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Abstract - This paper discusses a variational methodology, which involves locally
modeling of data from noisy samples, combined with global model parameter regu-
larization. We show that this methodology encompasses many previously proposed
algorithms, from the celebrated moving least squares methods to the globally opti-
mal over-parametrization methods recently published for smoothing and optic flow
estimation. However, the unified look at the range of problems and methods previ-
ously considered also suggests a wealth of novel global functionals and local mod-
eling possibilities. Specifically, we show that a new non-local variational functional
provided by this methodology greatly improves robustness and accuracy in local
model recovery compared to previous methods. The proposed methodology may
be viewed as a basis for a general framework for addressing a variety of common
problem domains in signal and image processing and analysis, such as denoising,
adaptive smoothing, reconstruction and segmentation.

1 Introduction

A fundamental problem in both image and signal processing is that of recovering a
function, a curve or a surface (i.e., a signal or an image) from its noisy and distorted
samples. Significant research effort was invested in this problem and the results ob-
tained so far are quite remarkable. The most important ingredient in the success of
any method that extracts signals from noise is, of course, the set of assumptions
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that summarizes our prior knowledge about the properties of the signal that effec-
tively differentiates it from the noise. These assumptions range from some vague
general requirements of smoothness on the signals, to quite detailed information on
the structure or functional form of the signals that might be available due to prior
knowledge on their sources.

The prior information on signal/image is often expressed in the form of a param-
eterized model. For instance, in speech recognition [1] slowly varying coefficients
of the short-time Fourier transform (STFT) are used to locally describe and model
highly fluctuating spectral characteristics over time. In object recognition the choice
of the correct spatial support for objects i.e., the segmentation, is a fundamental is-
sue [2], hence, in general scene understanding, support maps are used to represent
segmentation of images into homogeneous chunks, enabling the representation of
objects as disjoint regions with different local modeling parameters [3]. In geomet-
ric modeling, B-splines (which are essentially a continuous set of piecewise polyno-
mials), are used for local curve and surface approximation, interpolation and fitting
from noisy samples [4]. In model-based texture segmentation [5], the selection of
an appropriate support set for the local model, is important to obtain a good local
texture representation, which then serves as a basis for the segmentation process.
In sparse coding [6, 7], the main goal is to model data vectors (signals) as a linear
combination of a few elements (support set) from a known dictionary. Sparse coding
has proven to be very effective for many signal or image processing tasks, as well
as advances in computer vision tasks such as object recognition.

One of the widespread and successful methods for local signal modeling, is the
celebrated moving least squares local fitting method (MLS), which in recent years
has evolved to become an important tool in both image and signal processing and in
computational graphics. In [8], Levin explored the moving least-squares method and
applied it to scattered-data interpolation, smoothing and gradient approximation. In
[9, 10, 11] the moving least squares technique was employed for modeling surfaces
from point-sampled data, and proved to be a powerful approach. This was followed
by the work of Fleishman et al. [10, 12], incorporating robust statistics mechanisms
for outlier removal. Common to these works is the locality of the fitting procedure
and the lack of global assumptions expressing prior knowledge on the variations of
local parameters.

The aim of this paper is to show how one can design variational functionals that
exploit local fitting of models and global smoothness assumptions on the variations
of model parameters, that are natural for various types of signals. A first attempt,
at such a variational methodology, was made by Nir et al. [13, 14]. This work was
subsequently broadened and generalized by Bruckstein in [15], by the realization
that over-parametrization methods naturally follow from combining moving least
squares, or other local fitting methods, with global priors on parameter variations.
The local modeling relates to a wealth of classical methods, such as Haralick’s and
Watson’s facet model for images [16] and extends them in many ways. More im-
portantly, the discussion and experimental results reported in this paper point at a
rather general methodology for designing functionals for variational model estima-
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tion and signal reconstruction and focusing on the denoising problem is merely an
illustrative test case.

The importance of the proposed variational framework, lies in the fact that it al-
lows for directly incorporating knowledge of the problem domain, hence it is easily
extendable to address numerous problem areas, such as denoising, deconvolution
and optical flow in image and signal processing and various other fields of research.
Moreover, due to the structure of the proposed functionals, our variational frame-
work is able, unlike many common methods, to accurately recover the underlying
model of a signal while addressing its main aim.

2 The local modeling of data

For the sake of simplicity, we shall here limit our discussion to one dimensional
signals and address the generic problem of denoising. Let f (x) be a one dimen-
sional signal and fnoisy(x) = f (x)+ n(x) be it’s noisy counterpart. Also, denote by{

f j = f (x j)+n(x j)
}

the set of samples of the noisy signal. Suppose that f can be
(locally) described by a parameterized model of the form

f (x) =
n

∑
i=1

Aiφi(x) (1)

where A = {Ai}n
i=1 is a set of parameters, and φ = {φi}n

i=1 is a set of ’basis’ signals.
Local modeling is the process of estimating A = {Ai} from the noisy signal fnoisy or
it’s samples

{
f j
}

, in the neighborhood of a point x. As a simple example, we can
consider the Taylor approximation as a parameterized model with polynomial basis
functions φi = xi−1.

Suppose we would like to use this local modeling for denoising our noisy data
fnoisy(x) or

{
f j
}

. Then, around x = x0, we want to estimate Ai(x0), i.e., the parame-
ters of the model (1), by solving:

arg min
[A1,A2,...,An]

∥∥∥∥∥ fnoisy(x0)−
n

∑
i=1

Aiφi(x0)

∥∥∥∥∥ , (2)

in some local neighborhood of x0 and a distance norm ‖·‖. This minimization gives
us the best local estimate of f̂ (x0)

f̂ (x0) =
n

∑
i=1

Ai(x0)φi(x0). (3)

Repeating this process for every location x give us the ”moving” best estimate of f .
The choice of the distance or measure of error is of a great importance. One

common choice is the weighted least squares distance, as considered, for example,
by Farnebäck [17], as a generalization to the facet model:
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n

∑
i=1

Ai(x)φi(x)

∥∥∥∥∥
w

=
∫ (

fnoisy (y)−
n

∑
i=1

Ai (x)φi(y)

)2

w(y− x)dy. (4)

This is essentially a weighted L2 norm, where w(·) is a weight function which local-
izes the estimation of the parameters Ai(x0) (This error measure can also be applied
to a sampled signal). Both the continuous and the discrete cases, described above,
yield a process to compute the local model parameters Ai(x) and therefore for es-
timating the signal f̂ (x), not only at x0 but at all x. This process is the well-known
moving least squares estimation process.

We wish to emphasize that although our proposed methodology, discussed in the
next section, focuses on the L2 norm, this is by no means the only choice of error
measure. The choice of the error measure may be adapted to each particular problem
of interest. Other measures, such as the least sum of absolute values distance [18]
or L1 norm, can readily be substituted into the cost functionals.

3 Global priors on local model parameter variations

In the previous discussion we did not impose any conditions on the model parame-
ters Ai, and in the definition of the neighborhood around x0, via the weight functions,
we did not use any idea of adaptation to the data.

Suppose now that we are given some structural knowledge of the signal f (x). We
would like to use this knowledge to improve the estimation process. For example,
suppose we a priori know that f (x) is a piecewise polynomial signal over a set of
intervals, i.e., we know that:

f (x) =
n

∑
i=1

Ar
i x

i−1 f or x ∈ [xr,xr+1] (5)

but we do not know the sequence of breakpoints {xr}. Using polynomial basis func-
tions

[
1,x,x2, ...,xn−1

]
, we know a priori that a good estimate for f (x) may be pro-

vided by piecewise constant sets of parameters {A}, over [xr,xr+1] segments, and
changes in the parameters occur only at the breakpoints {xr}. Such knowledge pro-
vides us the incentive to impose some global prior on the parameters, such that the
minimum achieved by the optimization process, will indeed favor them to be piece-
wise constant. This may be achieved by supplementing the moving least squares
local fitting process with constraints on the variations of the parameters in the mini-
mization process. Thus, we shall force the estimated parameters not only to provide
the best weighted local fit to the data, but also to be consistent with the local fitting
over adjacent neighborhoods. This is where we diverge and extend the facet model,
which assigns the basis function’s parameters at each point, using solely a local least
square fit process.

In this paper, the assumed structural knowledge of the signal implies that good
estimates can be achieved by a piecewise constant model i.e., a model whose pa-
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rameters are piecewise constant. Therefore the focus of this work will be to de-
sign functionals which also impose global priors on the model parameters. We shall
demonstrate that one can design a functional that does indeed fulfil this requirement.

The mix of local fitting and global regularity is the main idea and power behind
over-parameterized variational methods and is what makes them a versatile prob-
lem solving tool. By adapting the local fitting process and incorporating the global
prior (in a way that will be described in the following sections), this methodology
can be readily applied to address problems in various domains.

4 The over-parameterized functional

In [14] Nir and Bruckstein presented a first attempt at noise removal based on an
over-parameterized functional. This functional was, similarly to many well known
functionals, a combination of two terms, as follows:

E ( f ,A) = ED ( f ,A)+αES (A) . (6)

Here α , is some fixed relative weight parameter, ED is a data or fidelity term, and
ES is a regularization term. The data term ED was chosen to:

ED( f ,A) =
∫ (

fnoisy(x)−
n

∑
i=1

Ai(x)φi(x)

)2

dx. (7)

Note that this functional implies a neighborhood of size 0 in the distance measure
(4), which means that this data term only penalizes for point-wise deviations of the

estimated signal via
n
∑

i=1
Ai(x)φi(x) from fnoisy.

The smoothness or regularization term, ES, was defined to penalize variations of
the parameters Ai as follows

ES(A) =
∫

Ψ

(
n

∑
i=1

A′
i(x)

2

)
dx (8)

where Ψ
(
s2
)
=
√

s2 + ε2.
The resulting functional yields a channel-coupled total variation (TV) regular-

ization process for the estimation of the model parameters. Note that (8) is an ap-
proximated L1 type of regularizer (sometimes referred to as the Charbonnier penalty
function). This regularizer causes the functional to be more robust to outliers, and al-
lows for smaller penalties for high data differences (compared to a quadratic regular-
izer), while maintaining convexity and continuity [19, 20]. The regularization term
was designed to impose the global prior on the parameters. It is channel-coupled to
”encourage” the parameters to change simultaneously, thus preferring a piecewise
constant solution as described in Section 3.
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In our experiments (which are discussed in Section 7), as well as in [14] , this
functional displayed good performance for noise removal compared with Rudin Os-
her and Fatemi’s [21] classical total variation noise removal functional. A similar
functional, with data term modifications, was used by Nir et al. in [13] for optical
flow estimation, producing state of the art results.

4.1 The over-parameterized functional weaknesses

Despite the good performance displayed by the over-parameterized functional, it
still lacks with regard to the following shortcomings, that were clear in our experi-
ments:

Discontinuities smearing: As mentioned, the regularization term is an approxi-
mate L1 regularizer. A precise L1 regularizer is indifferent to the way signal dis-
continuities appear, i.e., the same penalty is given to a smooth gradual signal
change, and to sharp discontinuities (as long as the total signal difference is the
same). See for example Pock’s PhD work [22] for a detailed example. We con-
sider this property as a shortcoming, because we expect the reconstructed param-
eters to be piecewise constant, where discontinuities appear as relatively few and
sharp changes, hence this regularizer does not convey the intended global prior
on the parameters, and does not prefer a ”truly” piecewise constant solution.
In practice the problem is even more severe: first the selection of ε constant, in
the Charbonnier penalty function, proves to be problematic. Choosing a bigger
ε value causes the functional to lose the ability to preserve sharp discontinuities
and actually prefers to smooth out discontinuities. On the other hand, choos-
ing a smaller ε value degenerates the penalty function. In fact, for any choice
of ε , this penalty function will tend to smooth sharp discontinuities. Second, as
discussed above the TV-L1 model suffers from the so called staircasing effect,
where smooth regions are recovered as piecewise constant staircases in the re-
construction. See the work of Savage et al. [23] and references therein, for a
detailed review of such effects.

Origin biasing: The over-parameterized functional’s global minimum may de-
pend on the selected origin of the model. In the over-parameterized methodology
we consider basis functions which are defined globally across the signal domain.
This definition requires us to fix an arbitrary origin for the basis functions. As
the true parameters value may vary with a change of the origin choice, thus the
value of the regularization term may also vary. For instance, consider the value
of the constant term in a linear function, which determines the point at which the
line crosses the y-axis. Change of the y-axis location i.e., the origin location, will
incur achange in the value the constant term. This dependency on the choice of
the basis function origin is termed Origin biasing. A detailed example, regarding
the optical flow over-parameterized functional with affine flow basis functions,
is given in the work of Trobin et al. [24].
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We also note that the data term presented above only penalizes for point-wise
deviation form the model, hence it imposes only a point-wise constraint on the
functional’s minimum, relying only on the regularization term to impose the global
constraint. A discussion why this is a problematic issue is given in Section 5.3.

Overall, it is evident, that despite producing good results when applied to vari-
ous applications, the over-parameterized functional model is fundamentally flawed
when attempting to accomplish parameter reconstructions. On one hand the over-
parameterized model provides a solution domain wider than the TV model, for
the functional to ”choose” from, thus often enabling convergence to excellent de-
noising solutions, on the other hand the constraints applied to the solution do-
main, through the functional, are not strong enough as to impose convergence to
piecewise-constant-parameters solution, as demonstrated in Section 7.

5 The non-local over-parameterized functional

To overcome the shortcomings described in Section 4.1, we shall modify the func-
tional, both in the data term and in the regularization term, as described below

5.1 The modified data term: a non-local functional implementing
MLS

In order to overcome the point-wise character of the data term, and to impose a
neighborhood constraint in the spirit of (4) in the data term, we extend it to what
is commonly referred to as a non-local functional [15, 25, 26]. This is done simply
by means of defining a weighting function which considers more then point-wise
differences.

Making the data term a non-local functional, requires the parameters to model
the signal well over a neighborhood of each point. We note that the robustness of
the parameters estimate increases with the size of the support set. On the other hand,
increasing the size of the support set too much, may reduce the functional’s ability
to detect discontinuities and to preserve them.

The non-local data term functional is

ED =
∫
x

∫
y

(
fnoisy(y)−

n

∑
i=1

Ai (x)φi(y)

)2

w(x,y)dydx (9)

and it conforms to the functional form of the weighted least squares fit distance
defined in Section 2. Note that there is yet no restriction on the size or shape of the
support set around each point that is induced by the weighting function w(x,y).
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For the 1D case thoroughly explored in this work we defined a simple yet pow-
erful sliding window weighting function, as described in Section 5.1.1. The search
for optimal data dependent weighting functions is an interesting possibility and will
be the subject of future research.

5.1.1 Weighting scheme

The choice of the weighting scheme is of great importance. For each location x0, the
weighting scheme expresses the support set from which the parameters are to be re-
constructed from i.e., the set of samples which are used for the implicit MLS fitting
process calculated in the minimization process. Thus the weighting scheme should
be designed in such a manner which, at points near a discontinuity, will prevent
the combination of samples from different sides of the discontinuity, thus enables
the preservation of signal discontinuities in the reconstruction process. This implies
that a simple box or gaussian window around each location x0 will not suffice, as it
may spread a discontinuity across several samples around the actual location of the
discontinuity (which was evident in various experiments we performed).

In order to avoid this behavior, we defined a sliding window weighting function,
which is closely related to concepts of ENO schemes used for the approximation of
hyperbolic conservation laws first introduced in the fundamental work of Harten et
al. [27] (a thorough description was presented by Shu in [28]). For each point x of the

signal, we choose a window W of length N such that, x ∈W and r (x) =
N
∑
j=1

r (x,y j)

is minimal, where y j ∈W and r (x,y j) is the non-weighted least squares fit distance
at x:

r (x,y j) =

(
fnoisy(y j)−

n

∑
i=1

Ai (x)φi(y j)

)2

. (10)

Specifically, we chose a successive set of points of size N which include x and
also minimizes r (x). For example, for a window of size 5, there are 5 window pos-
sibilities as described below:

x-5 x-4 x-3 x-2 x-1 x x+1 x+2 x+3 x+4 x+5

W1

W2

W3

W5

W4

We mark the chosen window by wx, and the selected weight function will then
be:



On Globally Optimal Local Modeling 9

w(y− x) =


1
N i f y ∈ wx

0 otherwise
(11)

By no means do we claim that this is the best choice of the weighting func-
tion. This is but one possible, adaptive weighting function selection process, that
enhances the data term to impose a non point-wise constraint, while allowing for
the preservation and sharpening of discontinuities in the signal and that was found
to yield good results. Note that the choice of the window is sensitive to noise, there-
fore for achieving better results we updated the selected window at each location
throughout the minimization process as described in section 6.

5.2 The modified regularization term

We extend the over-parameterized regularization term using the Ambrosio-Tortorelli
(AT) scheme [29] in a similar manner as done in [30] for the TV functional, while
retaining the L1 penalty function as proposed by Shah [31, 32], and applied to the
over-parametrization functional by Rosman et al. [33]. This functional transforms
the regularization into an implicit segmentation process, each segment with it’s own
set of parameters. In effect, the AT scheme allows the regularization term to pre-
fer few parameter discontinuities and to prevent discontinuities from smearing into
neighboring pixels via the diffusion process, thus allowing piecewise smooth solu-
tion. This directly addresses the discontinuities smearing effect described in Section
4.1. The choice of L1 regularizer, as opposed to the L2 regularizer in original AT
scheme , is due to the fact that a L1 regularizer better encourages a piecewise con-
stant solution, which is the intended global prior we wish to impose on the solution.
Exploration of different sub-L1 regularizer function, is beyond the scope of this
paper.

The chosen AT regularization term is:

ES,AT =
∫

(1− vAT )
2Ψ

(
n

∑
i=1

||A′
i||2
)
+ρ1(vAT )

2 +ρ2
∥∥v′AT

∥∥2 (12)

where vAT is a diffusivity function, ideally serving as an indicator of the parameters
discontinuities set in the signal model. Suppose we have a piecewise linear signal,
and an ideal solution (A∗,v∗AT ) where A∗ is piecewise constant, and the diffusivity
function v∗AT is 1 at the linear regions boundaries and 0 elsewhere. With such a so-
lution, we expect two neighboring points, belonging to different regions, to have
a very small, in fact negligible, diffusivity interaction between them. This is con-
trolled by the value of v∗AT at those points, which effectively cancels the diffusivity
interaction between the different sets of linear parameters. Furthermore, the cost
associated with this solution is directly due to the discontinuity set measure in the
signal i.e., to
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ρ1(vAT )

2 +ρ2
∥∥v′AT

∥∥2 (13)

hence the penalty no longer depends on the size of the signal difference at discon-
tinuities. Moreover, the AT regularization addresses the origin biasing effect, de-
scribed in Section 4.1, by making the functional much less sensitive to the selected
origin. This is due to the fact that ideally we consider only piecewise constant pa-
rameters solutions. These solutions nullifies the regularization term energy at every
location except for discontinuities where the energy depends solely on energy (13).
Therefore the ideal piecewise constant solution becomes a global minimizer of the
functional.

5.3 Effects of the proposed functional modifications

An obvious question arises: why do we need to modify both data and regularization
terms? To answer this, we first notice that using only the non-local data term im-
proves the local parameter estimates, but cannot prevent the discontinuities smear-
ing effect. A moving least squares process, with small window, will yield excellent
parameter estimates, but is unable to prevent the diffusion process from combin-
ing data from neighboring segments, thus smoothing and blurring the estimates at
boundaries locations. Therefore we need to add the AT scheme to the functional,
which has the ability to prohibit the diffusion process at discontinuities.

But then one might expect that the AT scheme without the non-local data term
would suffice, by segmenting the regularization into piecewise constant regions,
and relying on the data term and the global regularization to recover the correct
parameters for each segment. In practice this is not the case. Consider the following
illustrative test case: ys a discontinuous signal, depicted in Figure 1, and suppose we
initialize the model parameters to a smoothed version of ys achieved by calculating
the moving least squares fit solution, with a centralized window, on the clean signal.
We will now discuss applying different functionals for reconstructing the model
parameters from clean signal ys and the initialized smooth parameters.
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Fig. 1: Solid line - ys a piecewise linear signal with one discontinuity. Dashed line -
a smooth version of ys with which we initialized the model parameters

Figures 2 and 3, depict snapshots of the reconstructed signal, parameters, and the
resulting AT indicator function vAT at different time steps of the minimization pro-
cess. We used α = 0.05 and α = 10 respectively. These are snapshots of the mini-
mization process of the point-wise over-parameterized functional, modified with the
AT regularization term (MOP). Both minimizations were carried out until conver-
gence. It is evident that the reconstructed parameters are not piecewise constant, as
we would like to have from our prior information on the signal. Also, it is important
to note that in the first series the signal is perfectly reconstructed, effectively nul-
lifying the data term, and in the second series the signal is smoothed, however the
data term energy is still very low.

In contrast, Figure 4 depicts a series of snapshots of the minimization process of
the non-local over-parameterized functional (NLOP). Note that here the parameters
are perfectly reconstructed, the AT indicator function vAT receives a value close to
one only in the vicinity of the discontinuity and also the signal is perfectly recon-
structed.

Assuming that the result achieved by the NLOP functional is very close to the
global minimum of both functionals, we calculated using interpolation, hypotheti-
cal steps of a minimization from the solution achieved by the MOP functional to
the global minimum. We then calculated the energy of the MOP functional on each
hypothetical step. It becomes obvious that the energy of the functional is raising be-
fore dropping to the energy level of the global minimum. Separate calculation of the
energy of the data and the regularization terms, indicates that most of the functional
energy is concentrated in the regularization term. In the transition between the local
and global minimum solutions, the regularization term energy raises and dictates the
total energy change, while the data term contribution is negligible.

The solutions to which the MOP functional converges and energy considerations,
lead us to the conclusion that the MOP functional is converging into a local min-
imum solution. This ”trapping” effect is alleviated in the NLOP functional, where
the presumed local minimum, achieved by the MOP, is no longer a local minimum.
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This is due to the fact that it is much more difficult to drive the energy of the non-
local data term close to zero and it contributes significantly to drive the parameters
toward their correct values. Thus, the minimization process does not halt and con-
tinues toward the global minimum.
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Fig. 2: From left to right, snapshots at various times, of the point-wise over-
parameterized functional modified with the AT regularization term, with relative
weight of Es α = 0.05, ρ1 = 7.5 and ρ2 = 5. The top image displays the recon-
structed signal and the vAT indicator function. The bottom image displays the re-
constructed parameters.
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Fig. 3: From left to right, snapshots at various times, of the Mpoint-wise over-
parameterized functional modified with the AT regularization term, with relative
weight of Es α = 10, ρ1 = 7.5 and ρ2 = 5. The top image displays the reconstructed
signal and the vAT indicator function. The bottom image displays the reconstructed
parameters.
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Fig. 4: From left to right, snapshots at various times, of the NLOP functional. The
top image displays the reconstructed signal and the vAT indicator function. The bot-
tom image displays the reconstructed parameters.

5.4 Euler-Lagrange equations

Once we designed the functionals to be minimized, by interchangeably fixing the
Ai(x), i = 1...n and vAT (x) functions, we readily obtain the Euler-Lagrange equa-
tions which characterize the minimizers of the functional.

5.4.1 Minimization with respect to Aq(x),q = 1...n (parameter minimization
step).

Fixing vAT (x), we obtain
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∀q = 1...n, ∇AqED − d
dx

(
∇A′

q
αES,AT

)
= 0. (14)

the variation of the data term with respect to the model parameter functions Aq(x) is
given by

∇AqED = 2
∫
y

(
fnoisy(y)−

n

∑
i=1

Ai (x)φi(y)

)
φq(y)w(x,y)dy. (15)

For the smoothness term, the Euler-Lagrange equations are

d
dx

(
∇A′

q
αES,AT

)
= 4α (1− vAT )v′ATΨ ′

(
n

∑
i=1

||A′
i||2
)

A′
q

+2α(1− vAT )
2 d

dx

(
Ψ ′

(
∑

j
||A′

i||2
)

A′
q

)
(16)

thus, the energy is minimized by solving the following nonlinear system of equa-
tions at each point x, ∀q = 1...n

2
∫
y

(
fnoisy(y)−

n

∑
i=1

Ai (x)φi(y)

)
φq(y)w(x,y)dy

−4α (1− vAT )v′ATΨ ′

(
n

∑
i=1

||A′
i||2
)

A′
q

−2α(1− vAT )
2 d

dx

(
Ψ ′

(
∑

j
||A′

i||2
)

A′
q

)
= 0. (17)

5.4.2 Minimization with respect to vAT (x) (AT minimization step).

Fixing the functions Ai(x), i = 1...n, we obtain

−2α (1− vAT )Es +2ρ1 (vAT )−ρ2(v′′AT ) = 0. (18)

6 Implementation

We used central first and second derivatives and reflecting boundary conditions. In
all the methods, we used various α ,ρ1 and ρ2 constants, depending on the noise
level, as is common in noise reduction methods (this was done for all the considered
algorithms, with the appropriate parameters). In all the examples, we assumed a
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sampling interval of dx = 1. For the minimization process we used gradient descent
with 200000 iterations. This minimization method is a notoriously slowly converg-
ing method, but it is fast enough for our 1D example, and we intend to pursue a
faster implementations in future work.

We performed an AT minimization step every 100 parameter minimization steps,
and updated the weighting function every 1000 parameter minimization steps. We
used a window size of 10 sample points both for the NLOP functional, and for
the weighted least square fit method (used for initialization and reconstruction). We
note that using a bigger window size resulted in significantly superior results on all
tests, but this may not be the case in other signals. Choosing too big a window may
cause an overlap between adjacent discontinuities and prevent the functional from
correctly recovering them.

6.1 Initialization

In order to prevent trapping into local minima, we initialize the model parameters
from the noisy data by means of a robust MLS fitting i.e., we compute each point’s
parameters by choosing the best least square fitting approximation via a sliding win-
dow least square calculation. This was done in exactly the same manner as the slid-
ing window weighting function described in Section 5.1.1. The parameters chosen
are those which generated the minimal reconstruction error. This computation pro-
vided a robust initialization, which already preserves, to some extent, discontinuities
in the signal. This claim is strengthened by experiments we performed comparing
with a regular moving least square fitting initialization. We found that with the ro-
bust initialization, the functional converges to a better solution, and nicely exposes
the true discontinuities in the signal models.

7 Experiments and results

We conducted various experiments in order to verify the performance of the pro-
posed functional. In this paper we focus mainly on 1D examples leaving 2D exten-
sions to images for future publications, nevertheless we exhibit some initial exper-
iments conducted on 2D synthetic images which yield a good idea of the perfor-
mance to be expected in the 2D case.

7.1 1D experiments

We begin with the selection of the basis functions. We consider linear basis functions
of the form:
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φ1 = 1
φ2 = x (19)

This seemingly simple choice of functions, enables us to make comprehensive tests
of the functional performance. Under this choice, the functional is expected to have
the best performance on piecewise linear signals. We note that this is an arbitrary
choice of basis functions, and one should choose other basis functions appropriate
for the signal domain.

To perform the tests we devised a set of synthetic 1D signals, and added white
Gaussian noise with standard deviation ranging from ST D= 0.01 up to ST D= 0.25.
These signals can be separated to two main groups:

• The first group is comprised of noisy piecewise linear signals. This group is in-
teresting because it enables us to test the parameter reconstruction performance
as well as noise reduction capabilities, under the optimal basis functions. The
piecewise linear signals are depicted in Figure 5.

• The second group is comprised of noisy nonlinear signals, such as higher degree
polynomials. This group is interesting only with regard to the noise removal per-
formance, because generating the ground truth parameters for linear basis func-
tions is problematic and we do not expect the linear parameters to be piecewise
constant. Naturally, we could choose appropriate basis functions for these sig-
nals too, but we wanted to demonstrate that our functional preforms surprisingly
well, even when applied with suboptimal basis functions. The nonlinear signals
are depicted in Figure 6.

In order to the check the performance of NLOP functionals, and to test them
against other denoising algorithms, we also implemented the following noise re-
moval algorithms. The first two are the classic TV functional and the original over-
parameterized functional (OP). We chose these functionals due to their relation to
the NLOP functional, enabling us to show the improvement that the NLOP has on
predecessor functionals. The third and final algorithm, is the state of the art K-SVD
noise removal algorithm, firstly proposed by Aharon et al. [7]. We used implemen-
tation published by Rubinstein et al. [34].

We compared the various algorithms noise reduction performance and, more im-
portantly, we compared their parameter reconstruction capability. For the latter com-
parison, we reconstructed parameters from the K-SVD denoised signal, using our
robust least square fitting method (see Section 6.1), and compared the results with
both our NLOP functional and the original OP functional.
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Fig. 5: The piecewise Linear test signals and their STD 0.05 noisy counterparts.
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Fig. 6: The nonlinear test signals and their STD 0.05 noisy counterparts. Left: a
polynomials signal of degree 2. Right: a signal of combined sine and cosine func-
tions.
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7.2 1D Results

Noise removal performance testing, was done by comparing the L2 norm of the
residual noise, that is the difference between the cleaned reconstructed signal and
the original signal:

EL2 =

∥∥∥∥∥ f (x)−
n

∑
i=1

Ai(x)φi(x)

∥∥∥∥∥
2

. (20)

Parameters reconstruction performance testing (which with the linear basis func-
tion, is only relevant on the piecewise linear signals), was done by calculating the
L2 norm of the difference between the reconstructed parameters and the original pa-
rameters, with whom we generated the signal. Figure 7 depicts an example of the
recovered parameters and the vAT indicator function obtained for the ”Many jumps
& discontinuities” signal.

0 50 100 150 200 250 300

−0.5

0

0.5

1

Fig. 7: Example of parameters reconstruction. Note that the indicator function tends
to 1 where the signal has parameters discontinuities and tends to 0 in almost any
other location.

Figure 8, displays graphs comparing performance of the various algorithms on
piecewise linear signals. The left graphs display the noise removal error norms,
while the right graphs display parameters reconstruction error norms.

On various noise removal performance graphs we can see the excellent perfor-
mance of both OP and NLOP functionals, reinforcing the claims of outstanding
noise removal performance obtained by the OP functional and maintained by our
new functional. Also, we can see that when the signal contains a discontinuity, such
as in the ”One discontinuity” signal (as apposed to a continuous signal with only
parameters discontinuity such as the ”One jump” signal), the NLOP functional has
greater ability to cope with the discontinuity, thus generating better results than the
OP functional. In Figure 9 we display comparison of the residual noise of all the
algorithms on the ”One discontinuity” and the ”Many jumps & discontinuities” sig-
nals.



20 Shachar Shem-Tov, Guy Rosman, Gilad Adiv, Ron Kimmel and Alfred M. Bruckstein

0.000 0.100 0.200 0.300

0.00

1.00

2.00

3.00

non-local op

op

ksvd

tv

Noise level

e
r
r
o

r
 n

o
r
m

(a) One jump signal

0.000 0.100 0.200 0.300

0.00

5.00

10.00

15.00

non-local op

op

ksvd

Noise level

e
r
r
o

r
 n

o
r
m

(b) One jump parameters

0.0 0.1 0.2 0.3

0.00

1.00

2.00

3.00

non-local op

op

ksvd

tv

Noise level

e
r
r
o

r
 n

o
r
m

(c) One discontinuity signal
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(d) One discontinuity parameters
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(e) Many jumps & discontinuities signal
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Fig. 8: Signal noise removal and parameters reconstruction comparison for the var-
ious piecewise Linear signals. On the left column depicted are graphs compering
the L2 norm of the residual noise of the various algorithms. On the right column
depicted are graphs compering the L2 norm of the various algorithms reconstructed
parameters compared to the expected parameters.

When considering parameters reconstruction performance, we see a totally dif-
ferent picture. We see that on most cases, particularly in signals which contains
signal discontinuity, the NLOP functional and the K-SVD algorithms both outper-
form the OP functional. This result demonstrates our claim, in Section 4.1, that
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the OP functional lacks the possibility to well enforce a global prior on the recon-
structed parameters. Figure 10 compares the reconstruction results of NLOP func-
tional, OP functional and the reconstruction from the denoised K-SVD signal, on the
”One discontinuity” signal. Note the reconstruction of NLOP functional is close to
a piecewise constant solution, while the OP reconstruction is seemingly a smoothly
changing function. In the K-SVD reconstruction, where at each point a set of param-
eters is chosen regardless of the choice made for it’s adjacent neighbors, the lack of
influence of enforcement of a global constraint is evident.
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Fig. 9: Residual noise comparison of noise removal. (a): one discontinuity signal
with noise ST D = 0.0375. (b): ”many jumps & discontinuities” signal with noise
ST D = 0.05.
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Fig. 10: This figure compares the reconstructed second parameters on the various
algorithms, when denoising the ”One discontinuity” signal. Left image: Compar-
ison of parameter reconstruction between NLOP functional and OP functional on
one discontinuity signal. Note how far the OP reconstruction is from a piecewise
solution, while generating an excellent denoising result (seen in the relevant graph).
Right image: Comparison of parameter reconstruction between NLOP functional
and K-SVD algorithm on one discontinuity signal. Note the apparent lack of global
constraint on the parameters in the K-SVD reconstruction.

In Figure 11, we compare the noise removal performance on the nonlinear sig-
nals. We can see that the NLOP functional still exhibits the best performance but it
is not unchallenged by the OP functional. This is due to the strong constraints the
NLOP functional has in trying to enforce the linear basis functions, i.e., trying to
find a piecewise linear solution suitable for the given signal.
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Fig. 11: Signal noise removal comparison of the nonlinear signals.
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Indeed, in order to see that our functional performance is not restricted by the
basis function, and to verify that indeed better performance is achieved if we choose
a better set of basis functions to model the signal domain, we performed several
tests with higher degree polynomials. We display in Figure 12, results achieved by
denoising the polynomial signal displayed in Figure 6, while changing the NLOP
functional basis functions to a 2nd degree (TODO: change to 2nd) polynomial. In
general we expect a polynomial signal to be best recovered by polynomial basis
functions of the same degree. This is clearly depicted in the graph displayed in Fig-
ure 12, where we see better performance by NLOP with polynomial basis function
compared to NLOP with linear basis functions.

0.000 0.100 0.200 0.300

0.00

0.50

1.00
non-local op

non-local op poly

Noise level

e
r
r
o

r
 n

o
r
m

Fig. 12: Comparison of noise removal performance on the polynomial signal. In this
figure we compare performance of the NLOP functional with linear basis functions
(marked by non-local OP), and NLOP functional with polynomial basis functions
(marked by non-local OP poly).

Another test we performed with polynomial basis functions, was on a C1 contin-
uous 2nd degree polynomial displayed in Figure 13. This is an interesting case, as
both this signal and it’s first derivative are continuous, and only the second deriva-
tive is discontinuous. We found that this signal proved challenging for the MLS
initialization method, causing it to misplace the point of discontinuity by several
points. This initialization error was not detected by the NLOP functional, which
maintained it throughout the minimization process, as displayed for example in Fig-
ure ??. The location of the discontinuity point depends on the random noise. We
wish to emphasize that the reconstructed solutions achieved by the minimization
of the NLOP functional have piecewise constant reconstructed parameters, which
generate a piecewise smooth polynomial solution. This reconstructed signal may as
well be the signal from which the noisy signal was generated. Also, the solution
achieved by the NLOP functional outperformed the K-SVD method, as displayed in
the graphs in Figure 14.
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Fig. 13: C1 continuous 2nd degree polynomial. Point of the second derivative dis-
continuity is marked by a red cross (or vertical black line). Top row: images of the
signals. Middle row: images of the reconstructed signals and the vAT indicator func-
tions. Bottom row: the reconstructed parameters. From left to right: clean signal,
0.01 STD noise, 0.0375 STD noise.
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Fig. 14: Signal noise removal and parameters reconstruction comparison for the C1
continuous 2nd degree polynomial.
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7.3 2D example

We also ran initial tests on a 2D example. The non-local over-parameterized method
extends naturally to higher dimensions. We implemented the 2D case in a similar
manner to the 1D case, and chose a linear basis functions of the formφ1 = 1

φ2 = x
φ3 = y

(21)

In Figure 15, we show the 2D example, the NLOP functional noise removal result. In
Figure 16, we display the parameters which were reconstructed in the minimization
process and the generated vAT indicator function. We can see that the vAT indicator
function managed to segment the signal in a good manner, although still delineated
some ghost segments especially near the image edges. Note that the recovered pa-
rameters are almost piecewise constant as expected.

A more thorough discussion of the 2D case is out of the scope of this paper. We
intend to explore it extensively in the near future.
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Fig. 15: A 2D noise removal example of the 2D NLOP functional.
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Fig. 16: Example of the reconstructed parameters from the noisy image and vAT AT
scheme indicator function.

8 Conclusion

A general over-parameterized variational framework for signal and image analysis
was presented. This framework can be applied to various image processing and
vision problems, such as noise removal, segmentation and optical flow computation.
This framework is closely related to the powerful moving least squares method,
enhancing it by globally constraining the parameter variations in space based on
knowledge available on the problem domain. This knowledge enables a model based
reconstruction of the considered signal, by effectively recovering parameters of an
a priori, assumed to be known, set of ”basis” or ”dictionary functions”.

The new variational framework relies on the successful over-parameterized func-
tional, and significantly improves it by making it non-local and giving it the power
not only to generate excellent results for the problem domain (such as noise re-
moval), but also to reconstruct the underling model parameters that might capture
prior information on the problem.

This paper may be viewed as the basis of extensive future research. First of all
we wish to thoroughly explore the extension of the non-local over-parametrization
functional into 2D settings, where the choice of the support set, expressed by the
weighting function, becomes a challenging matter. We also intend to return to the
optical flow problem, trying to recover a 3D scene representation while calculating
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the optical flow. Finally we would like to extend the proposed framework to other
problem domains in computer vision.
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