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Abstract

Objects and structures within man-made environments
typically exhibit a high degree of organization in the form of
orthogonal and parallel planes. Traditional approaches to
scene representation exploit this phenomenon via the some-
what restrictive assumption that every plane is perpendicu-
lar to one of the axes of a single coordinate system. Known
as the Manhattan-World model, this assumption is widely
used in computer vision and robotics. The complexity of
many real-world scenes, however, necessitates a more flex-
ible model. We propose a novel probabilistic model that
describes the world as a mixture of Manhattan frames:
each frame defines a different orthogonal coordinate sys-
tem. This results in a more expressive model that still ex-
ploits the orthogonality constraints. We propose an adap-
tive Markov-Chain Monte-Carlo sampling algorithm with
Metropolis-Hastings split/merge moves that utilizes the ge-
ometry of the unit sphere. We demonstrate the versatility
of our Mixture-of-Manhattan-Frames model by describing
complex scenes using depth images of indoor scenes as well
as aerial-LiDAR measurements of an urban center. Addi-
tionally, we show that the model lends itself to focal-length
calibration of depth cameras and to plane segmentation.

1. Introduction
Simplifying assumptions about the structure of the sur-

roundings facilitate reasoning about complex environments.
On a wide range of scales, from the layout of a city to struc-
tures such as buildings, furniture and many other objects,
man-made environments lend themselves to a description
in terms of parallel and orthogonal planes. This intuition
is formalized as the Manhattan World (MW) assumption
[10] which posits that most man-made structures may be
approximated by planar surfaces that are parallel to one of
the three principal planes of a common orthogonal coordi-
nate system.

At a coarse level, this assumption holds for city layouts,
most buildings, hallways, offices and other man-made envi-
ronments. However, the strict Manhattan World assumption

Figure 1: Surface normals in a man-made environment (top
left), tend to form clusters on the unit sphere (top right) such
that these clusters can be divided into subsets which we call
Manhattan Frames (MF). Each MF explains clusters of nor-
mals aligned with the six signed axes of a common coordi-
nate system. Our algorithm infers 3 distinct MFs, shown in
different colors on the sphere (bottom right) and the scene
(bottom left).

cannot represent many real-world scenes: a rotated desk, a
half-open door, complex city layouts (as opposed to planned
cities like Manhattan). While parts of the scene can be mod-
eled as a MW, the entire scene cannot. This suggests a
more flexible description of a scene as a mixture of Manhat-
tan Frames (MF). Each Manhattan Frame in itself defines a
Manhattan World of a specific orientation.

Our contributions include the formulation of a novel
model for scene representation that describes scene sur-
face normals as a mixture of orthogonally-coupled clusters
on the unit sphere – we refer to this model as a Mixture
of Manhattan Frames (MMF). We formulate a probabilis-
tic Bayesian model for the MMF and propose a Gibbs-
sampling-based inference algorithm. Using Metropolis-
Hastings [18] split/merge proposals [26], the inference al-
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gorithm adapts the number of MFs to that of the distribu-
tion of normals in the scene. Additionally, we propose an
approximation to the posterior distribution over MF rota-
tions that utilizes a gradient-based optimization of a robust
cost function which exploits the geometry of both the unit
sphere as well as the group of rotation matrices SO(3).

We demonstrate the advantages of our model in sev-
eral applications including plane segmentation and single-
shot RGB-D camera depth-focal-length calibration. Fur-
thermore, we show its versatility by inferring MFs from not
only depth images, but also large-scale aerial LiDAR data
of an urban center.

2. Related Work
The connection between vanishing points (VPs) in im-

ages and 3D MW structures has been used to infer dense 3D
structure from a single RGB image by Delage et al. [11] and
from sets of images by Furukawa et al. [15]. This is done
via projective geometry [17]. More specifically, Furukawa
et al. employ a greedy algorithm for a single-MF extraction
from normal estimates that works on a discretized sphere,
while Neverova et al. [24] integrate RGB images with as-
sociated depth data from a Kinect camera to obtain a 2.5D
representation of indoor scenes under the MW assumption.

The MW assumption was used to estimate orientations
within man-made environments for the visually impaired by
Coughlan et al. [10] and for robots by Bosse et al. [5]. In
the application of Simultaneous Localization and Mapping
(SLAM), the MW assumption has been used to impose con-
straints on the inferred map [25, 29].

While the MW model has also been useful in applica-
tions of RGB-camera calibration and metric rectification
[6, 8], we are unaware of calibration schemes for depth sen-
sors that exploit the MW or similar scene priors. Besides
calibrating the IR camera of the depth sensors using stan-
dard monocular camera techniques [17], there is work by
Herrera et al. [19] on the joint calibration of RGB and depth
of an RGB-D sensor. Teichman et al. [32] follow a different
approach for depth-camera intrinsic and distortion calibra-
tion within a SLAM framework.

A popular alternative to the MW model describes man-
made structures by individual planes with no constraints on
their relative normal directions. Such plane-based repre-
sentations of 3D scenes have been used in scene segmen-
tation [20], localization [31], optical flow [27], as well as
other computer-vision applications. Triebel et al. [33] ex-
tract the main direction of planes in a scene using a hi-
erarchical Expectation-Maximization (EM) approach. Us-
ing the Bayesian Information Criterion (BIC) they infer
the number of main directions. The plane-based approach
does not exploit important orthogonality relations between
planes that are common in man-made structures. In such
cases, independent location and orientation estimates of

planes will be less robust, especially for planes that have
few measurements or are subject to increased noise.

Due to the tight coupling of VP estimation and the MW
assumption, the depth-based approach presented herein is
similar in spirit to recent work on estimating multiple sets
of VPs in images. The Atlanta World (AW) model of
Schindler et al. [30] assumes that the world is composed
of multiple MFs sharing the same z-axis. This facilitates
inference from RGB images as they only have to estimate a
single angle per MF as opposed to a full 3D rotation. Note,
however, that common indoor scenes (e.g., see Fig. 4c)
break the Atlanta World assumption. The approach by An-
tunes et al. [1] is more general than the AW model in that it
does not assume a common axis for the Manhattan Frames.
However, it is formulated in the image domain and does not
estimate the rotation of the underlying 3D structure. Our
MMF model can be seen as a generalization of both this
model and the AW model.

Finally, our approach, which utilizes the unit sphere, is
related to early work on VP estimation. There, one is inter-
ested in finding great circles and their intersections because
these constitute VPs. While Barnard [2] discretizes the
sphere to extract the VP, Collins et al. [9] formulate the VP
inference as a parameter-estimation problem for the Bing-
ham distribution [3]. To preclude discretization artifacts we
opt to avoid an approach similar to Barnard. We eschew the
Bingham distribution as the proposed probabilistic mixture
model is straightforwardly incorporated within a Bayesian
framework.

3. A Mixture of Manhattan Frames (MMF)
In this section, we explain our MMF framework, start-

ing with its mathematical representation. Next, we define
a probabilistic model for the MMF and conclude with a
statistical-inference scheme for this model. Note that while
our approach is probabilistic, the representation may still
be used within a purely-deterministic approach. Similarly,
though we suggest a specific probabilistic model as well as
an effective inference method, one may adopt alternative
probabilistic models and/or inference schemes for MMF.

3.1. MMF: Mathematical Representation

Let R be a 3D rotation matrix, which by construction
defines an orthogonal coordinate system of R3. We define
the MF associated with R as the 6 unit-length 3D vectors
which coincide, up to a sign, with one of the columns of
R. That is, the MF, denoted by M , can be written as a
3-by-6 matrix: M = [R,−R], where we may regard the
jth column [M ]j of M as a signed axis, j ∈ {1, . . . , 6};
see Fig. 2. If a 3D scene consists of only planar surfaces
such that the set of their surface normals is contained in the
set {[M ]j}6j=1, then M captures all possible orientations in
the scene – the scene obeys the MW assumption. In our
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MMF representation, however, scenes consist of K MFs,
{M1, . . . ,MK} which jointly define 6K signed axes. Note
that for K = 1, the MMF coincides with the MW.

The MMF representation is aimed at describing surface
normals. In practice, as is common in many 3D processing
pipelines (e.g., in surface fairing or reconstruction [21, 22]),
the observed unit normals are estimated from noisy mea-
surements (in our experiments, these are depth images or
LiDAR data). The unit normals live on S2 (the unit sphere
in R3), a 2D manifold whose geometry is well understood.

Specifically, let qi ∈ S2 denote the i-th observed nor-
mal. Each qi has two levels of association. The first,
ci ∈ {1, . . . ,K}, assigns qi to a specific MF. The second,
zi ∈ {1, . . . , 6}, assigns qi to a specific signed axis within
the MFMci . We let [Mci ]zi denote the zi-th column ofMci ;
i.e., [Mci ]zi is the signed axis associated with qi. In real ob-
served data, qi may deviate from its associated signed axis.
This implies that the angle between these two unit vectors,
qi and [Mci ]zi , may not be zero. As we will see in later sec-
tions, it will be convenient to model these deviates not on
S2 (the unit sphere in R3) directly but in a tangent plane. To
explain this concept, we now touch upon some differential-
geometric notions.

Let p be a point in S2 and TpS2 denote the tangent space
to S2 at point p; namely,

TpS
2 = {x : x ∈ R3 ; xT p = 0} . (1)

While S2 is nonlinear, TpS2 is a 2-dimensional linear
space; see Fig. 2. This linearity of S2 is what simpli-
fies probabilistic modeling and statistical inference. The
Riemannian logarithm (w.r.t. the point of the tangency p),
Logp : S2 \{−p} → TpS

2, enables us to map points on the
sphere (except the antipodal point: −p) to TpS2. Likewise,
the Riemannian exponential map, Expp : TpS

2 → S2,
maps TpS2 onto S2. Note these two maps depend on the
point of tangency p. Finally, if p and q are two points on
S2, then the geodesic distance between p and q is sim-
ply defined to be the angle between them: dG(p, q) =
arccos(pT q). It can be shown that dG(p, q) =

∥∥Logp(q)
∥∥.

See our supplemental material or [12] for formulas and ad-
ditional details.

Let us now return to the issue of the (angular) deviation
of qi from [Mci ]zi : as long as qi and [Mci ]zi are not antipo-
dal points (see above), their deviation can be computed as
dG([Mci ]zi , qi) = ||Log[Mci

]zi
(qi)||.

Given N observed normals, {qi}Ni=1, the sought-after
parameters of an MMF are: K, {Mk}Kk=1, {ci}Ni=1, and
{zi}Ni=1. In order to fit these parameters, one would seek
to penalize the deviates {||Log[Mci

]zi
(qi)||}Ni=1. While, in

principle, this can be formulated as a deterministic opti-
mization, we adopt a probabilistic approach.

TpS
2

S2

Figure 2: The signed axes of an MF displayed within S2

(the unit sphere). The blue plane (left) illustrates TpS2, the
tangent space to S2 at p ∈ S2 (here p is taken to be the north
pole). A tangent vector x ∈ TpS2 is mapped to q ∈ S2 via
Expp; see text for details. The MF on the right is shown
with its associated data (i.e., normals viewed as points on
S2) whose colors indicate normal-to-axis assignments.

3.2. MMF: Probabilistic Model

In practice, scene representations may be comprised of
multiple intermediate representations, which may include
MMFs, to facilitate higher level reasoning. As such, adopt-
ing a probabilistic model allows one to describe and prop-
agate uncertainty in the representation. Furthermore, it
allows one to incorporate prior knowledge in a princi-
pled way, model inherent measurement noise, and derive
tractable inference since conditional independence facili-
tates drawing samples in parallel.

Figure 3 depicts a graphical representation of the proba-
bilistic MMF model. It is a Bayesian finite mixture model
that takes into account the geometries of both S2 and
SO(3). In this probabilistic model, the MMF parameters
are regarded as random variables.

The MF assignments ci are assumed to be distributed ac-
cording to a categorical distribution with a Dirichlet distri-
bution prior with parameters α:

ci ∼ Cat(π); π ∼ Dir(α) . (2)

Let Rk ∈ SO(3) denote the rotation associated with Mk.
Making no assumptions about which orientation of Mk is
more likely than others, Rk is distributed uniformly:

Rk ∼ Unif(SO(3)) . (3)

See the supplemental material for details.
At the second level of association, the zi’s are assumed

to be distributed according to a categorical distribution wci

with a Dirichlet distribution prior parameterized by γ:

zi ∼ Cat(wci); wci ∼ Dir(γ) . (4)

The deviations of the observed normals from their signed
axis are modeled by a 2D zero-mean Gaussian distribution
in the tangent space to that axis:

p(qi; [Mci ]zi ,Σcizi) = N (Log[Mci
]zi

(qi); 0,Σcizi) , (5)
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Figure 3: Graphical model for a mixture of K MFs.

where Log[Mci
]zi

(qi) ∈ T[Mci
]zi
S2. In other words, we

evaluate the probability density function (pdf) of qi ∈ S2 by
first mapping it into T[Mci

]zi
S2 and then evaluating it under

the Gaussian distribution with covariance Σcizi ∈ R2×2.
The pdf of the normals over the nonlinear S2 is then induced
by the Riemannian exponential map:

qi ∼ Exp[Mci
]zi

(N (0,Σcizi)) ; Σcizi ∼ IW(∆, ν) . (6)

Note that the range of Logp is contained within a disk of
finite radius (π) while the Gaussian distribution has infi-
nite support. Consequently, we use an inverse Wishart (IW)
prior that favors small covariances resulting in a probability
distribution that, except a negligible fraction, is within the
range of Logp and concentrated about the respective axis.

We now explain how we choose the (hyper-parameters)
α and γ. We set α < 1 to favor models with few MFs, as
expected for man-made scenes. To encourage the associa-
tion of equal numbers of normals to all MF axes, we place
a strong prior γ � 1 on the distribution of axis assignments
zi. Intuitively, this means that we want an MF to explain
several normal directions and not just a single one.

3.3. MMF: Metropolis-Hastings MCMC Inference

We perform inference over the probabilistic MMF
model described in Sec. 3.2 using Gibbs sampling
with Metropolis-Hastings [18] split/merge proposals [26].
Specifically, the sampler iterates over the latent assignment
variables c = {ci}Ni=1 and z = {zi}Ni=1, their categorical
distribution parameters π and w = {wk}Kk=1, as well as
the covariances in the tangent spaces around the MF axes
Σ = {{Σkj}6j=1}Kk=1 and the MF rotations R = {Rk}Kk=1.
We first explain all posterior distributions needed for Gibbs
sampling before we outline the algorithm.

3.3.1 Posterior Distributions for MCMC Sampling

The posterior distributions of both mixture weights are:

p(π|c;α) = Dir(α1 +N1, . . . , αK +NK) (7)
p(wk|c, z; γ) = Dir(γ1 +Nk1, . . . , γk6 +Nk6) , (8)

where Nk =
∑N

i=1 1[ci=k] is the number of normals as-
signed to the kth MF andNkj =

∑N
i=1 1[ci=k]1[zi=j] is the

number of normals assigned to the jth axis of the kth MF.
The indicator function 1[a=b] is 1 if a = b and 0 otherwise.

Evaluating the likelihood of qi as described in Eq. (5),
the posterior distributions for labels ci and zi are given as:

p(ci = k|π, qi,Θ) ∝ πk
6∑

j=1

wkj p(qi; [Mk]j ,Σkj) (9)

p(zi = j|ci, qi,Θ) ∝ wcij p(qi; [Mci ]j ,Σcij) , (10)

where Θ = {w,Σ,R}. We compute xi = Log[Mci
]zi

(qi),
the mapping of qi into T[Mci

]zi
S2, to obtain the scatter ma-

trix Skj =
∑N

i 1[ci=k]1[zi=j]xix
T
i in T[Mk]jS

2. Using Skj

the posterior distribution over covariances Σkj is:

p(Σkj |c, z,q,R; ∆, ν) = IW (∆ + Skj , ν +Nkj) . (11)

Since there is no closed-form posterior distribution for an
MF rotation given axis-associated normals, we approximate
it as a narrow Gaussian distribution on SO(3) around the
optimal rotation R?

k under normal assignments z and c:

p(Rk|z, c,q) ≈ N (Rk;R?
k(R0

k, z, c,q),Σso(3)) , (12)

where Σso(3) ∈ R3×3 and R0
k is set to Rk from the previ-

ous Gibbs iteration. Refer to the supplemental material for
details on how to evaluate and sample from this distribution.

We now formulate the optimization procedure that yields
a (locally-) optimal rotation R?

k ∈ SO(3) of MF Mk given
a set of Nk assigned normals q = {qi}i:ci=k and their asso-
ciations zi to one of the six axes [Mk]zi .

We find the optimal rotation as R?
k = arg minRk

F (Rk)
where our cost function, F : SO(3) → R+, penalizes the
geodesic deviation of a normal from its associated MF axis:

F (Rk) =
1

Nk

∑
i:ci=k

ρ(dG(qi, [Mk]zi)) . (13)

To achieve robustness against noise and model out-
liers, instead of taking the non-robust ρ : x 7→ x2,
we use the Geman-McClure robust function [4, 16]:
ρGMC : x 7→ x2/(x2 + σ2).

Note that F is defined over SO(3), a nonlinear space.
In order to ensure that not only the minimizer will be
in SO(3) but also that the geometry of that space will
be fully exploited, it is important to use appropriate tools
from optimization over manifolds. Specifically, we use the
conjugate-gradient algorithm suggested in [13]. We have
found this successfully minimizes the cost function and
converges in only a few iterations.

3.3.2 Metropolis-Hastings MCMC Sampling

The Gibbs sampler with Metropolis-Hastings split/merge
proposals is outlined in Algorithm 1. For K MFs and
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N normals the computational complexity per iteration is
O(K2N). To let the order of the model adapt to the com-
plexity of the distribution of normals on the sphere, we im-
plement Metropolis-Hastings-based split/merge proposals.
In the following we give a high level description of split
and merge moves. A detailed derivation can be found in the
supplemental material.

On a high level, a merge of MFs Mk and Ml consists of
the steps: (1) assign all normals of Ml to Mk to obtain M̂k,
remove Ml, and resample axis assignments ẑi of the nor-
mals in M̂k; (2) sample the rotation of M̂k as described in
Sec. 3.3.1; and (3) sample {Σ̂kj}6j=1 under the new rotation.

A split of MFMk into MFs M̂l and M̂m consists of sam-
pling associations ĉi to MFs M̂l and M̂m for all normals
previously assigned to Mk and sampling axis assignments
ẑi for M̂l and M̂m. Conditioned on the new assignments,
new rotations and axis covariances are sampled.

Algorithm 1 One Iteration of the MMF Inference

1: Draw π | c;α using Eq. (7)
2: Draw c | π,q,R,Σ in parallel using Eq. (9)
3: for k ∈ {1, . . . ,K} do
4: Draw wk | c, z; γ using Eq. (8)
5: Draw z | c,w,q,R,Σ in parallel using Eq. (10)
6: Draw Rk|z, c,q; Σso(3) using Eq. (12)
7: Draw {Σkj}6j=1 | c, z,q,R; ∆, ν using Eq. (11)
8: end for
9: Propose splits for all MFs

10: Propose merges for all MF combinations

4. Results and Applications
We now describe results for MMF inference from both

depth images and a large scale LiDAR scan of a part of
Cambridge, MA, USA. Additionally, we demonstrate the
applicability and usefulness of the MMF to plane segmen-
tation and depth camera calibration.

4.1. Computation of the Depth-Image Normal Map

As the MMF model relies on the structured and concen-
trated pattern of surface normals of the 3D scene, an accu-
rate and robust estimation of normals is key. In a first step,
our algorithm estimates the normal map1 by extracting the
raw normals as q(u, v) = Xu×Xv

‖Xu×Xv‖ . Computed using for-
ward finite-differences, Xu and Xv are the derivatives of
the observed 3D surface patch w.r.t. its local parameteriza-
tion as implied by the image coordinate system [20].

Since the depth image is subject to noise, we regularize
the normal map in a way that preserves discontinuities to

1If the entire scene happens to be a smooth surface then this coincides
with the Gauss map [12], restricted to the observed portion of the surface.

avoid artifacts at the edges of objects. This is done by total-
variation (TV) regularization of the normal field, as speci-
fied in [28]. The total-variation of the map from the image
domain into a matrix manifold (in our case the unit sphere)
is minimized using a fast augmented-Lagrangian scheme.
The resulting map indeed has a concentrated distribution of
normals as can be seen in Fig. 1. We observe that inclusion
of this regularization generally leads to better MMF models.

4.2. MMF Inference from Depth Images

We infer an MMF in a coarse-to-fine approach. First,
we down-sample to 120k normals and run the algorithm for
T = 80 iterations proposing splits and merges throughout
as described in Sec. 3.3. Second, using the thus obtained
MMF, we sample labels for the full set of normals.

We use the following parameters for the inference of
MMFs in all depth images: Σso(3) = (2.5◦)2 I3×3 and
σ = 15◦. The hyper-parameters for the MMF were set to
α = 0.01, γ = 120, ν = 12k, and ∆ = (15◦)2ν I2×2.

We first highlight different aspects and properties of the
inference using the 3-box scene depicted in Fig. 1. For this
scene, we initialized the number of MFs to K = 6. The al-
gorithm correctly infers K = 3 MFs as displayed in Fig. 1
on the sphere and in the point cloud. The three extracted
MFs correspond to the three differently rotated boxes in the
depth image. While the blue MF consists only of the single
box standing on one corner, the green and red MFs contain
planes of the surrounding room in addition to their respec-
tive boxes. This highlights the ability of our model to pool
normal measurements from the whole scene. On a Core i7
laptop, this inference takes our unoptimized single thread
Python implementation 9 min on average. This could be
sped up significantly by proposing splits and merges less
frequently or by employing a sub-cluster approach for splits
and merges as introduced by Chang and Fisher [7].

To evaluate the performance of the MMF inference algo-
rithm, we ran it on the NYU V2 dataset [23] which contains
1449 RGB-D images of various indoor scenes. For each
scene, we compare the number of MFs the algorithm infers
to the number of MFs a human annotator perceives. We
find that in 80% (for initial K = 3 MFs) and 81% (for ini-
tial K = 6 MFs) of the scenes our algorithm converged to
the hand-labeled number of MFs. Qualitatively, the inferred
MF orientations were consistent with the human-perceived
layout of the scenes. Besides poor depth measurements
due to reflections, strong ambient light, black surfaces, or
range limitations of the sensor, the inference converged to
the wrong number of MFs mainly because of close-by round
objects or significant clutter in the scene. The latter failure
cases violate the Manhattan assumption and are hence to
be expected. However, we observe that the algorithm fails
gracefully approximating round objects with several MFs or
adding a “noise MF” to capture clutter. Hence, to eliminate
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(a) 1 MF (b) 1 MF (c) 2 MFs (d) 2 MFs (e) 2 MFs (f) 2 MFs (g) 3 MFs

Figure 4: We show the RGB images of various indoor scenes in the 1st row and the inferred MMF model in the 2nd row.
Fig. 4b, 4e, and 4f were taken from the NYU V2 depth dataset [23]. For the single-MF scenes to the left we color-code the
assignment to MF axes (brighter colors designate opposing axes). For the rest of the scenes we depict the assignments to
MFs in orange, blue and pink. Areas without depth information are colored black. In the 3rd row we show the log likelihood
of the normals under the inferred MMF (see colorbar to the right). Plane segmentations are depicted in the last row.

“noise MFs”, we consider only MFs with more than 15% of
all normals. Over all scenes the algorithm converged to the
same number of MFs in 90% of the scenes when initialized
K = 3 MFs and K = 6 MFs. For these scenes the hand-
labeled number of MFs was correctly inferred in 84% of the
cases. These statistics show that the inference algorithm can
handle a wide variety of indoor scenes and is not sensitive
to the initial number of MFs.

In Fig. 4 we show several typical indoor scenes of vary-
ing complexity and the inferred MFs in the 2nd row. The
inference algorithm was started with six MFs in all cases.
For scenes 4a and 4b, the inference yielded a single MF
each. We display the assignment to MF axes in red, green
and blue, where opposite MF axes are distinguished by a
weaker tone of the respective color. The algorithm infers
K = 2 MFs for the scenes in Fig. 4c to 4f and K = 3
MFs for the scene in Fig. 4g. For those scenes we display
assignment of normals to the different MFs in orange, blue
and pink. The gray color stems from a mixture of blue and
orange which occurs if MFs share an axis direction.

Given the inferred MMF parameters, we can evaluate the
likelihood of a normal using Eq. (5). The log-likelihood for
each normal is displayed in the 3rd row of Fig. 4: planar
surfaces have high probability (black) while corners, round
objects and noisy parts of the scene have low probability
(yellow) under the inferred model. The likelihood is valu-
able to remove noisy measurements for further processing.

4.3. MMF Inference from LiDAR Data

To demonstrate the versatility of our model, we show
the extraction of MFs from a large-scale LiDAR scan of a
part of Cambridge, MA, USA. The point cloud generated
from the scan has few measurements associated with the
sides of buildings due to reflections of the glass facades.
Additionally, the point cloud does not have homogeneous
density due to overlapping scan-paths of the airplane. This
explains the varying density of points in Fig. 5.

In order to handle noisy and unevenly sampled Li-
DAR data, we implement a variant of robust moving-least-
squares normal estimation [14]. The local plane is estimated
using RANSAC, based on a preset width that defines out-
liers of the plane model. The normal votes are averaged for
each point from neighboring estimates based on a Gaussian
weight w.r.t. the Euclidean distance from the estimator. We
count only votes whose estimation had sufficient support in
the RANSAC computation in the nearby point set.

Figure 5 shows the point cloud colored according to MF
assignment of the normals on top of a gray street-map. We
do not show the normals associated with upward pointing
MF axes to avoid clutter in the image. Interestingly, the in-
ferred MFs have clear directions associated with them: blue
is the direction of Boston, green is the direction of Harvard
and red is aligned with the Charles river waterfront. The
fact that the inference converges to this MMF demonstrates
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Figure 5: Inferred MMF from the LiDAR scanned urban
scene on top of a gray street map. There is a clear separa-
tion into three MFs colored red, green and blue with the ori-
entations indicated by the axes in the top-left corner. These
MFs share the upward direction without imposing any con-
straints. Normals associated with upward axes are hidden
to reveal the composition of the scene more clearly. Note
that the underlying point cloud has varying density due to
the scan-paths of the airplane.

the descriptive power of our model to capture large scale
organizational structure in man-made environments.

4.4. Depth Camera Calibration

Our MMF provides us with associations of normals to
MF axes which are assumed to be orthogonal to each other.
We can exploit this to find the focal length f of a depth
camera since qi is influenced by f through the computa-
tion of the normals qi as expressed in Sec. 4.1 and the in-
verse projection relationship between a point (x, y, z)

T in
3D and a point (u, v)

T in the image:
(
x
y

)
= z

f

(
u−uc
v−vc

)
,

where (uc, vc)
T is the image center.

This process, however, is nonlinear and does not have a
closed-form solution for its derivative w.r.t. f . Therefore,
we resort to exhaustive search to find the minimum of the
cost function in Eq. (13) where we fix the MMF but intro-
duce a dependency on f :

F (f) =
1

N

N∑
i=1

ρ(dG(qi(f), [Mci ]zi)) . (14)

Given a reasonable initialization of f (i.e. the factory cal-
ibration) we can determine f uniquely, without concerns of
local minima, as shown in Fig. 6.

The angular deviation of about 4◦ in corners of point
clouds vanishes after calibrating the focal length with our
method. The calibration algorithm determines the focal
length of our ASUS Xtion PRO depth camera to be f =
540 px whereas the factory calibration is f = 570.3 px.

While this can be viewed as the first step of an alternating
minimization of both f and the MMF parameters, in prac-

Figure 6: Left: the cost function F (f) for a specific MMF.
Right: estimated focal length as a function of the number
of TV iterations and the log-likelihood threshold for normal
selection.

tice, one update of f usually suffices. This provides us with
a way of calibrating a depth scanner from a single depth im-
age of any scene exhibiting MMF structure. Compared to
other techniques [17, 19, 32] our proposed calibration pro-
cedure is much simpler.

4.5. Plane Segmentation

For a given scene the MMF provides us with the orienta-
tion of all planes. The normals of different planes with the
same orientation contribute to the same MF axis. However,
we can separate the planes by their offset in space along the
respective MF axis.

After removing low-likelihood normals and combining
MF axes pointing in the same direction (such as the normals
of the floor in Fig. 1), we perform the plane segmentation
for each MMF axis in two steps: First we project all 3D
points, associated with a certain axis through their normal,
onto the respective axis. Next, we bin these values, remove
buckets under a certain threshold nbin and collect points in
consecutive bins into sets that constitute planes. We keep
only planes that contain more than nplane normals.

We found thresholds of nbin = 100, nplane = 1000 and
a bin size of 3 cm to work well across all scenes in our
evaluation. Fig. 4 shows the plane segmentation for several
common indoor scenes in the 4th row. Despite the fact that
our model does not utilize spatial regularity, we are able
perform dense plane segmentation.

5. Conclusion
Motivated by the observation that the commonly-made

Manhattan-World assumption is easily broken in man-
made environments, we have proposed the Mixture-of-
Manhattan-Frames model. Our inference algorithm, a
manifold-aware Gibbs sampler with Metropolis-Hastings
split/merge proposals, allows adaptive and robust inference
of MMFs. This enables us to describe both complex small-
scale-indoor and large-scale-urban scenes. We have shown
the usefulness of our model by providing algorithms for
plane segmentation and depth-camera focal-length calibra-
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tion. Moreover, we have demonstrated the versatility of
our model by extracting MMFs not only from 1.5k indoor
scenes but also from aerial LiDAR data of Cambridge, MA.

Future work should incorporate color information into
the estimation process. We expect that this will facilitate
more robust MF inference because we will be able reason
about parts of the scene that are too remote for the depth
sensor. Another avenue of research would be to utilize
the model to obtain robust rotation estimation in buildings
for visual odometry. Due to the flexibility and robustness
our framework in modeling real-world man-made environ-
ments, we envision many applications for it.
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[13] A. Edelman, T. A. Arias, and S. T. Smith. The geome-

try of algorithms with orthogonality constraints. SIMAX,
20(2):303–353, 1998.

[14] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust mov-
ing least-squares fitting with sharp features. In SIGGRAPH,
pages 544–552, 2005.

[15] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Re-
constructing building interiors from images. In ICCV, pages
80–87. 2009.

[16] S. Geman and D. E. McClure. Statistical methods for tomo-
graphic image reconstruction. In Proc. of ISI, 1987.

[17] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge Univ. Press, 2004.

[18] W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57(1):97–
109, 1970.

[19] D. Herrera C., J. Kannala, and J. Heikkil. Joint depth and
color camera calibration with distortion correction. TPAMI,
34(10):2058–2064, 2012.

[20] D. Holz, S. Holzer, and R. B. Rusu. Real-Time Plane Seg-
mentation using RGB-D Cameras. In Proc. of the RoboCup
Symposium, 2011.

[21] A. E. Johnson and M. Hebert. Surface registration by match-
ing oriented points. In 3DIM, pages 121–128. 1997.

[22] M. Kazhdan. Reconstruction of solid models from oriented
point sets. In SGP, page 73. 2005.

[23] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from RGBD images. In
ECCV, 2012.

[24] N. Neverova, D. Muselet, and A. Trémeau. 2 1/2D scene
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