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Abstract

Structured light depth reconstruction is among the most
commonly used methods for 3D data acquisition. Yet, in
most structured light methods, modeling of the acquired
scene is partial, and executed separately from the decoding
phase. Here, we bridge this gap by viewing the reconstruc-
tion process via a probabilistic model combining illumina-
tion and shape. Specifically, an alternating minimization
algorithm for structured light reconstruction is presented,
incorporating a sparsity-based prior for the local surface
model. Integrating the 3D surface prior into a probabilistic
view of the reconstruction phase results in a robust estima-
tion of the scene depth.

We formulate and minimize reconstruction error and
demonstrate performance of the algorithm on data from a
structured light scanner. The results demonstrate the ro-
bustness of our algorithm to scanning artifacts under low
SNR conditions and object motion.

1. Introduction
Structured light and active illumination range scanners

have become an important tool for scene understanding
[12, 19, 16], robotics [21, 10, 26], object modeling [8, 2], in-
door scene mapping [22], and human computer interaction
[32], among other tasks. The scanner usually consists of
a calibrated camera-projector pair; where coded light pat-
terns emitted by the projector are acquired by the camera
and allow robust triangulation and depth reconstruction. For
a review of existing structured light techniques see, for ex-
ample, [29].

Many of the techniques used to reconstruct 3D depth
via structured light incorporate ad-hoc assumptions on the
scene structure and the 3D imaging process. These include,
for instance, smoothness of the acquired surface [40, 17], or
temporal objects behavior [11, 40, 17]. Yet, modeling these
assumptions in a more complete way is crucial when the
captured illumination patterns are of low SNR, due to long

scanning range and short camera exposure times. Further-
more, such assumptions can help when dealing with motion
artifacts, where some of the captured images are subject to
abrupt intensity changes due to motion of depth disconti-
nuities or albedo boundaries. Failing to model the imaging
process in a realistic manner may lead to outliers in the re-
constructed depth image, as is often observed in structured
light scanners.

Here, we improve upon results obtained by structured
light based scanners [25, 29], especially in face of chal-
lenging illumination conditions, by providing strong pri-
ors for the imaging model and surface shape. Moreover,
while strong shape priors are utilized for range image cor-
rection, i.e., surface denoising and completion, the ap-
proach we suggest incorporates shape and illumination pri-
ors into the reconstruction itself, giving us a principled
approach of combining a strong surface prior and proba-
bilistic understanding of the acquisition process. Here we
introduce a patch-based image similarity prior, similar to
those successfully utilized for image and surface process-
ing [1, 7, 35, 31, 39].

2. Regularized Structured Light Model

In shape from structured light, one is attempting to re-
construct the geometric structure of the scene, by illumi-
nating the scene with a set of projected patterns {I(i)P }Ni=1,
where N is the number of patterns, and taking a set of im-
ages {I(i)C }Ni=1 of the scene using a camera. We denote the
optical centers of the camera and projector by points C and
P respectively. The overall setup is shown in Figure 1. In
our formulation, we denote the estimated range image as
z(x), where x ∈ R2 denotes the (two-dimensional) camera
image coordinates.

We assume a Lambertian surface model for objects in the
scene, and a projector emitting directional light in a tempo-
ral sequence of patterns. The main source of imaging noise
is assumed to be the sensor. The lighting conditions we deal
with are such that the photon count per image sensor pixel is
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high enough so that the image noise model is approximately
Gaussian, yet the signal is weak enough so that correctly
decoding the coded light patterns poses a challenge. This
is the typical scenario in real structured light systems with
temporal multiplexed code, aimed for example at capturing
motion, thus requiring short exposure intervals.

Figure 1. An example of a structured light system setup.

Assuming a global illumination component and a pro-
jector illumination component, we can model every pixel’s
intensity at each frame i as

I
(i)
C (x) = a(x)IP (Πz,i(x)) + b(x) + n (x) , (1)

n (x) ∼ N
(
0, σ2

I

)
.

a(x) and b(x) are pixel-wise coefficients that depend on
the global illumination of the scene, the surface properties,
object albedo, projector properties, and so forth. Πz,i(x)
denotes the depth-dependent transformation from pixel x to
a corresponding pixel on the projector image. It is obtained
by backprojecting the camera ray to depth z and project-
ing the point into the projector optical center. n (x) is the
pixel noise, assumed to be additive white Gaussian noise,
independent and identically distributed (i.i.d.).

We wish to formulate and maximize a probability func-
tion of the depth given the known camera images and pro-
jected textures. By applying Bayes’ rule, and removing con-
stant factors we obtain

z = argmax
z,a,b

P (z, a, b|IP , IC)

= argmax
z,a,b

P (z, a, b, IP , IC)

P (IP , IC)

= argmax
z,a,b

P (IP , IC , a, b|z)P (z)

P (IP , IC)

= argmax
z,a,b

P (IP , IC , a, b|z)P (z)

= argmin
z,a,b

−logP (IP , IC , a, b|z)− logP (z) . (2)

We incorporate the maximum-likelihood choice of a, b
into P (I(i)P , I

(i)
C |z), minimizing the negative log-probability

over a and b,

min
z,a,b

[− log (P (IP , IC , a, b|z))] = (3)

min
z

(
min
a,b

[∑ (a(x)IP (Πz,i(x)) + b(x)− IC (x))2

σ2
I

])
.

The optimal values of a and b for this least-squares fitting
problem are given in analytical form by solving the normal
equations using IC ,IP at points x,Πz,i(x) respectively,(

a
b

)
=

(
µPP µP

µP N

)−1 (
µCP

µC

)
, (4)

µP =
∑

IP (Πz,i(x)) , µC =
∑

IC (x) ,

µCP =
∑

IC (x) IP (Πz,i(x)) ,

µPP =
∑

IP (Πz,i(x))
2 .

In order to obtain an efficient algorithm for computing
and optimizing photoconsistency in the structured light
case, we note that we can incorporate the computation of
the maximum-likelihood expressions for a, b into a plane-
sweep operation [5] when seeking the optimum value of z.

Inserting the optimal a, b as a function of z and noting
the conditional independence (given z) of neighboring pixel
values IC(x), IP (Πz,i(x)) provides us with a functional to
minimize with respect to z(x), similar to [34],

argmin
z

∫
x

min
a,b

(− log (P (IP , IC , a, b|z))) dx+ ψ (z) =

argmin
z

∫
x

ρSL (z; IC , IP ,x) dx+ ψ (z) . (5)

The expression ρSL (z; IC , IP ,x) denotes a penalty for
the photoconsistency assumption. This term is often opti-
mized per pixel by several steps, including binarization of
the code letters, decoding of the code, and depth reconstruc-
tion. These separate steps, however (for any specific code)
are sub-optimal, even if efficient to compute.

The term ψ (z) denotes our choice for approximating
the negative log-probability prior for the surface shape,
− logP (z). There are several possible choices of surface
shape priors. These can incorporate either smoothness as-
sumptions and more elaborate geometric priors, assump-
tions on local shape of patches on surfaces, or reasoning
on natural depth image statistics [38]. We now describe two
such possible regularization priors for depth images.

Total-Variation regularization The minimum area [4]
and total-variation [28] (TV) priors, and related smooth-
ness measures have been suggested in several forms for reg-
ularization of range images [23] and surface reconstruction
[15, 33]. TV regularization for structured light can be ex-
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pressed as

argmin
z

∫
x

ρSL (z; IC , IP ,x) + c̃‖∇z‖dx, (6)

where ‖∇z‖ is the total variation of the range image. This
form of regularization is strongly related to MRF-based
structured light [34].

Patch-based Priors for Structured Light Another pos-
sibility for modeling range images involves assuming a
local model for each patch of the surface. Regularizing
the surface then expresses itself via the parameters of this
model. This includes modelling via polynomials or simi-
lar functions, leading to the moving-least-squares [18] ap-
proach, or expressing the patch via a functional basis with
sparse coefficients, leading to sparsity-based regularization.
Priors for depth images based on patch-estimators are de-
scribed, for example, in [31, 13, 20, 35].

In our case, we assume that the depth image can be lo-
cally viewed as a sparse combination of basis functions. We
note by ψ̃ (·) our prior for surface patches. This leads to a
patch-based regularizer of the reconstruction,

argmin
z

∫
x

ρSL (z; IC , IP ,x) dx+ c̃1
∑
j

ψ̃ (Pjz) , (7)

where Piz denotes extraction of a small neighborhood i
from the surface z. For example, for an L1-sparse repre-
sentation prior, Equation 5 becomes

argmin
z,αj

∫
x

ρSL (z; IC , IP ,x)+ (8)

c1
∑
j

‖Piz −Dαj‖2 + λ‖αj‖1,

where D denotes a dictionary for depth image patches,
where Pj denotes a matrix extracting block j from the im-
age in column-stacked notation, αj denotes the representa-
tion of patch Pjz in that dictionary. The vector α concate-
nates all local representations αj of all patches in the depth
image.

3. Alternating Minimization Algorithm for
Regularized Structured Light

We assume the coded light pattern can be recon-
structed by minimizing per-pixel the decoding error func-
tion ρSL(x, IC , IP ; z). While this reconstruction is usu-
ally obtained by binarization and decoding of the time-
multiplexed code, we view it as a photoconsistency term
between the structured light patterns and the resulting cam-
era image intensities [24], while estimating the illumina-
tion conditions. Note that this function depends only on
the depth value and camera intensities per pixel. In order to
regularize the solution we suggest to use an alternating min-
imization, adding an auxiliary variable to model each patch.

Algorithm 1 Alternating Minimization Sparse Structured
Light

1: for k = 1, 2, . . . , until convergence do
2: Update αk

j (x) for all j, according to Equation (10).
3: Update zk(x), according to Equation (9).
4: end for

We decouple the problems of regularization and structured
light decoding, minimizing the functional in Equation 5,
which is of a half-quadratic form [9],. Minimization with
respect to αj given z results in a per-patch denoising algo-
rithm of Pjz, similar to the approach taken in [14]. We now
describe the different steps of the algorithm, which is given
as Algorithm 1.

Solving for z The update of z depends on the struc-
tured light patterns, and may not even be continuous. Since
the similarity term relating z and Dαj is quadratic, we can
rewrite the term for each pixel x in z as the sum of a pho-
toconsistency measure and a sum of squared distances from
versions of z(x) in all of the patches containing this pixel,

zn+1(x) = argmin
z

ρSL(z) + c1w(x)‖z − z̃(x)‖2. (9)

A solution can be obtained by sweeping the set of possi-
ble z values, similar to stereo [5]. Doing this plane-sweep
is highly suitable for parallel implementation on graphics
processing units (GPUs) [37]. Note that planesweeps are
discrete by nature, as is the nature of the coded patterns in
many cases. In order to obtain convergence, and allow sub-
pixel precision, we minimize a linearly-interpolated photo-
consistency, along with the quadratic distance in the second
term of Equation 9. The depth estimated at each pixel is set
according to the minimum of the interpolated cost function.

Solving for αj Given a patch estimate Pjz, an update of
the patch resorts to a standard sparse representation prob-
lem. Specifically, if we take our sparse prior to be of an L1

type, we can update αj using iterative shrinkage [3],

αn+1
i = Sλt

(
αn
j − 2tDT

(
Dαn

j − Pjz
))
, (10)

where t is a gradient descent step, chosen to be small
enough, and Sλt (·) denotes the soft shrinkage operator,

Sλt (y) =


0, |y| ≤ λt
y − λt, y > λt
y + λt, y < −λt

(11)

While faster iterative methods exist for L1 minimization
(see [36] for a few examples), because of the alternating
minimization nature of our scheme, more complex steps
may not lead to faster convergence. We therefore chose to
use the original iterative shrinkage scheme.
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3.1. Learning a Sparse Depth Prior

In order to learn a surface model from range images,
several properties of the data must be taken into account.
Since reconstruction errors are of an outlier nature, algo-
rithms such as KSVD [7] that assume an additive white
Gaussian noise model require pre-processing and outlier re-
moval. Furthermore, since many of the patches in range
scans are of smooth surfaces, and since the KSVD algo-
rithm is initialization-dependent, care must be taken to pro-
vide a diversified initial dictionary. We focus the algorithm
on the scarcer edge patches by clustering the data first using
the mean-shift algorithm [6]. The resulting dictionary ob-
tained from a set of 50 range scans is shown in Figure 2. We
note that the examples used for testing are not part of this
dataset, avoiding overfitting for a specific subject. While
the training data is from a specific class of human faces,
the learned primitives are quite general, as can be seen in
Figure 2. We leave the effect of different dictionary and
training data choices for future research.

Figure 2. An example of the dictionary of 300 words obtained
from a set of 50 range scans.

4. Results
In order to test the proposed scheme, we use a standard

structured light setup similar to [30], with 10 striped pat-
terns, along with an all-ones and all-zeros pattern. The cam-
era images are sampled at 320×240, and projector patterns
are shot using a 1024×768 DLP projector. In order to simu-
late low-SNR conditions, we have added Gaussian noise to
the camera images before reconstruction. Results are shown
in Figure 3 for the case of structured-light images with in-
tensity Gaussian noise of standard deviations 5 and 10.

In order to quantitatively validate our method, we take
as ground truth an almost-noiseless range image of the head
statue, and measure range errors compare to it. We com-

pare both L1 and robustified L2, truncated at 10 millime-
ters, and compared to median post-processing, taken with
the smallest filter size that removed range outliers from the
face, in order to avoid oversmoothing. The results of this
comparison are given in Table 1. For 320× 240 images, the
dictionary trained was of patch size 8× 8.

We compare our results to several approaches. A com-
mon way of removing reconstruction artifacts is by median
filtering, as was done in [27]. Yet another approach treats
the problem as a denoising problem with a strong prior
and impulse noise assumption. An example of this type of
method would be to take the same depth prior we use, but
solve a denoising problem with an L1 fidelity term.

argmin
z

∫
x

‖z − z0‖dx+ c̃1
∑
i

ψ̃ (Pjz) , (12)

where z0 is the reconstruction results without a prior. This
approach would be similar, in a sense, to the depth image
denoising suggested in [35]. This approach is marked in
Table 1 under the Sparse Denoise column. In addition, it
would be interesting to try a weaker prior for reconstruction
such as TV regularization as suggested in Section 3. This
approach is shown in the table as column TV. For all of the
methods, parameters were chosen so as to obtain optimal ro-
bust L2 results, while preventing remaining depth outliers.
The table demonstrates the effectiveness of the proposed al-
gorithm. While the computational cost of our algorithm is
far higher with current Matlab code, the algorithm is highly
parallelizable and one future line of work involves fast par-
allel implementation of this algorithm.

In Figure 4 we demonstrate the results of our algorithm
on artifacts caused by head motion in the vertical direction.
Even though the assumption of constant a(x), b(x) breaks,
the algorithm overcomes many of the errors caused by re-
construction followed by outlier removal. The size of the
median filter is chosen to be the smallest size that filters the
motion artifacts over the eyes and mouth regions, a 7 × 7
filter in this case. We note that at this filter size, the mouth
and nose areas merge, while artifacts remain on the eyelids.

5. Conclusions
In this paper we presented a novel model for regularized

structured light reconstruction. Incorporating a sparse sur-
face prior into a physically-motivated probabilistic outlook
on structured light decoding, we demonstrate accurate re-
sults in scenarios where the usual approach for decoding
structured light tends to fail.

The results obtained merit the coupling of a strong sur-
face prior with a probabilistic model for structured light re-
construction, and motivate further exploration of the bene-
fits of the proposed method as well as investigating the use
of this approach for different types of depth scanners. An
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Noise Raw Median TV Sparse Sparse Raw Median TV Sparse Sparse
Level Denoising Reconst. Denoising Reconst.

L2 error L2 error L2 error L2 error L2 error L1 error L1 error L1 error L1 error L1 error
2.5 1.4608 0.8411 0.8744 0.8680 0.8191 0.5996 0.4255 0.4240 0.4298 0.3379
5 2.6443 1.1033 1.1508 1.1768 0.9584 1.2013 0.5696 0.5689 0.6356 0.4135

7.5 3.9080 1.5315 1.715 1.8136 1.3489 2.1032 0.7384 0.7164 0.9489 0.5603
10 4.9841 1.9399 2.3866 2.758 1.7490 3.0949 0.9840 1.216 1.288 0.7571

Table 1. Error measurement at various noise levels, for structured light reconstruction, and noise reduction by median post-processing,
reconstruction with TV prior, reconstruction followed by sparse denoising, and reconstruction using a sparse prior as shown in Algorithm 1.
Errors are shown as robust L2 (truncated at 10mm) and L1 errors, in millimeters, over the region of the scanned object.

additional line of work involves implementing the current
algorithm in an efficient manner, exploiting the high level
of parallelism available in each phase.
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Figure 3. First row, left-to-right: An example textured pattern, reconstruction results, reconstruction with median filtering, reconstruction
with sparse prior, where camera images were added Gaussian noise with standard deviation of 5, with close-up on the right eye region and
the nose and mouth region. Second row, left-to-right: ground-truth reconstruction obtained from noiseless reconstruction, same sequence
of results, where camera images were added Gaussian noise with standard deviation of 10. Third row, left-to-right: 3D raw reconstruction
results, reconstruction with median post-processing and with a sparse prior for the case of σ = 5 noise. Fourth row, left-to-right: (3D raw
reconstruction omitted since it was too noisy), reconstruction with median post-processing and with a sparse prior for the case of σ = 10
noise. In order to view the range images, color and/or online viewing is suggested.
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Figure 4. Left-to-right: An example with artifacts caused by vertical head motion, a median-filtered result, the result of the proposed
method. Note the merging of the mouth and nose area in the median filter, and the remaining artifacts around the left eye and nose area.
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