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Abstract� We present a new algorithm for nonlinear dimension-
ality reduction that consistently uses global information, and that
enables understanding the intrinsic geometry of non-convex mani-
folds. Compared to methods that consider only local information, our
method appears to be more robust to noise. Unlike most methods that
incorporate global information, the proposed approach automatically
handles non-convexity of the data manifold. We demonstrate the
performance of our algorithm and compare it to state-of-the-art
methods on synthetic as well as real data.
Keywords: Dimensionality reduction, manifold learning, mul-
tidimensional scaling, geodesic distance, boundary detection.

I. INTRODUCTION

Nonlinear dimensionality reduction (NLDR) algorithms ex-
plain a given data set of high dimensionality, in terms of
a small number of variables or coordinates. Such methods
are used in a various pattern recognition problems, including
pathology tissue analysis [1], motion understanding [2], lip
reading [3], speech recognition [4], enhancement of MRI
images [5], and face recognition [6]. Most NLDR algorithms
map the data to a coordinate system of given dimensionality
that represents the given data while minimizing some error
measure. Unlike classical dimensionality reduction methods
such as principal component analysis (PCA) [7], the map is
non-linear.

The data is usually assumed to arise from a manifold M,
embedded into a high-dimensional Euclidean space RM . The
manifold M is assumed to have a low intrinsic dimension
m (m ¿ M ), i.e., it has a parametrization in a subset C
of Rm, represented by the smooth bijective map ϕ : C ⊂
Rm → M. The geodesic distances δ : M × M → R,
de�ned as the lengths of the shortest paths on M (called
geodesics), represent the intrinsic structure of the data. The
goal of NLDR is, given M, to recover the parametrization
in Rm. The intrinsic dimension m is usually assumed to be
known a priori. We denote the data samples by zi, i ∈ I a
point on M, where I is a set of continuous indices.

In the discrete setting, the data is represented as a graph
whose vertices z1, ..., zN are �nite samples of the manifold,
and the connectivity matrix A = (aij), where aij = 1 if
zi and zj are neighbors and zero otherwise. Hereinafter, we
write M referring to both the discrete and the continuous
manifold. NLDR algorithms usually approximate local (short)
distances on the data manifold by the Euclidean distances in

the embedding space, δ(zi, zj) = ‖zi − zj‖2, for i, j such
that aij = 1. The geodesic distances are approximated as
graph distances, which can be expressed as a sum of local
distances. The NLDR problem can be formulated as �nding
a set of coordinates {x1, ...,xN} = ϕ−1({z1, ..., zN}) in Rm

that describe the data.
Most NLDR methods minimize criteria that consider the

relationship of each point and its nearest neighbors. For
example, the locally linear embedding (LLE) algorithm [8]
attempts to express each point as a linear combination of
its neighbors. The deviation of each point from this linear
combination is summed over the manifold and used as a
penalty function. The coordinates that minimize the penalty
are then computed by solving an eigenvalue problem.

The Laplacian eigenmaps algorithm [9] uses as intrinsic co-
ordinate functions the minimal eigenfunctions of the Laplace-
Beltrami operator. This is done by constructing the Laplacian
matrix of the proximity graph, �nding its smallest m non-
zero eigenvectors and using them as the coordinates of the
data points. Diffusion maps have been recently proposed as
an extension of Laplacian eigenmaps, able to compensate for
non-uniform sampling of the manifold [1].

The Hessian eigenmaps algorithm [10], computes coordi-
nate functions that minimize the Frobenius norm of the Hes-
sian, summed over the manifold. The algorithm expresses, for
each coordinate function, the sum of the quadratic components
at each point. The minimization result in an eigenvalue prob-
lem, whose minimal vectors provide the desired coordinate
vectors, similarly to Laplacian eigenmaps.

The semide�nite embedding algorithm [11], takes a different
approach, trying to maximize the variance of the data set in
its new coordinates, while preserving short distances. This is
done by solving a semide�nite programming (SDP) problem,
while preservation of local distances imposed as constraints.
Solving the resulting SDP problem, however, still involves
high computational cost. Attempts to lower the complexity
have been made in [12].

Unlike local methods, the Isomap algorithm, tries to pre-
serve a global invariant � the geodesic distances on the data
manifold. While the geodesics may change dramatically even
in case of small noise, for well-sampled manifolds, their
lengths (i.e., the geodesic distances) hardly change even in the
presence of high level of noise. This property may be useful



in analysis of noisy data, in which local methods often fail.
A multidimensional scaling (MDS) algorithm is used to �nd
a set of coordinates whose Euclidean distances approximate
the geodesic distances. The least squares MDS (LSMDS)
algorithm, for example, minimizes the stress [13],

X∗ = argmin
X∈RN×m

∑

i<j

wij (dij(X)− δij)
2
,

Here X∗ = (xij) is an N × m matrix whose rows are the
coordinate vectors in the low-dimensional Euclidean space
Rm, δij = δ(zi, zj) and dij(X) = ‖xi−xj‖2 is the Euclidean
distance between points xi and xj in Rm.

The underlying assumption of Isomap is that M is isometric
to C ⊂ Rm with the induced metric dC , that is, δ(zi, zj) =
dRm(xi,xj) for all i, j = 1, ..., N . If C is convex, the restricted
metric dRm |C coincides with the induced metric dC and Isomap
succeeds recovering the parametrization of M. Otherwise, C
has no longer Euclidean geometry and MDS cannot be used.

The assumption of convexity of C appears to be too re-
strictive, as many data manifolds have complicated topology
which violates this assumption. Donoho and Grimes [14]
showed examples of data in which is C is non convex, and
pointed out that Isomap fails in such cases. Here, we suggest
a solution based on removing pairs of points inconsistent
with the convexity assumption. Our approach, hereinafter re-
ferred to as the topologically constrained isometric embedding
(TCIE), allows handling data manifolds of arbitrary topology.
An algorithm for detecting and removing the inconsistent
distances is described in Section II. Numerical implementation
details appear in Section III. Results on synthetic and real-life
data are shown in Section IV.

II. TOPOLOGICALLY CONSTRAINED ISOMETRIC
EMBEDDING

Compute the N ×N matrix of geodesic distances1
∆ = (δij).
Detect the boundary points ∂M of the data manifold.2
Detect a subset of consistent distances according to3
the following criterion,

P̄1 = {(i, j) : c(zi, zj) ∩ ∂M = ∅}, (1)

or

P̄2 = {(i, j) : δ(zi, zj) ≤ δ(zj , ∂M) + δ(zi, ∂M)},
(2)

where δ(z, ∂M) = infz′∈∂M δ(z, z′) denotes the
distance from z to the boundary.
Minimize the weighted stress,4

X∗ = argmin
X∈RN×m

∑

i<j

wij (dij(X)− δij)
2
,

with wij = 1 for all (i, j) ∈ P and zero otherwise.
The obtained points x∗1, ...,x

∗
N are the desired

representation of M in Rm.

Omitting steps 2 and 3 and setting wij = 1, we obtain the
Isomap as a particular case of the TCIE algorithm. Bernstein
et al. [15] proved that the graph distances converge to the true
geodesic distances, i.e., that the discretization is consistent.

The Isomap algorithm assumes that the parametrization C
of M is a convex subset of Rm, and relies on the isometry
assumption to �nd the map fromM to the metric space (C, dC)
by means of MDS (the stress in the solution will be zero).
MDS can be used because dC = dRm |C due to the convexity
assumption. In the case when C is non-convex, this is not
necessarily true, as there may exist pairs of points for which
dC 6= dRm |C . We call such pairs inconsistent. An example of
such a pair is shown in Figure 1. We denote the set of all
consistent pairs by

P = {(i, j) : dC(xi,xj) = dRm |C(xi,xj)} ⊆ I × I.

In the TCIE algorithm, steps 2 and 3 are used to �nd a
subset P̄ ⊆ P of pairs of points that will be consistently
used in the MDS problem, using criteria (1) and (2), �rst
proposed in [16] for matching of partially-missing shapes. In
the following propositions justifying the two criteria, we rely
upon the following properties of isometries: (i) an isometry is a
smooth map, copying boundaries to boundaries and interiors to
interiors; and (ii) the distance to boundary is preserved under
isometry, i.e., δ(zi, ∂M) = dC(xi, ∂C). Both propositions
tacitly assume the continuous case.

Let M be a compact manifold with boundary ∂M, isomet-
rically parameterized on (C ⊂ Rm, dC). Then,

Proposition 1: P̄1 = {(i, j) : c(zi, zj) ∩ ∂M = ∅} ⊆ P .
Proof: Let (i, j) ∈ P̄1. To prove the proposition, it is

suf�cient to show that the pair of points (i, j) is consistent,
i.e., (i, j) ∈ P . Let cM(z1, z2) be the geodesic connecting zi

and zj in M, and let cC(x1,x2) be its image under ϕ−1 in C.
Since c(zi, zj)∩∂M = ∅ and due to property (i), cC(xi,xj) ⊂
int(C).

Assume that (i, j) is inconsistent. This implies that
dC(xi,xj) > dRm(xi,xj), i.e., that the geodesic cC(xi,xj)
is not a straight line. Therefore, there exits a point x ∈
cC(xi,xj), in whose proximity cC(xi,xj) is not a straight
line. Since cC(xi,xj) ⊂ int(C), there exists a ball Bε(x) with
the Euclidean metric dRm around x of radius ε > 0. Let us
take two points on the segment of the geodesic within the
ball, x′,x′′ ∈ cC(xi,xj) ∩ Bε(x). The geodesic cC(x′,x′′)
coincides with the segment of cC(xi,xj) between x′,x′′. Yet,
this segment is not a straight line, therefore we can shorten
the geodesic by replacing this segment with cRm(x′,x′′),
in contradiction to the fact that cC(x1,x2) is a geodesic.
Therefore, (i, j) ∈ P .

Proposition 2: P̄2 = {(i, j) : δ(zi, zj) ≤ δ(zj , ∂M) +
δ(zi, ∂M)} ⊆ P .

Proof: Let (i, j) ∈ P̄2. We have to show that (i, j) ∈ P .
According to properties (i) and (ii) shown above we have

dC(xi,xj) = δ(zi, zj)
≤ δ(zj , ∂M) + δ(zi, ∂M)



Fig. 1. Example of two inconsistent points z1, z2 ∈ M, and the geodesic
connecting them. Also shown are the two images of these points under the
isometry ϕ−1, a geodesic connecting them in C, and the line connecting them
in Rm.

= dC(xi, ∂C) + dC(xj , ∂C). (3)

Assume that (i, j) is inconsistent. This implies that the
geodesic connecting xi and xj in Rm is not entirely contained
in C (we assume without loss of generality that the geodesic
originating from xi to xj intersects the boundary ∂C at points
x′ and x′′). Consequently,

dC(xi,xj) > dRm |C(xi,xj)
≥ dC(xi,x′) + dC(xj ,x′′)
≥ dC(xi, ∂C) + dC(xj , ∂C), (4)

which contradicts inequality (3). Therefore, (i, j) ∈ P .

We note this proof holds even if C is a subset of a generic
metric space. The metric dC would have to be replaced with
the metric induced from that space, but the Euclidean MDS
procedure would not be able to give us the correct mapping.
This would require the use of non-Euclidean embedding, e.g.
as in [16].

III. NUMERICAL SOLUTION OF THE TCIE PROBLEM

A. Detection of boundary points

Detection of boundary points on discrete manifolds has
been studied extensively (see for example [17], [18]). We
compared two boundary detection methods, based on studying
the properties of the coordinates of nearest neighbors of each
point, reconstructed from local distances using classical MDS.
The �rst method assumes the point and its two opposite
neighbors are a part of a curve along the boundary. It then
tries to �nd points that are placed outside of this boundary on
both sides of it, violating the conjecture. The algorithm goes
as follows:

for i = 1, ..., N do1
Find the set N (i) of the K nearest neighbors of2
the point i.
Apply MDS to the K ×K matrix3
∆K = (δkl∈N (i)) and obtain a set of local
coordinates x′1, ...,x

′
K ∈ Rm.

for j, k ∈ N (i) such that 〈x′j−x′i,x
′
k−x′i〉

‖x′j−x′i‖·‖x′k−x′i‖ ≈ −14
do

Mark the pair (j, k) as valid.5

if |x′ : 〈x
′−x′i,vl〉
‖x′−x′i‖ ≈ 1| ≥ τa|N (i)| for all6

l = 1, ...,m− 1 then
Label the pair (j, k) as satisfied.7
(here vl denotes the lth vector of an
orthonormal basis of the subspace of Rm

orthogonal to x′j − x′k).
end8

end9
if the ratio of satisfied to valid pairs is10
smaller than threshold τb then

Label point i as boundary.11
end12

end13

The second method tries to explore the direction of the
normal to the boundary. Moving along the normal direction,
the density of sampling points should drop to zero. We can
check along each direction from the point i to one of its
neighbors j. Assuming approximately uniform density of the
points, one such neighboring point j should produce a vector
pointing close to the normal direction. This method is more
suitable for manifolds of higher intrinsic dimension.

for i = 1, ..., N do1
Find the set N (i) of the K nearest neighbors of2
the point i.
Apply MDS to the K ×K matrix3
∆K = (δkl∈N (i)) and obtain a set of local
coordinates x′1, ...,x

′
K ∈ Rm.

for j = 1, ..., K do4

if |{x∈Rm:〈x′i−x′j ,x−x′i〉>0}|
|{x∈Rm:〈x′i−x′j ,x−x′i〉≤0}| ≤ τa then5
mark j as candidate.6

end7
end8

end9
if the number of candidate points is larger than10
τb then

Label point i as boundary.11
end12

Once the boundary points are detected, the subset of con-
sistent distances P̄ is found according to criterion (2) and the
matrix of weights W.



B. SMACOF algorithm
The minimization of the weighted stress is carried out using

an iterative optimization algorithm with the SMACOF iteration
[13],

X(k+1) = V†B(X(k))X(k),

where V† denotes matrix pseudoinverse,

vij =
{ −wij i 6= j
−∑

k 6=i vik i = j,

and B(X) is an N×N matrix dependent of X with elements,

bij(X) =




−dS(si, sj)d−1

ij (X) i 6= j and dij(X) 6= 0
0 i 6= j and dij(X) = 0
−∑

k 6=i bik i = j.

The SMACOF iteration produces a monotonous non-
increasing sequence of stress values, and can be shown to be
equivalent to a scaled steepest descent iteration with constant
step size [19].

C. Vector extrapolation
To speed up the convergence of the SMACOF iterations, we

employ vector extrapolation. These methods use a sequence of
solutions at subsequent iterations of the optimization algorithm
and extrapolate the limit solution of the sequence. While these
algorithms were derived assuming a linear iterative scheme, in
practice, they work well also for nonlinear schemes, like some
processes in computational �uid dynamics [20]. For further
details, we refer the reader to [21], [22], [23].

The main idea of vector extrapolation is, given a sequence
of solutions X(k) from iterations k = 0, 1, ..., to approximate
the limit limk→∞X(k), which must coincide with the optimal
solution X∗. The extrapolation X̂ is constructed as a convex
combination of previous iterates,

X̂ =
K∑

j=0

γjX(k+j);
K∑

j=0

γj = 1.

The coef�cients γj are determined in different ways. In the
reduced rank extrapolation (RRE) method, γj are obtained by
the solution of the minimization problem,

min
γ0,..,γK

‖
K∑

j=0

γj∆X(k+j)‖, s.t.
K∑

j=0

γj = 1,

where ∆X(k) = X(k+1) − X(k). In the minimal polynomial
extrapolation (MPE) method,

γj =
cj∑K
i=0 ci

, j = 0, 1, ...,K,

where ci arise from the solution of the minimization problem,

min
c0,..,cK−1

‖
K∑

j=0

cj∆X(k+j)‖, cK = 1,

which in turn can be formulated as a linear system [23].

D. Multiresolution optimization
Another way to accelerate the solution of the MDS problem

is using multiresolution (MR) methods [19]. The main idea is
subsequently approximating the solution by solving the MDS
problem at different resolution levels. At each level, we work
with a grid consisting of points with indices ΩL ⊂ ΩL−1 ⊂
... ⊂ Ω0 = {1, ..., N}, such that |Ωl| = Nl. At the lth level,
the data is represented as an Nl ×Nl matrix ∆l, obtained by
extracting the rows and columns of ∆0 = ∆, corresponding
to the indices Ωl. The solution X∗

l of the MDS problem on
the lth level is transferred to the next level l − 1 using an
interpolation operator P l−1

l , which can be represented as an
Nl−1 ×Nl matrix.

Construct the hierarchy of grids Ω0, ..., ΩL and1
interpolation operators P 0

1 , ..., PL−1
L .

Start with some initial X
(0)
L at the coarsest grid, and2

l = L.
while l ≥ 0 do3

Solve the lth level MDS problem4

X∗
l = argmin

Xl∈RNl×m

∑

i,j∈Ωl

wij(dij(Xl)− δij)2

using SMACOF iterations initialized with X
(0)
l .

Interpolate the solution to the next resolution5

level, X
(0)
l−1 = P l−1

l (X∗
l )

l ←− l − 16
end7

We use a modi�cation of the farthest point sampling (FPS)
[24] strategy to construct the grids, in which we add more
points from the boundaries, to allow correct interpolation of
the �ne grid using the coarse grid elements. We use linear
interpolation with weights determined using a least squares
�tting problem with regularization made to ensure all available
nearest neighbors are used.

The multiresolution scheme can be combined with vector
extrapolation by employing MPE or RRE methods at each
resolution level. In our experiments used the RRE method,
although in practice, for the SMACOF algorithm, both the
MPE and the RRE algorithms gave comparable results, giving
us a three-fold speedup. A comparison of the convergence with
and without vector extrapolation and multiresolution methods
is shown in Figure 2. The stress values shown are taken from
the problem shown in Figure 4.

E. Initialization
Since the stress function is non-convex, convex optimization

method may converge to local minima. In order to avoid
local convergence, we initialized the LSMDS problem by
classical scaling result [25]. Although such an initialization
does not guarantee global convergence in theory, in practice,
we converge to the global minimum.
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dotted) and SMACOF with both RRE and multiscale (dashed), in terms
of CPU time and MFLOPS. CPU time is approximated. Convergence was
stopped at the same relative change of stress value.

Original Swiss-roll σ = 0.05

Fig. 3. Left: Swiss hole surface without noise. Right: A Swiss hole
contaminated with additive Gaussian noise with σ = 0.015 and σ = 0.05,
and the spiral surface. The detected boundary points are shown in red.

IV. EXAMPLES AND APPLICATIONS

We applied the proposed algorithm on several synthetic
examples, as well as image analysis problems. In the �rst
experiment, we worked with the Swiss roll surface with a
rectangular hole (�Swiss hole�) sampled at 1200 points. The
data was contaminated by Gaussian noise of different variance
(Figure 3). We analyzed this manifold using our algorithm
and compared the result to other local methods (see results in
Figures 4,5). The TCIE algorithm demonstrates a very good
robustness to noise.

In the second experiment, we generated a set of images
of two discs, one stationary and the other moving. A small
amount of additive white Gaussian noise was added to the
images (Figure 6). The data manifold can be parameterized
according to the location of the center of the moving disc,
as shown in Figure 6 (see [14]). The results are shown
in Figure 7. While Isomap and our algorithm manage to
recover a meaningful parametrization, other methods produce
results signi�cantly different from the �ideal� parametrization.

Locally linear
embedding

Laplacian
eigenmaps

Hessian LLE

Diffusion maps Isomap TCIE

Fig. 4. Left to right top to bottom: Embedding of the Swiss roll (without
noise), produced by LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps,
Isomap, and our algorithm. Detected boundary points are shown as red pluses.

Locally linear
embedding

Laplacian
eigenmaps

Hessian LLE

Diffusion maps Isomap TCIE

Fig. 5. Left to right top to bottom: Embedding of a 2D manifold contaminated
by additive Gaussian noise with σ = 0.05, as produced by LLE, Laplacian
eigenmaps, Hessian LLE, diffusion maps, Isomap, and our algorithm. Detected
boundary points are shown as red pluses.



Fig. 6. Left: An example of the discs images. Coordinates of darker disc's
center parameterize for the image manifold. Right: The parameterization
manifold. The detected boundary points are shown in red.

Locally linear
embedding

Laplacian
eigenmaps

Hessian LLE

Diffusion maps Isomap TCIE

Fig. 7. Left to right top to bottom: Analysis of the disc images produced by
LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps, Isomap, and our
algorithm. Detected boundary points are shown as red pluses.

Compared to Isomap, the TCIE algorithm tends to less distort
and expand the hole.

Although in practical cases the data manifold is not nec-
essarily isometrically parameterizable in a low-dimensional
Euclidean space, our algorithm appears to be a good ap-
proximation able to produce meaningful results in image
analysis applications. Figure 8 demonstrates the recovery of
gaze direction of a person from a sequence of gray-scale
images. Assuming facial pose and expressions do not change
signi�cantly, images of the area of the eyes form a manifold
approximately parameterized by the direction of the gaze.
Similar to previous image manifold experiments [26], we
use Euclidean distances between the row-stacked images as
the distance measure. In order to reduce the effect of head
movement, simple block matching was used.

V. CONCLUSION

We introduced a new method for nonlinear dimensionality
reduction. Experiments on synthetic and real-life examples
show that our approach compares favorably to other state-of-
the-art manifold learning methods, especially in better ability
to handle data manifolds with complicated topology and sig-
ni�cant amounts of noise. In our future work we plan exploring
the use multigrid methods [19], as well as other numerical
improvements that would allow handling of large data sets.
Boundary detection plays a major role in validation of pairs of

Fig. 8. The intrinsic coordinates of the image manifold of the eyes area with
different gaze directions, as mapped by our algorithm.

points handled by the �attening method. We intend to further
explore alternative for this part of our algorithm. Finally, we
plan to test different distance measures between images [3],
and evaluate their performances to other applications.
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