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Abstract. The Laplace-Beltrami operator is an extension of the Lapla-
cian from flat domains to curved manifolds. It was proven to be use-
ful for color image processing as it models a meaningful coupling
between the color channels. This coupling is naturally expressed in
the Beltrami framework in which a color image is regarded as a two
dimensional manifold embedded in a hybrid, five-dimensional, spatial-
chromatic (x, y,R,G,B) space.

The Beltrami filter defined by this framework minimizes the Polyakov
action, adopted from high-energy physics, which measures the area of the
image manifold. Minimization is usually obtained through a geometric
heat equation defined by the Laplace-Beltrami operator. Though efficient
simplifications such as the bilateral filter have been proposed for the
single channel case, so far, the coupling between the color channel posed
a non-trivial obstacle when designing fast Beltrami filters.

Here, we propose to use an augmented Lagrangian approach to design
an efficient and accurate regularization framework for color image pro-
cessing by minimizing the Polyakov action. We extend the augmented
Lagrangian framework for total variation (TV) image denoising to the
more general Polyakov action case for color images, and apply the pro-
posed framework to denoise and deblur color images.

Keywords: Laplace-Beltrami, diffusion, optimization, denoising, PDEs.

1 Introduction

Variational, nonlinear diffusion filters have been extensively used in the last two
decades for different image processing tasks. Numerical schemes implementing
them are designed with an emphasis on accuracy, stability and computational
efficiency. While a many of the works on image regularization involve greyscale
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images, only a small portion has made a coherent attempt at regularizing vector-
valued signals.

These works, several of which are inspired by [39], describe regularization
functionals which operate on vector-valued images. These include the works of
Sapiro and Ringach [27], Blomgren and Chan [4], and Sochen et. al. [30], as well
as more recent works such as ([34,14]). The Beltrami framework [30] describes
a regularizing functional, well suited for color image processing, which can be
justified by the Lambertian model of color image formation. The framework
considers the image as a 2-manifold embedded in a hybrid spatial-feature space.
Regularization of the image in this framework is expressed as minimization of
area surface. The Beltrami filter is strongly related to the bilateral filter (see
[37], [28], [33], [29], [13], [3]), as well as to the nonlocal means filter, proposed
in [1]. Minimization of the associated functional is usually done by evolving
the image according to its Euler-Lagrange equation [30]. This evolution, using
an explicit scheme, is limited in its time step, resulting in high computational
complexity. Another possibility [2] is to perform a fixed-point iteration from
the Euler-Lagrange equation. Recently, several approaches were suggested for
improving the speed of computation of minimizers for the Polyakov action [22].
Those include an approximation of the Beltrami filter kernel [31], as well as
employing vector extrapolation techniques [24], or operator splitting methods
[11]. For the case of gray-scale images, the projection-based method [8] has been
extended to the Polyakov function [5], with no suggestions made for vector-
valued images.

In [32], the augmented Lagrangian method [15,23] is used to perform TV
regularization of images. In this paper we propose to use a similar constrained
optimization for regularization of color images. Instead of discretizing the con-
tinuous optimality condition or the resulting Beltrami flow, we minimize the
discretized Polyakov action itself. The resulting method is shown to be more
efficient and accurate for image denoising and deblurring, compared to existing
methods for Beltrami regularization in image processing. In Section 2 we review
the Beltrami framework for color image regularization. In Section 3 we extend
the coupled constrained optimization approach demonstrated in [32] to regular-
ize color images by the Polyakov action. In Section 4 we display results of using
our method for deblurring color images. Section 5 concludes the paper.

2 The Beltrami Framework

We now briefly review the Beltrami framework for non-linear diffusion in com-
puter vision [18,30,38]. The basic notions used in this introduction are taken
from Riemannian geometry, and we refer the reader to [12] for further reading.

In the Beltrami framework, images are expressed as maps between two Rie-
mannian manifolds. Denote such a map by X : Σ → M , where Σ is a two-
dimensional manifold, parameterized by global coordinates (σ1, σ2), and M is
the spatial-feature manifold, embedded in R

d+2, where d is the number of im-
age channels. For example, a gray-level image can be represented as a surface
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embedded in R
3. The map X in this case is X(σ1, σ2) = (σ1, σ2, I(σ1, σ2)),

where I is the image intensity. For color images, X is given by X(σ1, σ2) =
(σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)), where I1, I2, I3 are the color compo-
nents (for example, red, green, blue for the RGB color space).

Next, we choose a Riemannian metric on this surface. Its components are
denoted by gij . The canonical choice of coordinates in image processing uses
Cartesian coordinates σ1, σ2 = x, y. We denote the elements of the inverse of the
metric by superscripts gij , and the determinant by g = det(gij).

Once images are defined as Riemannian embeddings, we can look for a measure
on this space of embedding maps. Denote by (Σ, g) the image manifold and its
metric, and by (M,h) the space-feature manifold and its metric. The functional
S[X ] characterizes the mapping X : Σ → M , and is defined to be

S[X, gij, hab] =

∫
dmσ

√
g||dX ||2g,h, (1)

where m is the dimension of Σ, g is the determinant of the image metric, and
the range of indices is i, j = 1, 2, ..., dim(Σ) and a, b = 1, 2, ..., dim(M). The
integrand ||dX||2g,h is given by ||dX ||2g,h = (∂xiI

a)gij(∂xjI
b)hab. We use here

Einstein’s summation convention: identical indices that appear up and down
are summed over. This functional, for dim(Σ) = 2 and hab = δab, is known in
string theory as the Polyakov action [22], and extends the action functional from
classical mechanics to the relativistic case.

In the case of color images, where both the spatial and the color spaces are
assumed to be Cartesian, the metric becomes

(gij) =

(
1 + β2

∑3
a=1(I

a
x1
)2 β2

∑3
a=1 I

a
x1
Iax2

β2
∑3

a=1 I
a
x1
Iax2

1 + β2
∑3

a=1(I
a
x2
)2

)
= G,

where a subscript of Ia denotes a partial derivative and the parameter β > 0
determines the ratio between the spatial and color coordinates. The functional
becomes

S(X) =

∫ √
g dσ1 dσ2, g = det(G) = 1 + β2

3∑
a=1

‖∇Ia‖2 + β4

2

3∑
a,b=1

‖∇Ia ×∇Ib‖2,

The role of the cross product term
∑3

a,b=1 ‖∇Ia × ∇Ib‖2 in the regularization
was explored in [18],[17]. It penalizes deviations from the Lambertian model of
image formation [18], or specifically – misalignment of the gradient directions
between color channels.

The functional S is usually minimized by time evolution of the image accord-
ing to the Euler-Lagrange equations,

Iat = − 1√
g
hab δS

δIb
=

1√
g
div (D∇Ia)

︸ ︷︷ ︸
ΔgIa

, (2)
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where the matrix D =
√
gG−1. See [30] for explicit derivation. The operator

Δg generalizes the Laplacian to manifolds, and is called the Laplace-Beltrami
operator. Evolution according to these equations result in the Beltrami scale-
space.

The functional can also be generalized to the family of functionals

∫ √√√√β1 + β2

3∑
a=1

‖∇Ia‖2 + β3

3∑
a,b=1

‖∇Ia ×∇Ib‖2, (3)

for any positive β1, β2, β3. While this approach cannot be explained by the min-
imal area interpretation, it makes sense in terms of color image restoration, and
will be used in the results shown in Figure 4.

In the variational framework, the reconstructed image minimizes a cost-
functional of the form

Ψ =
α

2

3∑
a=1

‖KIa − Ia0 ‖2 + S(X),

where K is a bounded linear operator. In the denoising case, K is the identity
operator Ku = u, and in the deblurring case, Ku = k ∗ u, where k(x, y) is the
blurring kernel. The parameter α controls the smoothness of the solution. This
functional has been used for image denoising [30,2] and blind deconvolution [16],
and its relation to active contours explored in [6]. We introduce an approach for
optimizing the functional Ψ using the augmented Lagrangian method.

3 An Augmented Lagrangian Approach for Beltrami
Regularization

In recent years, several attempts have been made of optimizing total variation
functionals [26] using dual variables (we refer the reader to [9,7,8,20,35,32,36] and
references therein, as well to more references found in the technical report [25]).
These algorithms achieved great accuracy and efficiency, and are considered to
be among state-of-the-art methods for TV restoration.

Specifically, in [32], total variation regularization is obtained by decoupling
the optimization problem

min
u

∫
|∇u|+ α

2
‖Ku− f‖2 (4)

into a constrained optimization problem

min
u,q

∫
|q|+ α

2
‖Ku− f‖2 s.t. q = ∇u, (5)

where q is a auxiliary field, parallel to the gradient of u. This constraint is
then incorporated using an augmented Lagrangian penalty function of the form
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ρμ,r(u,q) = µT (∇u − q) + r
2

(‖∇u− q‖2). The penalty is used to enforce the
constraint q = ∇u, without making the problem severely ill-conditioned.

We now describe a similar construction for the Polyakov action. Again, it is
important to stress we are minimizing the functional itself, rather than discretiz-
ing the resulting minimizing PDE as in [30,16,31,2,24,11].

We deal with the case of color images, for which the regularization offered by
the Beltrami framework is more meaningful. Specifically, we replace the gradient
norm penalty used in TV regularization by the action functional of Equation 1.
This is done by replacing the first term in Equation 5 by the term

∫ √√√√1 + β2
∑

i∈{R,G,B}
‖qi‖2 + β4

2

∑
i∈{R,G,B}

∑
j �=i

‖qi × qj‖2, (6)

where β is the spatial-intensity aspect ratio, and {qi}i∈{R,G,B} denote compo-
nents of the field q, parallel to the gradient of each of the image channels. We
then trivially extend the rest of the functional to the vectorial (per-pixel) case,
obtaining the following functional

LBEL(u,q,µ) =

∫ { √
1 + β2

∑
i∈{R,G,B} ‖qi‖2 + β4

2

∑
i∈{R,G,B}

∑
j �=i ‖qi × qj‖2 +∑

i∈{R,G,B} µ
T
i (qi −∇ui) +

α
2 ‖Ku− f‖2 + r

2

∑
i∈{R,G,B} ‖qi −∇ui‖2

}
,

which corresponds to Beltrami regularization. The expressions optimizing u and
µ are replaced by their per-channel equivalents, {ui} and {µi}, for i ∈ {R,G,B}.
The augmented Lagrangian algorithm for regularizing an image using the
Polyakov action is given as Algorithm 1. At each inner iteration k, {ui}i∈{R,G,B}
is updated in the Fourier domain, as in [32],

Algorithm 1. Augmented Lagrangian optimization of the Beltrami framework

1: µ0 ←− 0
2: for k=0,1,. . . do
3: Update {ui}k,{qi}k:

({ui}k, {qi}k
)
= argmin{ui},{qi} LBEL({ui}, {qi}, {µk

i }) (7)

according to Equation 8 and Subsection 3.1.
4: Update the Lagrange multipliers according to Equation 9
5: end for

uk
i = F−1

{
αF{K∗}F{fi}−F{D−

x }((μ1
i )

k+r(pi)
k)−F{D−

y }((μ2
i )

k+r(qi)
k)}

αF{K∗}F{K}−rF{�}

}
, (8)
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where D−
x , D

−
y ,� denote the backward derivative along the x and y directions,

and the Laplacian operator, respectively, and F{·},F−1{·} denote the Fourier
transform and its inverse, respectively. We explicitly write qi = (pi, qi), i ∈
{R,G,B}, for the components of q of each color channel, approximating its x
and y derivatives, computed using backward differences.

We note that the optimization of u using the Fourier domain resembles, in
a sense, the approach taken by [21]. Since, however, it is done with respect
to the auxiliary field, iteratively, its effect is suited to the nonlinear nature of
the Beltrami flow. An update rule for the auxiliary field qi of each channel is
described in Subsection 3.1.

According to the augmented Lagrangian method, the Lagrange multipliers µi

are updated so as to approximate the optimal Lagrange multipliers,

(µi)
k = (µi)

k−1 + r
(
(qi)

k − (∇ui)
k
)
. (9)

Finally, the coefficient r is updated between each outer iteration by multiplying
r with a scalar γ > 1. We note r needs not be very large, thus avoiding ill-
conditioning of the functional LBEL(u,q, μ).

3.1 Updating the Auxiliary Field q

For optimizing q, a short inner-loop of a fixed-point solver with iterative
reweighted least squares (IRLS) allows us to efficiently obtain a solution. In
numerical experiments, optimization over q takes less than half the CPU time
of the algorithm. Furthermore, since this problem is solved per pixel, it can be
easily parallelized, for example on a GPUs.

The update of qi = (pi, qi), i ∈ {R,G,B}, the components of q at each pixel,
is done by optimizing the function

√√√√1 + β2
∑
i

(p2i + q2i ) +
β4

2

∑
i

∑
j �=i

(piqj − qipj)
2

+
r

2

∑
i

‖qi − (∇ui)‖2 +
∑

i∈{R,G,B}
(µk

i )
T (qi −∇ui),

where (∇u)i = ((ui)x, (ui)y)
T denote the components of the various image channel

gradients. Details of the update equations are given in the technical report [25].

4 Results

We now demonstrate the minimization of the Polyakov functional using the aug-
mented Lagrangian method, for various applications. More examples are shown
in the Technical report [25].

Scale-Space, Smoothing and Denoising: In Figure 1, results are shown for
smoothing an image using various values of α, which in a sense parallel samples
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along the Beltrami scale-space (defined by the flow). We used the same initial
penalty parameter r = 0.5, for which the constraints were satisfied after very
few iterations. Fixed-point iterations over q were limited to 2 inner and 2 outer
(IRLS) iterations for each cycle. The number of outer iterations, updating µ, in
Figure 1 was 150, although fewer iterations suffice.

A comparison of the results of the augmented Lagrangianmethod and splitting
schemes [11] shows that the augmented Lagrangian method converges faster, as
can be seen in Figure 2. In this experiment, α was set for optimal results for
both the augmented Lagrangian and the splitting methods. The PSNR plot also
demonstrates the more accurate discretization of the proposed method. This can
be easily seen in the preservation of edges in Figure 2. Experiments comparing
our method to the explicit scheme showed a similar behavior.

Table 1 measures the CPU-time required for several images (shown in Fig-
ure 3) for our algorithm, compared to Beltrami filtering with operator splitting
techniques. The time step used was the largest possible so as to avoid instabilities
and inaccurate operator approximation.

Since the solution obtained by discretizing the functional and by discretizing
the resulting Euler-Lagrange equation need not be the same, a different halting
condition was used. After measuring the PSNR of each algorithm with respect to
the original image, we measured the CPU time each algorithm took to gain 99%
of the maximal rise in SNR. While this cannot be done in real applications, it does
give us an objective measure of the time it takes to complete the convergence.

The speedups obtained are by at least of a factor of two compared to additive
operator splitting (AOS) [19], which is one of the fastest methods for Beltrami
regularization [11], even when the time step large enough to cause visible artifacts
in the splitting results. The augmented Lagrangianmethod clearly gave still more
accurate results in a shorter CPU time.

Deblurring: Deblurring results using the Beltrami framework are shown in Fig-
ure 4, with the blur kernel k a disc of radius 5 pixels. We compare our results
to standard deblurring algorithms available in Matlab, as well as to BM3D de-
blurring [10], and to the FTVd algorithm [35]. Where the algorithms require
a regularization parameter other than the noise level, it is empirically set to
minimize the mean squared error. For Figure 4, we have chosen to use the func-
tional shown in Equation 3. We set β1 set to a very small positive constant, and

set β2 = β2, β3 = β4

20 , in order to slightly dampen the strength of the gradient
coupling term.

The results clearly demonstrate the accurate deblurring obtained using the
regularization offered by the Beltrami framework for natural color images, with
slightly better PSNR compared to TV regularization. Beyond PSNR, careful
examination of the images show the tendency of Beltrami regularization to avoid
artifacts which do not fit the appearance of natural images, and discourage
uneven coloring artifacts. This can be seen in Figures 4,5. The same discrepancy
between PSNR reading and visual results in color image processing has already
been noted by Goldluecke and Cremers [14]. We iterate this word of caution,
and refer the reader to the images themselves.
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Fruits, noisy Denoised, α = 1.00 Denoised, α = 0.40 Denoised, α = 0.15

Fig. 1. Smoothing, under various α values, of the Fruits image, with added Gaussian
noise with σ = 20 intensity levels per channel

Original image Noisy image AOS result AL result

2 4 6 8 10 12 14 16 18 20
22

24

26

28

30

CPU Time, sec.

PS
N

R
, d

B

 

 
AOS
LOD
AL

Fig. 2. A comparison of the results for the AOS scheme, and the augmented Lagrangian
method, as well as the PSNR of splitting schemes and the AL method as a function of
CPU time. The arrows in the images demonstrate gradient directions at each channel.
The graph demonstrates a faster convergence of the augmented Lagrangian method,
as well as a more accurate discretization.

Table 1. Comparison of the CPU time required to complete 99% of the rise in SNR

Image CPU time, AL CPU time, splitting

Astro 1.77s 3.5s
Fruits 2.97s 7.36s
Lion 21.23s 59.66s

Monarch 3.63s 7.71s
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Fig. 3. Images used to compare the computational cost of the augmented Lagrangian
and splitting-based Beltrami regularization. Left to right: (a) Astro image. (b) Fruits
image. (c) Lion image (d) Monarch image.

Original image Blurred
image

PSNR = 16.86dB

Lucy-Richardson
Deblurring

PSNR = 20.19dB

BM3D
Deblurring

PSNR = 21.48dB

FTVd
Deblurring

PSNR = 22.04dB

Beltrami/AL
Deblurring

PSNR = 22.07dB

Fig. 4. Deblurring results with a disc blur filter of radius 5 and an Gaussian noise of
σ = 5. Left to right, top to bottom: (a) The original image. (b) The blurred image.
(c) Deblurring using the Lucy-Richardson algorithm (d) BM3D-based deblurring. (e)
Deblurring using the FTVd method. (f) Deblurring using the Beltrami / augmented
Lagrangian algorithm.
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a b c d

a b c d

Fig. 5. Each row represents two regions zoomed-in from Figure 4. (a) The original
image. (b) The corrupted image. (c) TV results. (d) Beltrami / AL restoration results.

5 Conclusions

We presented an extension of the augmented Lagrangian method for color image
processing with Beltrami regularization. Unlike existing techniques, the method
discretizes the functional itself, rather than the resulting optimality conditions
or minimizing flow. We present numerical examples demonstrating its efficiency
and accuracy compared to existing techniques for variational regularization, and
its effectiveness in image deblurring. In future work we intend to add a robust
fidelity term [36], and explore other possible applications for our framework.
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