the assembly robots about the pose of each part. Formally,
we define an assembly operation as a tuple 〈A,T,L〉 where
A is a set of assembly parts, T : A→ SE(3) is a mapping
from each part to its pose in the assembly, and L is a set of
candidate poses for the sensor. A robot can grasp a part by
placing its gripper at certain poses on the part. We assume
we can compute a set of such poses, grasps. To bring a part
to its pose in an assembly, a robot must plan a grasp, and a
configuration for its base and arm. Similarly, we must plan
the sensor robot configuration.

When the robots perform an assembly operation they must
avoid colliding with each other, with the parts, and with other
objects in the world. Moreover, they must choose a sensor
position which provides useful feedback. Therefore, we for-
mulate the problem of simultaneous planning for multi-robot
assembly and sensor positioning as finding configurations
for the robots such that they avoid collision while the sensor
is positioned to provide the maximum probability of task
success.

B. CSP Formulation

Given an assembly operation o = 〈A,T,L〉, we can for-
mulate the planning problem as a constraint satisfaction
problem (CSP). A CSP is defined by a set of variables V,
a domain D(v) for each variable v ∈ V which specifies
the set of possible values v can be assigned with, and a set
of constraints specifying consistent assignments of values to
variables. A solution to the CSP is an assignment of values
to all the variables that is consistent with all the constraints.
For our problem, we create one variable for the grasp of each
input part. We use va to represent the variable corresponding
to the grasp of assembly part a ∈ A. The domain of the
variable va is the set of robot base and arm configurations
carrying the part at the pose T (a) with a valid grasp. We
discretize this possibly continuous set by sampling uniformly
at a fine resolution. Finally, we define collision constraints
between all the variables.

Backtracking search is a widely used and complete al-
gorithm for solving CSPs [36]. It searches forward by
assigning values to variables such that all assignments obey
the constraints. If the algorithm cannot find a value for



a variable which obeys the constraints, it backtracks by
undoing the most recent assignment. The search continues
until an assignment is found for all variables. If there
is no solution, backtracking search tries all combinations
of value assignments. The worst-case time complexity of
backtracking search is exponential in the number of vari-
ables. However, for the number of variables in our grasping
formulation, solutions are found in tens of seconds on a CPU.

We use backtracking search to plan configurations for the
robots grasping the parts and the robot carrying the sensor.
However, while backtracking search finds non-colliding con-
figurations, it does not reason about the quality of the sensor
pose. To search for good sensor poses, we run backtracking
many times and choose the solution with the highest success
probability, as computed by Algorithm 2. We can replan if
the maximal success probability is too low. However in our
setup this was not needed.

V. EXPERIMENTS
We consider mobile manipulation scenarios to evaluate

the effectiveness of our approach. We demonstrate 3 real
different scenarios using robots to execute the assembly,
and explore another 4 in simulation. In simulation we also
compute the utility of the sensor from a densely sampled set
of sensor location and visualize resulting utility function.
This allows us to gain insight on the planned locations
beyond the specific chosen positions sampled by our planner.
We note the assembly planner used in simulation, and the
motion planner used for approximating task success are the
same ones as used with the real robots.

A. Setup
We use a team of three or four KUKA Youbot single-

arm robots. The robots are controlled via OpenRAVE, with a
depth sensor mounted on one of the arms. We use VICON to
track the robots’ locations. Assembly parts are not marked,
requiring the use of the depth sensor for pose correction,
using our own ICP for pose estimation. The uncertainty
estimation is implemented with OpenGL/CUDA. We sample
poses with an prior distribution of an approximate Gaussian
on the Lie algebra se(3), and compute the expected scene
statistics via OpenGL. We implement the approximate plan-
ner and collision checking via OpenRAVE/PQP. We use a
truncated (at 5 cm) M-estimator for d2(·, ·) for the likelihood
term in Eq. 1, in both object localization and uncertainty
estimation. In each assembly step, parts poses are positioned
and corrected so that a local, linear, controller that can
mate parts to each other. The system, with three robots is
demonstrated in Figure 1(a).

B. Simulation Experiments

We first explore the uncertainty criteria computed in Algo-
rithm 2 in several informative examples, to see what location
would be chosen. In our simulations we focused on a basic
step in assembly: a pair of objects are placed at assembly
poses with varying amounts of prior uncertainty. Measuring
the resulting criteria at various sensor poses around the
objects allows us to visualize which locations would be
deemed beneficial, and chosen by the overall planner. The

sensor is aimed at the center of the two objects (placed at the
origin). We found the exact aim to be less important, as long
as the objects are fully seen in the sensor and capture the
same field of view. We sample densely a 2D pose space for
visualization purposes, unlike the actual use in an assembly
planner. In the simulations we assume the sensor pose to be
known with high certainty. This is done both since we focus
on the uncertainty of the objects, but also since the sensor
location is relatively well known (due to SLAM algorithms),
as opposed to manipulated objects, whose location is less
certain.

We measure the pose entropy and task success probability,
as well as the effective sample size (NEFF , [4]), shown as
a function of the sensor’s location in the (x, y) plane, given
in meters. Pose entropy reduction demonstrates task-agnostic
measures, and the task success probability represents a task-
specific estimator for the assembly. The effective sample size
shows when our sample set becomes impoverished.

For example, in Figure 4(a) the objects are a peg and
a board with a hole. The peg has a handle, and a pie-
slice of the peg is missing (also visible in Figure 3) which
makes the peg’s rotation important for successful insertion.
We estimate the posterior uncertainty of the objects and the
success probability of the task (inserting the peg) for several
viewpoints around the peg (approximately at the height of
lower third of the peg). We do this for two informative cases:
In Figure 4(a) the uncertainty of the board is small, and
the uncertainty of the peg is restricted to rotation about the
peg’s axis. The main informative areas are at the side and to
the front of the section, where occlusions modify the range
for a large set of pixels, or in front of the missing section,
where many pixels change as a function of pose, but not
at the back of the peg, where small rotations around the
axis do not change the observed image. In Figure 4(b) we
assume uncertainty in all 6 degrees of freedom. This time,
task success favors the frontal view, which is less obvious
in the entropy estimations that treat all degrees of freedom
as equally important. This raises an important contrast with
view planning based on visibility and occlusions, which may
accept views (e.g.behind the peg) that cannot capture the
rotation DOF and are hence suboptimal. Our method would
prefer either frontal or side views, avoiding these limitations.

In Figure 4(c) we demonstrate the uncertainty reduction
estimates for a pair of Lego blocks. In this case, areas in
front of the blocks offer a lot of information due to the
inserts’ shape on the top of the block, as well as areas directly
behind the blocks, which allow us to see how the two blocks
align. Figure 4(d) demonstrates the uncertainty landscape
around a star-shaped peg. Areas between the star’s tips do
not capture as much variability in the normals, at a close
enough range and are less informative, whereas locations in
front of the star’ tip offer a more balanced distribution of
normals and therefore more uncertainty reduction both in
terms of the entropy, and task success. The average time to
compute a single pose is around 60 seconds on a laptop with
an NVIDIA GPU, depending on the number of samples (we
took 80 samples for xS and xT ) and the type of approximate
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Fig. 4: Estimated utility at sampled along the 2D plane around the assembly objects. Locations are in metric coordinates, and sensor is aimed at the
scene center. Left-to-right: objects configuration, NEFF , pose uncertainty in nats, posterior task success estimate. Row a) - Peg and hole, insertion along
the x axis, uncertainty only about peg rotation. Informative positions are along the sides of the peg, where occlusions modify the depth map considerably.
Row b) - Peg and hole, insertion along the x axis, uncertainty in all 6 degrees of freedom. While the entropy is mostly reduced close to the peg, task
certainty is increasing when the sensor is in front of the peg, which is the more informative view for this task. Row c) - Lego block assembly configuration,
insertion along the x axis. While entropy is reduced almost uniformly since all DOFs are important, the Y-Z plane localization matters the most, giving
preference to view from the front of the blocks (left side of the map), where the pins of the blocks allow better localization. Row d) - Star-shaped peg
and hole, vertical insertion. The 5-fold symmetry is easily visible, with viewpoints close to the tips of the star being more informative.

planner used for success criteria. Most (> 90%)of the current
runtime is due to the CPU-based planner, leaving significant
room for optimization, and we expect a GPU-based planner
[32] to allow much greater efficiency. This makes it possible
to run the planning with real robots, by picking a set of plan
and compute the estimation quality for a selection of these.
In the experiments we performed with only 2 parts (and no
additional occlusions), good poses were twice as likely to
succeed compared to bad ones, emphasizing the importance
of correct sensor placement.

C. Robot Implementation

We used our approach as part of a robotic fixture-less
assembly planner, as described in Sections IV and V-A.
During planning we evaluate 32 candidate sensor locations,
set in a circle around the assembled parts. In our experiments
the system selects a plan where the sensor-bearing robot
places the sensor in a pose that has an unobstructred view
of the assembled objects. Using ICP we then reduce the part
placement error to a compliant level (the initial standard
deviation of > 2cm in object location prohibits compliant
insertion). We demonstrate the following tasks with our
system: 1) Placing a peg inside a hole in a board. 2) Inserting
Jumbo Lego blocks into each other. 3) Stacking blocks on
top of each other. The experiments are shown in Figure 5. In

Figure 5(c)-(f) we show the rendering view of the planner for
our tasks, demonstrating a successful location of the sensor
with respect to the assembled parts.

VI. CONCLUSION
In this paper we demonstrated sensor planning based on

elementary task primitives and their approximations. We
showed how open-loop planners for these tasks allow us
to estimate the quality of different observation poses, and
yet can be run in reasonable time for on-line planning
purposes in teams of real robots. We intend to explore
additional types of elementary task primitives, as well as
more rigorous definitions of the approximation encompassed
by our framework.
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