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Universitá della Svizzera Italiana

CH - 6904 Lugano, Switzerland michael.bronstein@usi.ch
4 Dept. of Mathematics
University of Bergen
Johaness Brunsgate 12
Bergen 5007 Norway

tai@mi.uib.no

This note supplements the paper “Group-Valued Regularization for Analysis
of Articulated Motion”, providing additional details on the exact setup and
numerical algorithms used in our experiments. While this description is not
critical for understanding the concepts, ideas, and algorithmic flow, we believe
the additional details provided herein will aid understanding, implementation
and and extension of the approach portrayed in the paper.

1 An Augmented Lagrangian Scheme for Parametric
Surfaces

1.1 Group-Valued Regularization on Parametric Surfaces

The functional we wish to minimize should describe the irregularity of this mo-
tion field in terms of the scanned 3D surface with two or more poses. Since our
input is a set of range images, it makes sense to use the 2D image domain as the
integration domain. Our notion of smoothness of functions, however, should be
defined in terms of the 3D surface tangent plane. Thus, the regularization term
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we seek is intimately linked to the problem of image processing for images de-
fined on manifolds [22, 23, 13, 26]. The measure of smoothness of the associated
locally-rigid motion should take into account the change in 3D coordinates. We
therefore take the total variation (TV, [20])

ES(u) =

∫
Ω∈R2

‖∇Mu‖dΩ, (1)

to be our measure of regularity, defined in terms of ∇M, the gradient of the
function u on the surface itself. For vector-valued functions, we denote by ‖∇u‖
the Frobenius norm of the Jacobian matrix

(
∂ui

∂xj

)
ij
. In the case where u is a

Lie-group matrix whose elements are isometries, we can exchange the embedding
space gradient norm ‖∇u‖ for the intrinsic regularity measure ‖u−1∇u‖.

Additionally, we need to express the gradient on the surface in terms of the
gradient in the parameterization plane. Given the local first fundamental form
of the surface, the expression is relatively simple. Specifically, let xi, i = 1, 2 be
the image-plane coordinates, and Xi, i = 1, 2 be surface coordinates. The surface

gradient in terms of a parametric domain gradient
(

∂u
∂xi

)
i
is given by ([10], page

102) (
Gux1 − Fux2

EG− F 2
,
−Fux1 + Eux2

EG− F 2

)
, (2)

where E,F,G are the components of the Riemmanian metric, given by

E = 〈X1, X1〉 , F = 〈X1, X2〉 , G = 〈X2, X2〉 . (3)

The regularization term therefore becomes

‖∇Mu‖2 =

∥∥∥∥ 1

EG− F 2

(
G −F
−F E

)
∇u

∥∥∥∥2 = ‖JM∇u‖2, (4)

where the Jacobian matrix JM transforms the gradient in terms of the paramet-
ric plane into the gradient of the image as defined on the surface.

In addition, we also require a data term. The simplest data term in use is
the least squares fitting term,

ED =

∫
Ω∈R2

‖u− u0‖2dΩ, (5)

where u0 is the given input function, for example a local motion estimate given by
local iterative closest point search [5, 8], or by least-square fitting a rigid motion
model to a deformation result based on other algorithms [6, 15]. We suggest an
efficient non-rigid registration method in Subsection 2.4. A straightforward gen-
eralization that can be implemented using an iterative reweighted least-squares
technique is a robust data term of the form

ED =

∫
Ω∈R2

ψD

(
‖u− u0‖2

)
dΩ, (6)
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where ψD is a robust fitting function, for example ψD(s) =
√
s+ ε2 for some

small ε.
The overall cost function we intend to minimize will be of the form

min
u ∈ SE(3)

ES(u) + λED(u), (7)

where λ describes the relative strength of the data term. We describe in Section 2
a fast minimization algorithm for this cost function.

2 Numerical Methods

We now describe a minimization scheme for the cost function given in Equa-
tion (7), extending the scheme suggested in [19]. In order to enforce the con-
straint u ∈ SE(3) we use an auxiliary variable v such that v = u, v ∈ SE(3).
We obtain the equality v = u using an augmented Lagrangian term added to
the cost function. The resulting constraint causes the optimization with respect
to v to become a projection operation per-pixel, as described in Subsection 2.3.
This transforms the minimization problem into a saddle-point problem

max
µ

min
v ∈ SE(3), u

∫
Ω

‖∇Mu‖+ r

2
‖v − u‖2 + µT (v − u) + ‖u− u0‖2dΩ (8)

Unlike previous approaches for augmented Lagrangian TV regularization [24],
our approach differs in the measure of smoothness we use. We note that while
the update step for v comes from minimizing the cost function, it is highly
linked to the intuitive choice of updating u and then projecting it, as well as to
optimization by proximal operators [9], and can be made provably convergent
with minor modifications, as shown in [18]. This is done by slightly modifying
our algorithm, as suggested by Attouch et al. [2], changing the update steps for
u, v into the minimization problems

uk = argmin
u

F(u, vk−1, µ) +
1

θk
‖u− uk−1‖2 (9)

vk = argmin
v∈G

F(uk, v, µ) +
1

θk
‖v − vk−1‖2,

where F(uk, v, µ) is the function we minimize,

F(u, v, µ) =

∫
Ω

‖∇Mu‖+ r

2
‖v − u‖2 + µT (v − u) + ‖u− u0‖2dΩ (10)

The proof of convergence become quite easy, as shown by Attouch et al. [2,
Lemma 5].

We now modify the augmented Lagrangian TV framework for the smoothness
term described in (1).
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2.1 Augmented Lagrangian TV Optimization of Vector Valued
Functions on Parametric Surfaces

Let us put aside for a moment the matrix-valued nature of u, and formulate an
efficient iterative scheme for smoothing (in the total variation sense) a function
on a parametric surface. In our case, the surface is the visible surface obtained
from a range scanner, and the parametrization domain is the image plane with its
coordinates system. In order to regularize efficiently images given on parametric
surfaces, we use the parametrization domain sampled on a Cartesian grid.

The scheme we present is based on the augmented Lagrangian TV optimiza-
tion scheme [24]. We use an auxiliary variable p to describe the surface-domain
gradient, rather than the image-domain gradient. That is, we add an auxiliary
variable p = JM∇u, and optimize with respect to it using a shrinkage operator,
similar to the image-domain TV case [24]. We enforce the gradient constraint
by adding an augmented Lagrangian term with Lagrange multipliers. We up-
date u,p, and the Lagrange multiplier iteratively. For the vector-valued TV case,
minimizing the functional now becomes a solution of the saddle-point problem

max
µ2

min
u,p

∫
Ω

‖p‖+ r2
2
‖JM∇u− p‖2 + µT

2 (JM∇u− p) + λ‖u− u0‖2dΩ, (11)

where µ2 is our Lagrange multiplier for the gradient constraint. The optimization
of (11) with respect to u is given by a diffusion equation

−r2 div
(
JT
M (JM∇u− p)

)
+ div JT

Mµ2 + 2λ (u− u0) = 0. (12)

Optimization with respect to p can be expressed in closed form [25, 24] by a
shrinkage operator,

p =

(
1− 1

r2

1

‖w‖

)
w,w = JM∇u− µ2

r2
, (13)

where ‖ · ‖ is the Frobenius norm.
Finally, updating µ is given according to the augmented Lagrangian method

[17, 11] by the update equation

µk
2 = µk−1

2 + r2
(
pk − JM∇uk

)
. (14)

We now turn to describe the

2.2 Augmented Lagrangian Regularization of Group-Valued Maps
on Parametric Surfaces

Using an augmented Lagrangian term in order to enforce the constraint of u =
v ∈ SE(3), the overall functional reads

max
µ,µ2

min
v ∈ SE(3)

∫
Ω

[
‖p‖+ r

2
‖u− v‖2 + µT (u− v)+

r2
2
‖JM∇u− p‖2 + µT

2 (JM∇u− p) + λ‖u− u0‖2
]
dΩ. (15)

Minimization with respect to u is the same as in the scalar TV case, resulting
in a diffusion equation. We now describe the update rule for v and p.
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2.3 Minimization with respect to v

Optimization with respect to v is using the same projection operator per-pixel
as in [18]. Looking at optimization with respect to v, we obtain

argmin
v∈SE(3)

r

2
‖v − u‖2 + 〈µ, u− v〉 = argmin

v∈SE(3)

r

2

∥∥∥v − (µ
r
+ u

)∥∥∥2

= Proj
SE(3)

(µ
r
+ u

)
, (16)

where ProjSE(3) (·) denotes the orthogonal projection operator onto SE(3),
given by a singular value decomposition.

The optimization of the Lagrange multipliers is done according to the update
rule

µk = µk−1 + r
(
vk − uk

)
; µk

2 = µk−1
2 + r2

(
pk − JM∇uk

)
. (17)

An algorithmic description of the resulting scheme is given as Algorithm 1.

Algorithm 1 Fast TV regularization of group-valued images on parametric
surfaces
1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), according to (12).
3: Update pk(x), according to (13).
4: Update vk(x), by projection onto the matrix group, using SVD.
5: Update µk(x), µk

2(x), according to (17).
6: end for

2.4 Estimating Non-Rigid Motion in Depth Videos

In order to estimate the non-rigid motion occuring between two subsequent time-
frames of a depth video, we first apply a non-rigid registration process, followed
by estimation of the locally-rigid motion that takes place between the two point-
clouds. In order to obtain a correspondence between two time-frames of a depth
video, we employ a version of a non-rigid ICP algorithm, similar to the approach
suggested by Li et al. [14].

We model the motion between the two point clouds using a simple additive
model,

y(x) = x+w(x), (18)

where x,w(x) ∈ R3 denote object points and the corresponding motion vector,
and y(x) denotes the point corresponding to x. While in our examples use a
point-to-point distance, other, more accurate, distance functions [16] can also be
used.
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Enforcing the local smoothness of the motion field, we obtain a simple de-
formation energy, similar in a sense to optical flow functionals [12],

EREG =

∫
Ω

λDψD

(
‖x+w − y(x)‖2

)
+ ψS

(
‖∇w‖2

)
dΩ, (19)

where λD defines the relative importance of the data fitting term.
In order to obtain the deformation we iteratively update y(x) and solve for

w(x) using the linearized equation resulting from the Euler-Lagrange condition,

divS (ψ′
S (·)∇Sw) = 2λDψ

′
D (·) (y(x+w)− x), (20)

where divS and ∇S denote respectively the divergence and Laplacian operators
on a point cloud, and ψ′

S (·) , ψ′
D (·) are the derivatives of the robust functions

with respect to their argument. This linearized equation is solved iteratively in
a Gauss-Seidel manner, as in optical flow algorithms (see for example, [7]). At
each linearization step we compute a corredponding point y(x) for each point x,
as is often the case for non-rigid ICP algorithms. While we used an approximate
nearest neighbor search tree in 3D [1], the small changes between frames allow
to use a 2D registration for a more efficient implementation. Finally, we note
that as in ICP algorithms, various measures can be used to remove inconsistent
point correspondences [21] in order to obtain robustness to outliers in the fitting
process. This was not necessary in our case, and is left for future work. In order
to compute the divergence, gradient, and Laplacian operators we use a local
polynomial model for first derivatives and Belkin et al. approximation [3] for the
Laplacian. The deformation scheme is described as Algorithm 2.

Since the overall motion field can involve both piecewise rigid and non-rigid
motion components, and because of the noisy scan results often obtained from
commodity depth scanners, the estimated instantenous motion components are
quite noisy. The motion field should be post-processed so as to obtain locally-
rigid interpretation. This can be obtained by the regularization process described
in Section 2.2. The overall algorithm is summarized as Algorithm 3. During
the third step of the algorithm, when smoothing the motion field, different λ
values can be used so as to obtain a scale-space of motion interpretation, for
detecting salient candidates for rigid parts, or as features for learning-based
motion segmentation [4].

Algorithm 2 Regularized estimation of rigid motion from depth video

SELECT({x}), a set of representative points.

1: for k = 1, 2, . . . , until convergence do
2: Compute corresponding points y(x) for each point in the point cloud.
3: Compute IRLS weights, ψ′

S (·) , ψ′
D (·).

4: Update w(x) by solving (via Gauss-Seidel iterations) Equation 20.
5: end for
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Algorithm 3 Regularized estimation of rigid motion from depth video

1: for k = 1, 2, . . . , until convergence do
2: Estimate smooth motion field between depth frames according to (20).
3: Estimate u0(x) at each point using least median squares fitting.
4: Regularize u0(x) using Algorithm (1).
5: end for
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