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ABSTRACT
Practitioners agree that unreliable links, which sometimes deliver
messages and sometime do not, are an important characteristic of
wireless networks. In contrast, most theoretical models of radio
networks fix a static set of links and assume that these links work
reliably throughout an execution. This gap between theory and
practice motivates us to investigate how unreliable links affect the-
oretical bounds on broadcast in radio networks.

To that end we consider a model that includes two types of links:
reliable links, which always deliver messages, and unreliable links,
which sometimes fail to deliver messages. We assume that the re-
liable links induce a connected graph, and that unreliable links are
controlled by a worst-case adversary. In the new model we show an
Ω(n logn) lower bound on deterministic broadcast in undirected
graphs, even when all processes are initially awake and have colli-
sion detection, and an Ω(n) lower bound on randomized broadcast
in undirected networks of constant diameter. This separates the new
model from the classical, reliable model. On the positive side, we
give two algorithms that tolerate unreliability: an O(n3/2√logn)-
time deterministic algorithm and a randomized algorithm which
terminates in O(n log2 n) rounds with high probability.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete struc-
tures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network problems
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1. INTRODUCTION
A fundamental feature of radio networks is the presence of un-

reliable links, which sometimes deliver packets and sometimes do
not. Unreliable links can be caused by radio communication gray
zones [24], multipath propagation, and interference from unrelated
networks or electromagnetic devices. As the authors note in [26],
something as simple as opening a door can change the connection
topology of a network, and it is common in real network deploy-
ments to occasionally receive packets from distances significantly
longer than the longest reliable link [4]. Unreliable links are so
pervasive that virtually every ad hoc radio network deployment of
the last five years uses link quality assessment algorithms, such as
ETX [13], to cull unreliable connections from those considered by
higher-layer protocols. By contrast, many theoretical models of ra-
dio networks assume a fixed communication topology consisting
only of reliable links.

In this paper, we explore the impact, in terms of algorithmic time
complexity, of introducing unreliability into a theoretical model for
radio networks. We consider a dual graph model, in which there
are two types of communication links: reliable links that always
deliver messages, and unreliable links that sometimes deliver mes-
sages and sometimes do not. The unreliable links are an abstraction
that captures a variety of realistic phenomena. Our goal is to pro-
duce a model that is simple enough to be amenable to theoretical
analysis, yet still captures the diversity of complex radio behaviors
necessary to keep results applicable to real world deployment.

As a first step towards understanding the effects of unreliabil-
ity we study the fundamental problem of network-wide message
broadcast in the dual graph model. Broadcast is a powerful prim-
itive: it can be used to simulate a single-hop network on top of a
multi-hop network, greatly simplifying the design and analysis of
higher-level algorithms. The broadcast problem has been exten-
sively studied in a variety of models and settings, but mostly in
reliable models (see Section 2.2 for an overview of existing work).
We show that broadcast in the presence of unreliable links is strictly
harder than broadcast in the reliable model. For example, in undi-
rected reliable graphs it is possible to broadcast in O(n) rounds
[2, 5], while we show that unreliable links increase the round com-
plexity to Ω(n logn) under the same assumptions. For random-
ized algorithms the stretch is even worse: in the reliable model it
is possible to complete a broadcast in O(D log(n/D) + log2 n)
rounds with high probability in graphs of diameter D [20], while
we show that there is a dual graph network of diameter 2 in which
randomized broadcast requires Ω(n) rounds (this result appeared
originally in [22] as a brief announcement). On the other hand, we
show that broadcast can still be solved with reasonable efficiency



in the dual graph model: we give an O(n3/2√logn) deterministic
algorithm for broadcast in directed dual graphs, and a randomized
algorithm that broadcasts in O(n log2 n) rounds with high proba-
bility. A lower bound from [11] implies that our deterministic al-
gorithm is optimal up to a polylogarithmic factor for directed dual
graphs; a gap remains for undirected graphs.

2. MODELS FOR RADIO NETWORKS
Many different models for wireless networks have been consid-

ered in the literature; we refer the reader to [28, 29] for a compre-
hensive survey. In this section we introduce our dual graph model.
Then we briefly review several other models and explain how they
compare to the dual graph model.

2.1 The Dual Graph Model
Fix any n ≥ 2. We define a dual graph network, or simply a

network, to be a pair (G,G′) consisting of two directed graphs,
G = (V,E) and G′ = (V,E′), where V is a set of n nodes and
E ⊆ E′. The set E represents the set of reliable communication
links andE′ the set of all links, both reliable and unreliable. We as-
sume that V includes a distinguished source node s, and that every
other node is reachable in G from s. We call a network undirected
if for every edge (u, v) in E (resp. E′), the edge (v, u) is also in E
(resp. E′).

We define an algorithm A to be a collection of n processes,
which are either deterministic or probabilistic automata. (See [27]
for one possible definition of automata that satisfy our require-
ments.) We assume that each process p ∈ A has a unique identifier
IDp from a totally ordered set I , ∣I∣ = n. We often write “process
i” to mean the process with identifier i.

In order to define how algorithmA executes on network (G,G′),
we must associate processes with graph nodes. Formally, our def-
inition of an execution presupposes a bijection proc from V to A.
We assume that an adversary controls the definition of proc. The
distinction between graph nodes and processes is important for our
lower bound results in Sections 4 and 6. However, we generally
blur this distinction in our upper bounds in Sections 5 and 7, writ-
ing, for example, “node v sends” when we really mean “process
proc(v) sends”.

An execution of algorithm A on network (G,G′) with a map-
ping proc proceeds in synchronous rounds, 1, 2, . . .. In each round,
some input may arrive at each process proc(v) from the external
environment. Then proc(v) may or may not send a message. If
it sends, its message reaches the processes at all of v’s outgoing
neighbors in G, some arbitrary subset of v’s outgoing neighbors in
G′ that are not outgoing neighbors in G, and v itself. The subset of
G′-neighbors that the messages reaches is chosen by the adversary.

When no messages reach a process p, it receives ⊥, indicating
silence. When exactly one message reaches p, it receives the mes-
sage. When two or more messages reach p, it experiences a colli-
sion. Collisions can be handled in several ways; we list the possible
collision rules in order of decreasing strength (from the algorithmic
point of view).

(CR1) If two or more messages reach p (including its own mes-
sage, if it sends), then p receives ⊤, indicating collision
notification.

(CR2) When p sends, it always receives its own message, regard-
less of whether or not another message reaches it. (This
amounts to assuming that a process cannot sense the medium
while it is sending.) If two or more messages reach p and p
does not send, then it receives collision notification (⊤).

(CR3) When p sends, it always receives its own message; when
two or more messages reach p and p does not send, it hears
silence (⊥).

(CR4) When p sends, it always receives its own message; when
two or more messages reach p and p does not send, it re-
ceives either ⊥ or one of the messages. (Which of these it
receives is controlled by the adversary.)

After process p receives, it changes state before beginning the
next round.

Another important modelling decision is whether or not all pro-
cesses start in the same round. Here we consider two rules: the
synchronous start rule has every process begin in the first round of
the execution; the asynchronous start rule activates each process
the first time it receives a message, either from the environment or
from another process.

In our upper bound results, we use the weakest assumptions, that
is, collision rule CR4 and asynchronous start; our lower bounds
use the strongest assumptions, collision rule CR1 and synchronous
start. In each case, this serves to strengthen the results.

The definitions above also apply when A is probabilistic. But
now, in addition, we can define probability distributions on execu-
tions based on the random choices made by the processes of A.
To do this, we specify a particular class of (deterministic or prob-
abilistic) adversaries. Recall that, in general, an adversary may
choose the proc mapping, the processes that are reached by each
message, and (for collision rule CR4), the particular collision be-
havior. An adversary class defines precisely what the adversary is
allowed to choose and what information is available to it in mak-
ing its choices. For algorithm A and any particular adversary in
the specified class, we can generate an execution probabilistically
using the random choices of the processes of A together with the
adversary’s choices. In this way, we obtain a probability distribu-
tion on executions. Then for algorithmA and an entire class of ad-
versaries, we obtain a collection of such probability distributions,
one for each adversary in the class. In our lower bound results, we
consider very restricted adversaries, whereas our algorithms work
with respect to more powerful adversaries.

2.2 Other Models

The standard static model The most common theoreti-
cal model for radio networks features a single network graph G,
which is static and captures both transmission and interference. A
collision occurs at a node when two or more of its neighbors send
simultaneously; typically collision rule 3 is assumed, that is, no
collision detection is available. The communication graph may be
directed or undirected.

For directed graphs with no collision detection and asynchronous
starts, the best deterministic upper bound, obtained by combining
the algorithms from [20, 12], is O(nmin

{
log2D, logn

}
); the

best lower bound is Ω(n logn/ log(n/D)) [20]. In [12], a random-
ized algorithm is given which requires O(D log(n/D) + log2 n)
rounds with high probability. This matches the randomized lower
bounds of [23, 1], which also hold for undirected networks with
synchronous start. In undirected communication graphs with syn-
chronous start it is possible to broadcast in O(n) rounds [2, 5].
This is clearly optimal in n, and [21] shows that this bound is tight
even for networks of constant diameter. The Ω(n logn) lower
bound in Section 6 applies even for undirected graphs with syn-
chronous start, giving a clear separation between the models. The
construction may appear superficially similar to the Ω(D logn)
lower bound of [3], but it differs significantly (the lower bound
of [3] does not apply when spontaneous wakeup is allowed).



Explicit-interference models Several works (e.g., [15, 16])
model a network using two graphs, a transmission graph GT and
an interference graph GI . It is typically assumed that GT ⊆ GI .
Unlike transmission edges, interference edges can only cause col-
lisions, and messages cannot be conveyed along them. (In contrast,
in the dual graph model all edges can convey messages.) A colli-
sion occurs at node u when at least one of its GT -neighbors and
at least one of its GI -neighbors broadcast together. The transmis-
sion and interference graphs are both static. A completely different
approach is the SINR model [18, 25, 17], in which processes re-
ceive messages only when the ratio of the signal to the sum of the
noise and other signals exceeds some threshold. The SINR model
is geometric: the strength of the signal is assumed to degrade as a
function of the distance between the processes. We refer to [30] for
a recent treatment of interference in wireless networks.

Models that feature uncertainty The closest model to
the dual graph model in the literature is the dynamic-fault model
of [11], in which edges of the directed communication graph can
fail and recover dynamically during the execution. If one takes G′

to be the entire graph and G to be the subgraph induced by edges
that never fail, the model of [11] is equivalent to dual graphs, ex-
cept for one aspect: in [11] it is not assumed that G is connected,
and instead the broadcast is only required to reach those processes
that are reachable from the source in G. It is shown in [11] that
deterministic oblivious algorithms require Ω(n2) rounds to broad-
cast in dynamic-fault graphs; however, the notion of obliviousness
used there is a very strong one, and does not allow the behavior of
processes to depend on the round in which they first hear the mes-
sage. In contrast, in Section 5 we give an O(n3/2√logn) broad-
cast algorithm in which processes use no information except the
current round and the round in which they first receive the message
(and their label). The authors of [11] give a deterministic oblivious
algorithm that requiresO(nmin {n,Δ logn}) rounds in dynamic-
fault graphs of in-degree Δ. This algorithm outperforms ours when
Δ = o(

√
n/ logn); however, it requires that all processes know

(an upper bound on) the in-degree Δ of the interference graph G′,
whereas our algorithm requires no such knowledge.

In addition, [11] shows an Ω(n3/2) lower bound for non-oblivious
deterministic broadcast in directed dynamic-fault graphs. This lower
bound carries over to the dual graph model, and implies that the
algorithm we give in Section 5 is within O(

√
n) of optimal for di-

rected graphs. In [10], the requirement on broadcast is strengthened
to require it to reach all processes, even those that are not connected
to the source by a fault-free path. For the stronger broadcast to be
possible, it is assumed that in every round there is some function-
ing link between a process that has the message and a process that
does not. This model does not admit a deterministic algorithm, but
the authors give an O(n2/ logn) expected-time randomized algo-
rithm.

Tables 1, 2 summarize the best known upper and lower bounds
for broadcast in the classical and dual graph models, assuming syn-
chronous start (SS), asynchronous start (AS), directed (D) or undi-
rected (U) communication graphs. Results shown in bold are pre-
sented in the current paper.

3. THE BROADCAST PROBLEM
The broadcast problem requires the dissemination of a message

from the process at the distinguished source node s to all processes.
We assume that the message arrives at the source process prior to
the first round of execution. We assume that the processes treat the
message like a black box; i.e., that they behave the same regardless
of the message contents.

We say that algorithm A solves the broadcast problem in net-
work (G,G′) provided that, in any execution ofA in (G,G′), with
any assignment proc of processes to nodes, the message eventually
arrives at all processes. We say thatA solves the broadcast problem
within k rounds in network (G,G′) provided that, in any execution
of A in (G,G′), with any assignment proc of processes to nodes,
the message arrives at all processes within k rounds.

Now consider a probabilistic algorithm A and a fixed adversary
class. Recall that A generates a collection of probability distribu-
tions on executions, one for each adversary in the specified class.
For any q, 0 ≤ q ≤ 1, we say that probabilistic algorithmA solves
the broadcast problem in network (G,G′) with probability q pro-
vided that the following holds: WhenA executes in (G,G′), using
any adversary in the specified class, with probability at least q, the
message eventually arrives at all processes. We say that A solves
the broadcast problem within k rounds in (G,G′) with probability
q provided that: When A executes in (G,G′), using any adver-
sary in the specified class, with probability at least q, the message
arrives at all processes within k rounds.

We say that network (G,G′) is k-broadcastable, where k is a
positive integer, if there exist a deterministic algorithm A and a
mapping proc such that, in any execution of A in (G,G′) with
proc, with collision rule CR1 and synchronous starts, the mes-
sage arrives at all processes within k rounds. In other words, k-
broadcastable captures the intuitive notion that there is a way to
resolve the contention in the network such that the message can
be propagated to all nodes in k rounds. Note that, if (G,G′) is a
directed or undirected k-broadcastable network, then the distance
from the source to each other node in G must be at most k.

4. BOUNDS FOR 2-BROADCASTABLE NET-
WORKS

In [22], three of the authors proved the following theorem, which
provides a lower bound on the number of rounds required for broad-
cast in an undirected 2-broadcastable network. The lower bound
assumes collision rule CR1 and synchronous starts.

THEOREM 1. Let n ≥ 3. There exists a 2-broadcastable undi-
rected network (G,G′) such that there do not exist a probabilis-
tic algorithm A and integer k, 1 ≤ k ≤ n − 3, where A solves
broadcast within k rounds in (G,G′) with probability greater than
k/(n− 2).

The lower bound is matched by a deterministic round-robin broad-
cast strategy, which succeeds (deterministically) in O(n) rounds in
(directed or undirected) graphs of constant diameter, and hence, in
k-broadcastable networks for any constant k.

5. DETERMINISTIC UPPER BOUND
We describe a deterministic algorithm that solves the broadcast

problem in O(n3/2√logn) time. To strengthen the upper bound
we assume the weakest assumptions from Section 2: a directed
dual graph, Rec. Rule 4, and asynchronous start. For simplicity we
assume that n ≥ 3 and that

√
n/ logn is a power of 2.

Our algorithm follows the standard broadcast strategy of cycling
through selection objects of exponentially increasing sizes; c.f., [6,
7]. A selection object is a broadcast schedule for every node, pa-
rameterized by the number of nodes participating, which guaran-
tees that if the correct number of nodes participate, each node will
be isolated and will be the only node to broadcast in some round.
Broadcast algorithms that follow this strategy are typically con-
cerned with isolating all frontier nodes, nodes adjacent to some
node that does not have the message yet.



Classical model (G = G′) Dual graphs (G ∕= G′)
SS + U O(n)[5] Ω(n)[21]

O(n3/2√log n)

Ω(n log n)

SS + D
O(nmin

{
logn, log2D

}
)

[20, 12]
Ω(n logn/ log(n/D))[20]

Ω(n3/2)[11]
AS + U Ω(n log n)

AS + D Ω(n3/2)[11]

Table 1: Bounds on deterministic broadcast

Classical model (G = G′) Dual graphs (G ∕= G′)

O(n log(n/D) + log2 n)[12] Ω(n log(n/D) + log2 n)[23, 1] O(n log2 n) ?

Table 2: Bounds on randomized broadcast (for any combination of assumptions with no collision detection)

In the reliable model, when a frontier node u is isolated and
broadcasts alone, all of u’s neighbors receive the message. There-
after, node u is no longer a frontier node; even if u continues broad-
casting, its transmissions cannot interfere with the progress of the
message, because all its neighbors already have the message. Thus,
in the algorithms of, e.g., [6, 7], nodes continue to cycle through se-
lective families forever, and never stop broadcasting. The different
selector sizes are used to ensure that at least one selector matches
the size of the frontier, ensuring that all frontier nodes will be iso-
lated.

In the dual graph model the situation is more complicated; there
is no clear-cut “frontier”. Suppose that node u has someG′-neighbors
that have not received the message, but all of its G-neighbors al-
ready have the message. Informally, node u no longer contributes
to the progress of the algorithm, because the adversary can prevent
it from getting the message out to new nodes (its G′-neighbors); in
this sense u is no longer a frontier node. However, u can still inter-
fere with the progress of the algorithm, because its broadcasts can
cause collisions at nodes that do not have the message. Due to this
difficulty, we allow processes to participate in each selection ob-
ject exactly one, limiting the interval during which they can cause
interference. This strategy has the additional advantage that nodes
eventually stop broadcasting.

In the following, we use the notation [k, k′], where k′ ≥ k ≥ 1,
to indicate the interval {k, ..., k′}, and use [k], where k ≥ 1, to
indicate [1, k]. We continue by defining Strongly Selective Families
(SSFs), the selection objects used in our algorithm.

DEFINITION 2 ([8]:). Let k ≤ n. A family ℱ of subsets of
[n] is (n, k)-strongly selective if for every non-empty subset Z of
[n] such that ∣Z∣ ≤ k and for every element z ∈ Z there is a set F
in ℱ such that Z ∩ F = {z}.

Erdös et. al. provide an upper bound on the size of these ob-
jects [14]:

THEOREM 3 ([14]). For any n ≥ 3 and for k ≥ 2, there exist
(n, k)-strongly selective families of size O(min

{
n, k2 logn

}
).

Let smax := log(
√
n/ logn). For each s ∈ [smax], let ℱs

be an (n, ks)-SSF of size ℓs = O(k2s logn), where ks = 2s.
(By [14] we know such families exist.) We fix some total order-
ing ℱs[1], ...,ℱs[ℓs] on the ℓs sets that comprise each family ℱs.
Furthermore, we assume that ℱsmax is the round robin sequence,
which isolates every node in the graph. Thus, ℱsmax is an (n, n)-
SSF. (We can assume this because ℓsmax = Θ(k2smax

logn) =
Θ(n).) We now define our algorithm, which we call strong select.

The Strong Select Algorithm Assume without loss
of generality that processes have a access to a global round
counter1. The algorithm divides the rounds into contiguous
groups of length 2smax − 1 called epochs. The first round
of each epoch is dedicated to the smallest SSF ℱ1; the next
two rounds are dedicated to ℱ2; the next four rounds to ℱ3,
and so on. In general, we go through 2s−1 sets of each SSF
ℱs in each epoch.
When a process first receives a message, it waits, for
each s ∈ [smax], until ℱs cycles back to ℱs[1]. It
then participates in the SSF ℱs for a single iteration,
broadcasting in any round in which it is included in the
corresponding SSF set. That is, after it starts partici-
pating, in round r of epoch e process i broadcasts iff
i ∈ ℱ⌊log r⌋+1[

(
(e− 2) ⋅ 2⌊log r⌋ + r

)
mod ℓ⌊log r⌋+1 +

1]. After participating in one complete iteration of an SSF,
the process stops participating in that family. Each process
participates in exactly one iteration of each SSF used in the
algorithm.

For a given SSF ℱs, we use the term iteration to describe a com-
plete cycle through ℱs[1], . . . ,ℱs[ℓs]. Note that each iteration of
ℱs is spread out over ℓs/2s−1 epochs. We also remark that in a
given epoch it could happen that a process participates in some se-
lector families but not in others, because it is waiting for those other
selector families to cycle back to their first set.

Analysis. Fix a network (G,G′) and an execution � of the algo-
rithm in the network. Define f(n) to be the log-factor in the size of
the SSFs: formally, f(n) is a function such that f(n) = O(logn)
and for each SSF ℱs used by the algorithm, ℓs ≤ k2sf(n).

The proof involves an amortization argument, where (roughly
speaking) we show that in every sufficiently long interval the algo-
rithm always makes progress: either many new nodes receive the
message for the first time, and a lot of progress is made; or few
nodes receive the message for the first time, but then these nodes
only have to contend with each other, and they will quickly be iso-
lated and get the message out to other nodes. To formalize this, we
define the density of an interval [r, r′], denoted den(r, r′), to be the
number of processes that receive the message for the first time in
the interval, divided by r′ − r + 1:

den(r, r′) :=

# processes that receive the message
for the first time during [r, r′]

r′ − r + 1
. (1)

1This can be achieved by having the source node label every mes-
sage with its local round counter; when a node is awakened by
receiving a message, it adopts the round number on that message.



Given an SSF ℱs, let cs(r, r′) denote the number of complete
iterations of ℱs that fit in the interval [r, r′]. Finally, we fix two
constants that are used throughout the proof: we define a density
threshold

� :=
1

12f(n)2smax
=

1

12f(n)
√
n/ logn

,

and let T be the smallest round such that den(1, T ) < �, that is,
the round in which the density over the entire execution first drops
below �. We will eventually show that the algorithm terminates no
later than round T .

We begin by showing that each process that participates in one
of the last iterations of some SSF ending by round T is isolated.

LEMMA 4. Consider the last c := min {4, cs(1, T )} iterations
ofℱs in the interval [1, T ], for some s ∈ [smax]. Every process that
participates in one of these c iterations broadcasts alone at some
point during the iteration.

PROOF. LetP be the number of processes that participate in one
of the c last SSFs. Let ℓ′s = ℓs (2smax − 1) /2s−1 be the number of
rounds required to complete an iteration of ℱs: family ℱs contains
ℓs sets spread out over ℓs/2s−1 epochs (with 2s−1 sets from ℱs
in each epoch), and each epoch requires 2smax − 1 rounds. Any
process that participates in one of these c iterations must receive
the message for the first time in the interval [T ′, T ] where T ′ =
max {1, T − 6ℓ′s + 1}. Therefore, if we denote by R the number
of processes that receive the message for the first time in [T ′, T ],
then P ≤ R. Note also that den(T ′, T ) < �, otherwise we would
have den(1, T ′) < � and T would not be minimal. It follows that

P ≤ R
(1)
≤ den(T, T ′) ⋅ (T − T ′ + 1) < � ⋅ 6ℓ′s

=
6k2sf(n) (2smax − 1)

12f(n)2smax ⋅ 2s−1

(ks=2s)
< ks.

We have shown that the total number of participants in any of
the last c iterations is less than ks; therefore, the number of partici-
pants in each individual iteration is also less than ks (because each
process participates in just one iteration). From the definition of an
SSF, each participant in any of the last c iterations will be selected
to broadcast alone in the network.

LEMMA 5. No process receives the message for the first time in
the interval [T ′, T ], where T ′ = max {1, T − 1/�+ 1}.

PROOF. If one or more processes receives a message in this in-
terval, then den(T ′, T ) ≥ 1

T−T ′+1
≥ �, contradicting the mini-

mality of T .

THEOREM 6. The strong select algorithm solves broadcast in
O(n3/2√logn) rounds in any directed (or undirected) network
(G,G′), with collision rule 4 and asynchronous starts.

PROOF. We first show that every process receives the message
by the end of round T .

Assume for contradiction that some node has not received the
message by round T . Since all nodes are reachable from the source
inG, there exist two nodes i, j such that i has the message by round
T and j does not, and (i, j) ∈ E. This means that process i has not
been isolated prior to round T ; we will show that process i cannot
have received the message prior to round T , deriving a contradic-
tion. The proof involves repeatedly using Lemma 4 to show that
process i cannot have received the message by the last iteration of
selector families of decreasing size, pushing forward the round in
which process i first received the message until eventually we ex-
ceed round T ′ = T − 1/�, obtaining a contradiction to Lemma 5.

Formally, we show by backwards induction on s that for all
s = smax, . . . , 1, process i did not receive the message by round
T − 2ℓ′s. Here, as in the proof of Lemma 4, we define ℓ′s =
ℓs(2

smax − 1)/2s−1 to be the number of rounds required for a
complete iteration of ℱs. Note that T − 2ℓ′s may be negative, in
which case the claim trivially holds.

Induction base: for s = smax, suppose that T − 2ℓ′smax
≥ 0

and suppose by way of contradiction that node i received the mes-
sage by round T − 2ℓ′smax

. Since ℱsmax cycles back every ℓ′smax

rounds, node i started participating in ℱsmax no later than round
T − ℓ′smax

; by round T it has had enough time to participate in a
full iteration of ℱsmax . However, recall that ℱsmax is an (n, n)-
SSF; any node that participates in a full iteration of ℱsmax is iso-
lated. Since we assumed that i has not been isolated by round T , it
cannot have received the message by round T − 2ℓ′smax

.
Induction step: suppose that node i did not receive the message

by round T − 2ℓ′s, and suppose by way of contradiction that i re-
ceived the message by round T − 2ℓ′s−1 ≥ 0. Observe that since
ℓ′s−1 = 22(s−1)f(n)(2smax−1)/2s−2 and ℓ′s = 22sf(n)(2smax−
1)/2s−1, we have ℓ′s = 2ℓ′s−1: two iterations of ℱs−1 fit inside
every iteration of ℱs. Since process i did not get the message by
round T − 2ℓ′s = T − 4ℓ′s−1, and we assumed for contradiction
that it got it by round T − 2ℓ′s−1, it participates in one of the last
min {4, cs−1(1, T )} iterations of ℱs−1. From Lemma 4, process i
is isolated, yielding a contradiction. This concludes the induction.

We have shown that process i did not get the message by round
T − 2ℓ′1 = T − 8f(n)

√
n/ logn > T − 1/�. Since we assumed

that i did get the message prior to round T , it follows that i got the
message for the first time in the interval [max {1, T − 1/�+ 1} , T ],
contradicting Lemma 5. This completes the first part of the proof;
we can now conclude that every process receives the message no
later than round T .

To conclude the proof, consider the interval [1, X], where we
define X = n/� = 12n3/2f(n)/

√
logn = O(n3/2√logn). If

den(1, X) ≥ �, then n processes receive the message during the
interval [1, X]. On the other hand, if den(1, X) < �, then by def-
inition T ≤ X , so again all processes receive the message no later
than roundX . In both cases the broadcast is complete by roundX ,
and the algorithm terminates in O(n3/2√logn) rounds.

A Note on Constructive Solutions The (n, k)-SSFs of
size O(min

{
n, k2 logn

}
) used in strong select are derived from

an existential argument [14]. The smallest-size constructive defi-
nition of an (n, k)-SSF, from a 1964 paper by Kautz and Singel-
ton [19], is of size O(min

{
n, k2 log2 n

}
). Replacing the SSFs in

our algorithm with the variant from [19] would increase our time
complexity by only a

√
logn-factor.

6. DETERMINISTIC LOWER BOUNDS
In this section, we present two lower bounds for deterministic

broadcast algorithms. For both algorithms, we assume collision
rule CR1 and synchronous starts. The following bound is a straight-
forward adaptation of the result presented as Theorem 4.2 of [9]:

THEOREM 7. There exists a
√
n-broadcastable directed net-

work (G,G′), such that every deterministic algorithmA that solves
the broadcast problem in (G,G′) has an execution in which it takes
Ω(n3/2) rounds until the message arrives at all processes.

It follows that our upper bound in Section 5 is tight to within a
factor of O(

√
logn). However, this lower bound construction de-

pends heavily on the fact that the network is directed. If the graph



were undirected, processes could provide feedback to their neigh-
bors when they receive the message; this would break the reduction
to the SSF lower bound which is at the core of the lower bound
from [9].

We proceed with an Ω(n logn) lower bound that handles undi-
rected networks. It is unknown whether this bound is tight.

THEOREM 8. There exists an undirected network (G,G′), such
that every deterministic algorithmA that solves the broadcast prob-
lem in (G,G′) has an execution in which it takes Ω(n logn) rounds
until the message arrives at all processes.

In the following proof, we say a process is about to be isolated
after a given finite execution if it will send in the next round, and is
the only process that will do so.

PROOF. Let the set V of nodes be {0, 1, . . . , n− 1}, where
0 is the source node. We assume for simplicity that n − 1 is a
power of 2, n − 1 ≥ 4. We divide the nodes into layers Lk,
k = 0, . . . , n−1

2
, where L0 = {0} and for each k, 1 ≤ k ≤ n−1

2
,

Lk = {2k − 1, 2k}.
We construct a dual graph (G,G′) with vertex set V . The reli-

able graph, G, is a complete layered graph, with edge set E given
by:

{{0, u} ∣ u ∈ {1, 2}} ∪ {{u, v} ∣ ∃k : u, v ∈ Lk and u ∕= v}
∪ {{u, v} ∣ ∃k : u ∈ Lk and v ∈ Lk+1} .

The unreliable graph, G′, is the complete graph over V : E′ =
{{u, v} ∣ u ∕= v}. Note that by design, when process proc(u)
trasmits, where u ∈ Lk, its message can reach the processes at
any subset of the nodes that includes Lk−1 (if k > 0) and Lk+1 (if
k < n−1

2
).

We assume that the identifier set I includes a distinguished iden-
tifier i0 that is assigned to node 0, that is, that proc(0) = i0.

We construct an execution � and mapping proc in stages num-
bered 1, 2, . . . , n−1

4
. At Stage k, 1 ≤ k ≤ n−1

4
, the construction

assigns processes to the nodes (2k−1 and 2k) in layerLk, and con-
structs a longer prefix �k of �. For any k, letAk be the set of iden-
tifiers of processes that are assigned to nodes in layers L0, . . . , Lk,
by the end of Stage k. Our construction will ensure that, by the end
of �k, exactly the processes with identifiers in Ak have received
the broadcast message. Moreover, �k ends with some process in
Ak about to be isolated.

As a base case for this construction, in Stage 0 we construct an
execution �0 in which allG′-edges are used in every round, ending
with the first round after which i0 is about to be isolated. There
must be some such round, since otherwise no process other than
process i0 will ever receive the message. We define A0 = {i0}.
Note that by the end of �0, only i0 has the message, because it has
not yet sent alone.

Now we describe Stage k+ 1, 0 ≤ k ≤ n−1
4
− 1, which assigns

processes to the two nodes (2k+ 1 and 2k+ 2) in layer Lk+1, and
extends �k to �k+1. For each pair of processes {i, i′} ⊆ I − Ak,
we define an extension �i,i′ of �k, in which we assign processes i
and i′ toLk, arbitrarily assigning one of the two processes to 2k+1
and the other to 2k + 2. We first define �i,i′ for any {i, i′}, and
then describe how we choose the particular pair i, i′ that is used to
construct �k+1. For convenience we number the rounds of �i,i′
after �k as 0, 1, . . ..

In round 0 of �i,i′ , we know that exactly one process sends, and
it belongs to Ak. The adversary allows this message to reach (and
so, to be received by), exactly the processes in Ak ∪ {i, i′} (by
using the appropriate G′ edges). Thereafter, we use the following
adversary rules to determine where messages reach. Collisions are
handled according to CR1, our strongest rule.

1. If more than one process sends, then all messages sent reach
everywhere, and all processes receive ⊤.

2. If a single process j ∈ Ak sends alone, then its message
reaches exactly the processes with ids in Ak ∪ {i, i′}, so
exactly these receive it.

3. If a single process j ∈ I − (Ak ∪ {i, i′}) sends alone, then
the message reaches all processes, so they all receive it.

4. If either i or i′ sends alone, then the message reaches all
processes, so they all receive it. (We include this rule for
completeness; this case will not arise within the number of
rounds we will consider.)

5. If no process sends, then all processes receive ⊥.

These rules are designed so that, until either i or i′ sends alone,
only the nodes inAk∪{i, i′} will have the broadcast message. It is
easy to verify that the adversary can always follow the rules above
regardless of the process assignment to nodes 2k + 3, . . . , n − 1
(which we have not yet committed to at this point).

Having defined �i,i′ for all possible pairs {i, i′}, we must choose
the pair {i, i′} that will actually be assigned to layer Lk and used
to define �k+1. We do this by constructing a sequence of candidate
sets of process identifiers, C0, C1, . . . , Clog(n−1)−2, where C0 =
I − Ak, and each candidate set in the sequence is a subset of the
previous one. Informally speaking, the identifiers in eachCℓ are the
candidates that remain after we take into account behavior through
round ℓ. The process ids i and i′ will be elements of Clog(n−1)−2.

We begin with C0 = I − Ak and construct the remaining can-
didate sets inductively. Observe that ∣C0∣ = ∣I − Ak∣ ≥ n−1

2
,

because we apply this construction for only n−1
4

stages and add
only two processes to Ak at each stage.

We maintain the following inductive property for each candidate
set Cℓ (where 0 ≤ ℓ ≤ log(n− 1)− 2).

Property P (ℓ).

(1) ∣Cℓ∣ ≥ n−1
2ℓ+1 .

(2) Let j ∈ I , and let {i1, i′1} and {i2, i′2} be two pairs of elements
ofCℓ. Suppose that j is either in neither subset or in both. Then
process j receives the same values (either ⊥, ⊤, or an actual
message) in rounds 1, . . . , ℓ of �i1,i′1 and �i2,i′2 .

(3) Let i, i′ ∈ Cℓ. Then neither i nor i′ sends alone at any of
rounds 1, . . . , ℓ of �i,i′ .

Part (1) of P (ℓ) will be used to ensure that we can extend Stage
k to Ω(logn) rounds. Part (2) ensures that neither of the processes
assigned to layer Lk learns the identity of the other process, and
also that none of the processes assigned to layers greater than k
learns the identities of the processes assigned to layer k. Part (3)
says that the candidates that remain after round ℓ have not yet sent
alone, after �k.

Suppose we already have a setClog(n−1)−2 satisfyingP (log(n−
1) − 2). Conditions (1) and (3) together imply that there exist
i, i′ ∈ Clog(n−1)−2 such that neither i nor i′ sends alone in any of
rounds 1, . . . , log(n − 1) − 2 of �i,i′ . We arbitrarily choose one
such pair {i, i′}, and define �k+1 to be the prefix of �i,i′ ending at
the first time when either i or i′ is about to be isolated; this extends
�k by at least log(n− 1)− 2 rounds.

Inductive construction of C0, . . . , Clog(n−1)−2. Prop-
erty P (0) is clearly true for C0. Suppose we have already con-
structed Cℓ, where 0 ≤ ℓ ≤ log(n− 1)− 3, such that P (ℓ) holds,
and let us construct Cℓ+1. We begin by defining two sets:



∙ Sℓ+1 is the set of remaining candidates i ∈ Cℓ such that
if we assign i to layer Lk, then i will send in round ℓ + 1.
Formally, Sℓ+1 is defined to be the set of ids i ∈ Cℓ such that
for some i′ ∈ Cℓ, i′ ∕= i, process i sends in round ℓ + 1 of
�i,i′ . (By Part 2 of P (ℓ), this set is equivalent to what what
we obtain if we replace “for some i′” with “for every i′”.)

∙ Nℓ+1 is the set of remaining candidates i ∈ Cℓ that will send
in round ℓ + 1 if we do not assign them to layer Lk. That
is, Nℓ+1 is the set of nodes such that for some j, j′ ∈ Cℓ
where i ∕∈ {j, j′}, process i sends in round ℓ + 1 of �j,j′ .
(As above, by Part 2 of P (ℓ), this also holds if we replace
“for some j, j′” with “for every j, j′”.)

Note that for every i ∈ Cℓ − (Sℓ+1 ∪Nℓ+1), process i will not
send in round ℓ + 1 regardless of whether or not it is assigned to
layer Lk.

Now we are ready to define Cℓ+1. We consider cases based on
the sizes of Sℓ+1 and Nℓ+1.

Case I: ∣Nℓ+1∣ ≥ 2, that is, there are at least two processes that
would send in round ℓ + 1 if they are not assigned to
layer Lk.

In this case we omit two such processes from the candi-
date set: we define Cℓ+1 := Cℓ − {j, j′}, where j, j′

are the two smallest elements of Nℓ+1.

Case II: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ ≥ ∣Cℓ∣
2

. Then we set Cℓ+1 :=
Sℓ+1.

Case III: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ < ∣Cℓ∣
2

. Then we set Cℓ+1 :=
Cℓ − (Sℓ+1 ∪Nℓ+1).

That is, if at least two processes would send in round ℓ + 1 if
they did not receive the message in round 0, then we omit two
such processes from the new candidate set. This guarantees that,
in the remaining executions we will consider, they will not receive
the message in round 0 and will therefore send in round ℓ + 1, so
everyone will receive ⊤ in round ℓ+ 1.

On the other hand, if at most one process would send in round
ℓ+1 if it did not receive the message in round 0, then we determine
the candidates based on the number of processes that would send
in round ℓ+ 1 if they did receive the message in round 0. If at least
half would send in round ℓ+1, we include exactly those that would
send. This ensures that, in the remaining executions, at least two
of these will receive the message in round 0 and will send in round
ℓ+ 1, again causing everyone to receive ⊤ in round ℓ+ 1.

The remaining case is where at most one process would send in
round ℓ+ 1 if it did not receive the message in round 0, and strictly
fewer than half would send in round ℓ + 1 if they did receive the
message in round 0. In this case, we include exactly those that
would not send if they received the message, omitting the possible
single process that would send if it did not receive the message.
This ensures that, in the remaining executions, the processes that
receive the message at slot 0 will not send at slot ℓ + 1. Other
processes, however, may send at slot ℓ+ 1.

CLAIM 9. Property P (ℓ+ 1) holds for Cℓ+1. That is,

1. ∣Cℓ+1∣ ≥ n−1
2ℓ+2 .

2. Let j ∈ I , and let {i1, i′1} and {i2, i′2} be two pairs of ele-
ments of Cℓ+1. Suppose that j is either in neither subset or
in both. Then process j receives the same values (either ⊥,
⊤, or an actual message) in rounds 1, . . . , ℓ+1 of �i1,i′1 and
�i2,i′2 .

3. Let i, i′ ∈ Cℓ+1. Then neither i nor i′ sends alone at any of
rounds 1, . . . , ℓ+ 1 of �i,i′ .

PROOF. For Part 1, note that ∣Cℓ∣ ≥ n−1
2ℓ+1 , by Part 1 of P (ℓ).

If ∣Cℓ∣ is even, the result then follows by easy calculations based
on the three cases in the definition of Cℓ+1 from Cℓ. If ∣Cℓ∣ is
odd, then the calculation is straightforward for Cases 1 and 2(a).
The argument for Case 2(b) is slightly more involved. We know
that ∣Cℓ∣ ≥ n−1

2ℓ+1 . We know that n−1
2ℓ+1 is even, because ℓ ≤

log (n− 1) − 3. Since ∣Cℓ∣ is odd, we have ∣Cℓ∣ ≥ n−1
2ℓ+1 + 1.

Also, since ∣Sℓ+1∣ < ∣Cℓ∣
2

, we have ∣Sℓ+1∣ ≤ ∣Cℓ∣−1
2

. So we have

∣Cℓ+1∣ = ∣Cℓ∣ − ∣Sℓ+1∣ − 1 ≥ ∣Cℓ∣ −
∣Cℓ∣ − 1

2
− 1 =

∣Cℓ∣ − 1

2
.

By the lower bound on Cℓ, the right-hand side is

≥
( n−1
2ℓ+1 + 1)− 1

2
=

n

2ℓ+2
,

as needed.
Part 3 follows from Part 3 of P (ℓ) and the cases in the definition

of Cℓ+1.
In remains to show Part 2; for this, fix j, i1, i′1, i2, i′2 as in the

hypotheses. Part 2 of Pℓ implies that j receives the same values in
the first ℓ rounds; we consider what happens in round ℓ + 1. We
consider cases as in the definition of Cℓ+1.

Case I: ∣Nℓ+1∣ ≥ 2. Then in both �i1,i′1 and �i2,i′2 , two pro-
cesses in Nℓ+1 do not receive the message in round 0 and so send
at round ℓ + 1. It follows that j receives ⊤ in round ℓ + 1 in both
executions.

Case II: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ ≥ ∣Cℓ∣
2

. Then both i1 and i′1
send in round ℓ+ 1 in �i1,i′1 and both i2 and i′2 send in round ℓ+ 1
in �i2,i′2 , so again j receives ⊤ in round ℓ+ 1 in both executions.

Case III: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ < ∣Cℓ∣
2

. Here we must care-
fully consider which processes send in round ℓ+ 1. We know that
neither i1 nor i′1 sends in round ℓ + 1 of �i1,i′1 , and neither i2 nor
i′2 sends in round ℓ+ 1 of �i2,i′2 . Also, we know that each process
in Ak chooses whether/what to send based on its own state after
�k, its receipt of the message in round 0, and whatever values it
receives in rounds 1, . . . , ℓ. All of this information is the same in
�i1,i′1 and �i2,i′2 , using Part 2 of Property P (ℓ) (here, each element
of Ak is always in neither of the two sets). Therefore, it behaves
the same in round ℓ+ 1 of both executions.

We now consider two sub-cases.
Subcase IIIa: ∣Nℓ+1∣ = 0. Then no process in I − (Ak ∪
{i1, i′1}) sends in round ℓ + 1 of �i1,i′1 , and no process in I −
(Ak ∪ {i2, i′2}) sends in round ℓ + 1 of �i2,i′2 . Since neither i1
nor i′1 sends in round ℓ+ 1 in �i1,i′1 , and neither i2 nor i′2 sends in
round ℓ + 1 in �i2,i′2 , it follows that in this subcase, no process in
I −Ak sends in round ℓ+ 1 of �i1,i′1 or �i2,i′2 .

We are left to consider the processes in Ak. If no process in
Ak sends in round ℓ + 1 then j receives ⊥ in both � executions.
If two or more processes in Ak send in round ℓ + 1, then by the
adversary rules, both messages reach all processes, so j receives⊤
in both executions. If exactly one process in Ak sends, then by the
adversary rules, the message reaches exactly the processes in Ak ∪
{i1, i′1} in �i1,i′1 , and reaches exactly the processes inAk∪{i2, i′2}
in �i2,i′2 . Since j is either in both sets Ak ∪ {i1, i′1} and Ak ∪
{i2, i′2} or neither, the message reaches j either in both executions
or in neither execution. Thus, either j receives the message in both
executions, or it receives ⊥ in both executions.

Subcase IIIb: ∣Nℓ+1∣ = 1. Then a single process n1 ∈ Nℓ+1

sends in round ℓ + 1 of both � executions. This follows because



we have explicitly omitted n1 from Cℓ+1, ensuring that it does not
receive the message in round 0 in �i1,i′1 or �i2,i′2 , which implies
that it sends in round ℓ + 1. By the adversary rules, we know that
n1’s message reaches j in both executions.

Now we consider the processes in Ak. If no process in Ak sends
in round ℓ+ 1, then j receives the message from n1 in round ℓ+ 1
in both executions. If one or more processes from Ak sends, then
by the adversary rules, their messages reach all processes. So then
j receives⊤ in both executions (because theAk message(s) collide
with the n1 message).

Combined, these cases establish Part 2 of P (ℓ + 1), thus com-
pleting the proof of the claim.

Claim 9 implies that P (log (n− 1)−2) holds for Clog (n−1)−2.
Therefore, there exist two identifiers i, i′ ∈ Clog (n−1)−2 such that
neither i nor i′ sends alone at any of the first log (n− 1)− 2 slots
of �i,i′ . (Use Part 1 to show that ∣Clog (n−1)−2∣ ≥ 2, and Part 3
to show that the processes in this set do not send alone.) We then
define �k+1 to be the prefix of �i,i′ that ends just before the first
round where either i or i′ sends alone. This gives us an extension
of at least log (n− 1)− 2 slots. Note that only processes in Ak ∪
{i, i′} have the broadcast message by the end of �k+1.

For the entire construction, we begin with �0 and construct suc-
cessive extensions �1, �2, . . . , �n−1

4
. Since only two new pro-

cesses receive the message in each stage, by the end of �n−1
4

, some
processes have still not received the message. The resulting execu-
tion is Ω(n logn) rounds long, which yields our lower bound.

7. RANDOMIZED UPPER BOUND
In this section we give a simple randomized algorithm for broad-

cast, which completes inO(n log2 n) rounds with high probability.
We assume a directed communication graph and collision rule CR4,
the weakest rule.

The randomized algorithm we describe is symmetric: all pro-
cesses execute the same algorithm (and in particular, they do not
use unique identifiers). For simplicity in notation, in this section
we assume that the processes are indexed by 1, . . . , n.

Algorithm Harmonic Broadcast Nodes begin partic-
ipating immediately after they receive the message. If node
v receives the broadcast message for the first time in round
tv , then in all rounds t > tv it transmits the message with
probability pv(t), given by

∀t > tv : pv(t) :=
1

1 + ⌊ t−tv−1
T ⌋

.

Hence, for the first T rounds after receiving m, nodes transmit the
message with probability 1; in the next T rounds the message is
transmitted with probability 1/2, then the probability becomes 1/3,
and so on. The parameter T ≥ 1 in the algorithm is an integer
parameter that will be fixed later. For t ≤ tv , we define pv(t) := 0.
For convenience, we assume that the sender s receives m at time 0,
i.e., ts = 0 and s starts broadcasting m in round 1.

Analysis. For every t ≥ 1, we define

P (t) :=
∑
v∈V

pv(t) (2)

to be the sum of the transmitting probabilities in round t. We say
that round t is busy if P (t) ≥ 1, and otherwise we say that round t
is free.

We begin by bounding the number of busy rounds in any exe-
cution from above. We define the wake-up pattern of an execution
to be a non-decreasing sequence W = t1 ≤ t2 ≤ ⋅ ⋅ ⋅ ≤ tn of

round numbers, where t1 = 0, and ti is the round in which the
ith node receives the message. (That is, t2 is the round in which
the first node that is not the source receives the message, and so
on.) Note that the wake-up pattern of an execution determines the
broadcasting probabilities of the nodes in every round; therefore, to
reason about broadcast probabilities it is sufficient to reason about
all possible wake-up patterns (including ones that cannot occur in
any execution of the algorithm).

LEMMA 10. Let B(n) be the maximum number of busy rounds
induced by any wake-up pattern. Then there is a wake-up pattern
for which rounds 1, . . . , B(n) are all busy.

PROOF. Let W = t1 ≤ ⋅ ⋅ ⋅ ≤ tn be a wake-up pattern that
maximizes the number of busy rounds, and among those wake-up
patterns that maximize the number of busy rounds, minimizes the
number of free rounds before the last busy round. We argue that
this wake-up pattern has no free rounds between the busy rounds,
that is, rounds 1, . . . , B(n) are all busy rounds.

For the sake of contradiction, suppose that there is a free round
before the last busy round, and let r0 be the last free round before
the last busy round. By definition, P (r0) < 1, and since round
r0 + 1 must be busy, we also have P (r0 + 1) ≥ 1. The sum of
the broadcast probabilities can only increase from one round to the
next if some new node receives the message for the first time; thus,
there is some node i0 ∈ [n] such that ti0 = r0.

Consider the alternative wake-up pattern W ′ = t′1 ≤ ⋅ ⋅ ⋅ ≤ t′n,
where t′i = ti if i < i0 and otherwise t′i = ti − 1. Let us use
P (t), P ′(t) to denote the sum of the probabilities induced by wake-
up patterns W and W ′ in round t, respectively. Further, let px(t)
be the sending probability in round t of a node that first receives
the message in round x (as defined in the algorithm). Because the
wake-up patterns W,W ′ are the same up to round r0 − 2, we have
P (t) = P ′(t) for all t < r0. For t ≥ r0, we have

P ′(t) =

n∑
i=1

pt′i(t) =

i0−1∑
i=1

pti(t) +

n∑
i=i0

pti(t+ 1)

≥
n∑
i=1

pti(t+ 1) = P (t+ 1).

Therefore, if round t > r0 is busy for W , then round t− 1 is busy
for W ′, and the total number of busy rounds in W ′ is at least the
same as in W . Furthermore, round r0 (which was free for W ) is
busy for W ′, because round r0 + 1 is busy for W . It follows that
W ′ has fewer free rounds before the last busy round than W does,
but it has at least as many busy rounds, contradicting the choice
of W . (Recall that W was chosen to be a wake-up pattern that
maximizes the total number of busy slots, and among these wake-
up patterns, minimizes the number of free time slots before the last
busy slot.)

The following lemma bounds the total number of busy rounds
induced by any wake-up pattern.

LEMMA 11. The total number of busy rounds for any wake-up
pattern is at most n ⋅ T ⋅H(n).

PROOF. Consider an arbitrary n-node wake-up pattern W =
t1 ≤ ⋅ ⋅ ⋅ ≤ tn. We show that there has to be a free round by time
tf (n) := n ⋅ T ⋅ H(n) where H(n) =

∑n
i=1 1/i, H(0) = 1

denotes the harmonic sum. Together with Lemma 10, this implies
the claim.

We prove that there is a free time round by time tf (n) by induc-
tion on n. For n = 1 the claim is immediate.



Thus, let n > 1. For i ∈ [n], let vi be the node that wakes up
(receives the message) at time ti, and let �i be the first free round
when using the i-node wake-up pattern t1, . . . , ti (that is, the prefix
of W in which nodes vi+1, . . . , vn are never awakened). By the
induction hypothesis, �i ≤ tf (i) for all i < n. We want to show
that �n ≤ tf (n).

Let us first consider the case where ti+1 ≥ �i for some i ∈
[n − 1]. In this case, round �i remains free when we consider the
complete wake-up pattern W ; thus, �n = �i ≤ tf (i) ≤ tf (n).

Next, consider the case where ti+1 ≤ �i − 1 ≤ tf (i)− 1 for all
i ∈ [n− 1]. For any i ∈ [n], at time tf (n), the sending probability
of node vi is

pvi
(
tf (n)

)
=

1

1 +
⌊
tf (n)−ti−1

T

⌋
≤ 1

1 +
⌊
tf (n)−(tf (i−1)−1)−1

T

⌋ < 1

(n− i+ 1)H(n)
.

For the sum of transmitting probabilities, we therefore obtain

P
(
tf (n)

)
=

n∑
i=1

pvi
(
tf (n)

)
<

n∑
i=1

1

(n− i+ 1)H(n)

=
H(n)

H(n)
= 1.

Hence, round tf (n) is free, as required.

We say that a process is isolated in a round if it is the only pro-
cess transmitting in that round. In the following, we show that a
process that broadcasts in a free round is isolated with high proba-
bility, and that as soon as the number of free rounds since a process
received the message is large enough, that process is isolated with
high probability.

LEMMA 12. Let t ≥ 1 be a free round and assume that node v
transmits in round t with probability pv(t). The probability that v
is isolated in round t is at least pv(t)/4.

PROOF. Because t is a free round, all transmitting probabilities
are smaller than 1 and thus for all u ∈ V we have pu(t) ≤ 1/2.
Let q be the probability that none of the nodes in V ∖ {v} send in
round t. We have

q =
∏

u∈V ∖{v}

(
1−pu(t)

)
≥

∏
u∈V ∖{v}

(
1

4

)pu(t)
>

(
1

4

)P (t)

>
1

4
.

In the last two steps we used the fact that for 0 ≤ x ≤ 1/2 it
holds that 1 − x ≥ (1/4)x, and that P (t) < 1, because t is a free
round. The probability that v is isolated in round t is pv(t) ⋅ q >
pv(t)/4.

LEMMA 13. Consider a node v, and let tv be the time when v
first receives the message. Further, let t > tv be such that at least
half of the rounds tv + 1, . . . , t are free. If T ≥ 12 ln(n/�) for
some � > 0, then with probability larger than 1− �/n there exists
a round t′ ∈ [tv + 1, t] such that v is isolated in round t′.

PROOF. Let � = t−tv . Note that � ≥ 2T because v sends with
probability 1 in the first T rounds (a nd hence the first T rounds are
not free). In round t, the transmitting probability of v is

pv(t) =
1

1 +
⌊
�−1
T

⌋ ≥ 1

1 + �−1
T

=
T

T + � − 1
. (3)

Because the transmitting probability is non-increasing, by Lemma
12, for every free round t′ ∈ [tv + 1, t], the probability that v is

isolated is larger than T
4(T+�−1)

. Let q be the probability that there
is no free round t′ ∈ [tv+1, t] in which v transmits alone. As there
are at least ⌈�/2⌉ free rounds, the probability q is bounded by

q <

(
1− T

4(T + � − 1)

)⌈�/2⌉
< e
− T ⋅�

8(T+�−1)

< e−
T
8
⋅ 2
3 ≤ e−

12 ln(n/�)
12 =

�

n
.

The first inequality follows from Lemma 12 and from (3); the sec-
ond inequality follows because for all x ∈ ℝ we have (1 − x) <
e−x. Finally, the third and fourth inequalities follow from � ≥ 2T
and from the fact that T ≥ 12 ln(n/�), respectively.

Finally, we are ready to prove the main theorem, showing that
the broadcast completes in O(n log2 n) rounds with probability at
least 1− n−O(1).

THEOREM 14. If T = ⌈12 ln(n/�)⌉ for some � > 0, the algo-
rithm solves broadcast by time T = 2 ⋅n ⋅T ⋅H(n) with probability
at least 1− �. For � = n−O(1), we get T = O(n log2 n).

PROOF. For any node v, let tv be the round in which v first
receives the message, or ∞ if v never receives the message. Let
t′v be the first round after tv in which the number of free rounds
greater than tv is equal to the number of busy rounds after tv . By
Lemma 13, node v has been isolated by round tv with probability
at least 1 − �/n. By a union bound argument, the probability that
every node v has been isolated by t′v (assuming t′v is finite) is at
least 1− �. We will show that whenever this event occurs, all nodes
receive the message before the first time in which the total number
of free rounds in the execution equals the total number of busy
rounds. Together with Lemma 11, this proves the theorem.

Let � be the first round in which over the entire interval [1, � ],
the number of free rounds equals the number of busy rounds, and
suppose by way of contradiction that every node v was isolated no
later than round t′v (if round t′v is finite) but some node has not
received the message. Let U ⊆ V be the non-empty set of nodes
that have not received the message by round � − 1. Since G is
broadcastable, there exists a directed edge (v, u) where u ∈ U and
v ∈ V ∖U . If we can show that t′v ≤ � , then by our assumpion that
v is isolated by round t′v , process u receives the message by round
� , contradicting the choice of u.

To that end, assume by way of contradiction that t′v > � (or t′v is
infinite), that is, the number of free rounds in the interval [tv, � ] is
smaller than the number of busy rounds. By choice of � we know
that the number of free rounds in the interval [1, � ] is at least the
number of busy rounds in the interval [1, � ]. It follows that the
number of free rounds in [1, tv] exceeds the number of busy rounds
in [1, tv], contradicting the minimality of � .

8. CONCLUSION
In this paper we introduce dual graphs, a new model for radio

networks. Unlike most traditional models for radio networks, the
dual graph model allows for dynamic interference and unreliable
communication. Like traditional models, the dual graph model in-
cludes a graph G of reliable communication links; but in addition,
unreliable links are represented in the form of a second graph G′,
whose edges can be deployed against the algorithm by a worst-
case adversary. Algorithms for the dual graph model are therefore
resilient to interference and noise.

In the current paper we showed that for the broadcast problem,
resilience to link failures comes at the cost of higher round com-
plexity: a lower bound of Ω(n logn) holds for a setting in which



the reliable model admits an O(n)-round deterministic algorithm.
Our deterministic upper bound, at O(n3/2√logn) rounds, does
not yet match this lower bound; nevertheless, we gave reasonably
efficient deterministic and randomized algorithms for broadcast.

A significant part of the difficulty comes from the fact that the
network topology is unknown to the processes at the time of the
broadcast. In future work we intend to explore repeated broadcast
in dual graphs, where we hope to improve long-term efficiency by
learning the topology of the graph. Topology control in dual graphs
is another interesting area for future research.
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