
The Communication Complexity of
Distributed Task Allocation

Andrew Drucker
Computer Science and AI

Laboratory, MIT
Cambridge, MA 02139
adrucker@mit.edu

Fabian Kuhn
Dept. of Computer Science

University of Freiburg
79110 Freiburg, Germany
kuhn@informatik.uni-

freiburg.de

Rotem Oshman∗
Computer Science and AI

Laboratory, MIT
Cambridge, MA 02139

rotem@csail.mit.edu

ABSTRACT
We consider a distributed task allocation problem in which
m players must divide a set of n tasks between them. Each
player i receives as input a setXi of tasks such that the union
of all input sets covers the task set. The goal is for each
player to output a subset Yi ⊆ Xi, such that the outputs
(Y1, ..., Ym) form a partition of the set of tasks. The problem
can be viewed as a distributed one-shot variant of the well-
known k-server problem, and we also show that it is closely
related to the problem of finding a rooted spanning tree in
directed broadcast networks.

We study the communication complexity and round com-
plexity of the task allocation problem. We begin with the
classical two-player communication model, and show that
the randomized communication complexity of task alloca-
tion is Ω(n), even when the set of tasks is known to the play-
ers in advance. For the multi-player setting with m = O(n)
we give two upper bounds in the shared-blackboard model
of communication. We show that the problem can be solved
in O(logn) rounds and O(n logn) total bits for arbitrary in-
puts; moreover, if for any set X of tasks, there are at least
α|X| players that have at least one task from X in their
inputs, then O((1/α + logm) logn) rounds suffice even if
each player can only write O(logn) bits on the blackboard
in each round. Finally, we extend our results to the case
where the players communicate over an arbitrary directed
communication graph instead of a shared blackboard. As
an application of these results, we also consider the related
problem of constructing a directed spanning tree in strongly-
connected directed networks and we show lower and upper
bounds for that problem.

∗Rotem Oshman was supported by the Center for Science of
Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Alg. and Problem Complexity]: Non-
numerical Alg. and Problems—comp. on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
task allocation, directed spanning trees, multiparty commu-
nication complexity, unidirectional links

1. INTRODUCTION
In many distributed systems, a large amount of work is

performed quickly and efficiently by partitioning the work
across the participants in the network. The “work” to be
performed can range from computational work, such as sim-
ulating a complex physical environment or solving a com-
plex optimization problem, to physical work, such as having
robots travel to various locations to carry out assorted tasks.
In all cases, effectively parceling out parts of the global goal
to be performed by individual participants is key to the over-
all efficiency of the system. This problem has been studied
in many forms and guises, from fault-tolerant task allocation
(see [21]) to centralized and distributed scheduling (e.g., [8,
6, 18] and many others), from theoretical (e.g., the k-server
problem [7]) to practical approaches [1].

In the current paper we study the communication com-
plexity of task allocation, that is, the total number of bits
that the participants need to exchange to allocate the tasks
between themselves. We consider an abstract version of
the problem, TaskAllocationm,n, where m players must
jointly perform a set of n tasks (we often assume that the
set of tasks is {1, . . . , n}). Each player i receives as in-
put a set Xi ⊆ {1, . . . , n} of tasks that it is capable of
performing. For example, in the case of robots perform-
ing tasks at different geographical locations, the player’s in-
put might consist of the set of locations requiring servic-
ing that the robot can “see” with its sensors. The goal is
for the players to partition the tasks between them: each
player i must output a subset of tasks Yi ⊆ Xi, such that⋃
i Yi = {1, . . . , n} and Yi ∩ Yj = ∅ for all i 6= j. To make

the problem feasible, we consider only inputs X1, . . . , Xm
such that

⋃
iXi = {1, . . . , n}, that is, there exists some par-

tition that covers all the tasks. The players are charged for

communicating among themselves, but not for writing their
output sets Y1, . . . , Ym. We consider various models of com-
munication between the players, from shared-blackboard to
arbitrary strongly-connected communication networks.

The task allocation problem can be viewed as a restricted
one-shot instance of the well-known k-server problem [7],
where a centralized online algorithm assigns tasks to k servers,
minimizing the total cost of servicing all tasks. In the k-
server problem each (server, task) pair is associated with
a cost for having the server perform the task, and more-
over, tasks arrive continually and must be assigned in an
online manner. In TaskAllocation, all tasks are initially
known, and all have a cost of either 1 (if the task can be
performed by the player) or ∞ (if it cannot). Partition-
ing the tasks between the players corresponds to finding a
minimum-weight assignment of tasks to servers. To the best
of our knowledge, the k-server problem has not been studied
from the perspective of communication complexity, although
distributed variants have been studied (e.g., [2, 3]). In the
current paper we are not interested in competitive analy-
sis, as the variant we consider is single-shot; extensions to
weighted inputs and the online setting remain interesting
directions for future work.

Our work raises several open problems, which we discuss
in Section 9. In general, two-player communication com-
plexity lower bounds have proven very useful in proving
lower bounds on various distributed problems (e.g., [19, 4,
9, 16]). However, distributed computation is more accu-
rately captured by multi-player communication games in
the number-in-hand model, where each player knows its
own input (contrast with the number-on-forehead model,
where each player knows all the other players’ input). The
number-in-hand model was neglected by the communication
complexity community for a time, but recently several new
techniques have led to exciting advances (see [10, 11, 12]).
We believe that the complexity of distributed computing
in the CONGEST model, where bandwidth is restricted,
can be analyzed in terms of a multi-player communication
game. Importing problems from the distributed comput-
ing world into the communication complexity model raises
issues which are not often considered in existing communica-
tion complexity lower bounds: search problems, where play-
ers are allowed to choose one of many possible outputs (e.g.,
electing a leader or reaching consensus);1 partial knowledge,
where each player needs to output only part of the answer (as
exemplified in the TaskAllocation problem); and unicast
communication cost, where we wish to charge players for the
number of other players they communicate with, not just the
total communication complexity as in the shared blackboard
model. We believe that these issues yield new and interest-
ing questions in multi-player communication complexity.

Contributions. Despite the apparent simplicity of the
problem, TaskAllocation is rich enough to admit a strong
lower bound: in Section 4 we show that even for two play-
ers (using public random coins), TaskAllocation2,n has a
randomized communication complexity of Ω(n). We apply
this bound in Section 5 to show that computing a rooted
spanning tree in directed broadcast networks with diame-
ter 2, where each message is restricted to B bits, requires
Ω(n/B) rounds — even when the size of the network is fixed

1Many well-known lower bounds in communication com-
plexity concern decision problems, but there are some cases
where search problems play an important role, e.g., [13].

in advance and nodes have unique identifiers in the range
1, . . . , n. In Section 6 we study the communication complex-
ity of TaskAllocationm,n in the classical multi-player set-
ting where players communicate over a shared blackboard.
We give two randomized algorithms: the first requires play-
ers to write large messages on the blackboard, but has an
overall communication complexity of O(n log(n + m)) and
terminates in O(logm) rounds with high probability on any
input. The second algorithm we give works well when no
small number of players has to take care of a large set
of tasks, a property that is formally captured by our def-
inition of task-player expansion in Section 3. For inputs
with task-player expansion α, our second randomized al-
gorithm terminates in O

(
(1/α + logm) logn

)
rounds (or

better, see Theorem 6.6 in Section 6) and uses messages
of size O(log(n + m)). This can be shown to be optimal
to within a polylog(m,n) factor. In Section 7 we extend
our results to an arbitrary strongly-connected communica-
tion network between the players, with the size of individual
messages bounded by B. We show that in networks of di-
ameter D, TaskAllocationm,n can be solved in O(D +√
m/B logm + n log(n + m)/B) rounds, using a total of

O((m+ n) polylog(m,n)) bits of communication.

2. RELATED WORK
Scheduling and task allocation. There is a vast body
of literature concerning scheduling, allocation, and related
problems. Offline and online scheduling problems are a
mainstay of combinatorial optimization; see [5] for a sur-
vey on multiprocessor scheduling, and [14] for a survey on
the k-server problem. Distributed k-server is studied in [3],
which gives a generic technique for translating centralized k-
server algorithms into decentralized ones while maintaining
good competitive ratio. The number of messages sent by the
decentralized algorithm is counted in its cost, but messages
can be unboundedly large, and indeed their size in [3] grows
with the space requirements of the original centralized al-
gorithm. To our knowledge, the communication complexity
(in number of bits) of k-server has not been studied.

Distributed spanning tree in directed networks. Our
motivation for studying the TaskAllocation problem arose
from a result in [16], where two of the authors proved that
counting (i.e., determining the number of nodes in the net-
work) requires Ω(n/B) rounds in directed strongly-connected
broadcast networks of diameter 2, where message size is lim-
ited to B bits. The specific network used in the lower bound
of [16] only admits rooted spanning trees of constant depth,
and hence the counting lower bound translates to a lower
bound on finding a rooted spanning tree: if a rooted span-
ning tree can be found quickly, then counting could be solved
in O(1) additional rounds by summing up the tree, contra-
dicting the Ω(n/B) lower bound. However, this lower bound
crucially relies on the assumption that the size of the net-
work is initially unknown to the nodes, and this did not
seem to be the “reason” for the hardness of finding a span-
ning tree. In the current paper we use a lower bound on
the TaskAllocation problem to obtain an Ω(n/B) lower
bound on finding a rooted spanning tree even when the size
n is known in advance.

Communication complexity. Strong communication com-
plexity lower bounds are known for many interesting two-
player problems; for example, for SetDisjointness, where

the players must determine whether their input sets are
disjoint, a tight bound of Ω(n) is shown in [20]. For a
comprehensive treatment of the subject we refer to [17].
The TaskAllocation problem differs from classical prob-
lems such as SetDisjointness in that it is not a decision
problem; on a given input there may be many permissible
outputs. In addition, we do not require any of the play-
ers to know the global answer, only which tasks they have
claimed for themselves. The problem is therefore less con-
strained than traditional problems. In particular, the two-
player Ω(n) lower bound we give in Section 4 does not fol-
low directly from the Ω(n) lower bound on SetDisjoint-
ness: in the TaskAllocation2,n problem we promise the
players that the inputs X1, X2 cover all the tasks, that is,
X1 ∪ X2 = {1, . . . , n}. With this promise, SetDisjoint-
ness becomes trivial, as X1, X2 are disjoint iff their sizes
add up to exactly n. Moreover, when the sets are not dis-
joint, an element in the intersection can be found using
only O(log2 n) bits of communication (by binary search).
A similar phenomenon occurs with other problems, such
as InnerProduct and GapHammingDistance. Therefore
the lower bound we give in Section 4 is proven from first
principles using an information-theoretic argument, rather
than appealing to existing communication complexity lower
bounds.

3. PROBLEM STATEMENT
Task allocation. The distributed task allocation problem,
denoted TaskAllocationm,n, is defined over a set T of
|T | = n tasks and a set V of |V | = m players. We often
assume that T = {1, . . . , n}. Each player v ∈ V receives
an input set Xv ⊆ T , with the promise that

⋃
v∈V Xv = T .

The goal is for each player to output a set Yv ⊆ Xv, such
that for all u, v ∈ V we have Yu ∩ Yv = ∅, and moreover,⋃
v∈V Yv = T (that is, {Yv | v ∈ V } is a partition of T).
The input assignment {Xv | v ∈ V } induces a bipartite

graph H = (V ∪̇T, F), where the edges F are given by
F := {(v, x) ∈ V × T | x ∈ Xv}. We call H the task-player
graph. For convenience, for each task i ∈ T , we let Vi :=
{v ∈ V | i ∈ Xv} denote the set of players that have task i
in their input.

Communication model. In order to solve a given task
allocation instance the players in V must communicate. In
the current paper we assume synchronous communication,
i.e., the players proceed in synchronous rounds. We consider
two models of communication:

• In the classical shared blackboard model, the players
communicate by writing messages on a shared black-
board which is visible to all other players.

• In addition, we are interested in the following general
network model: players communicate over an arbitrary
(possibly directed) graph G = (V,E). In each round,
every player (represented by a node of G) can send one
message of B bits to all its out-neighbors in G (that
is, communication is by local broadcast). We assume
that initially the players do not know anything about
the graph G except possibly its size, i.e., the number
of players.

The shared blackboard model is a special case of the gen-
eral network model, obtained by choosing G := Km (the
complete graph on m nodes).

We are interested in the following performance measures:

• Total communication complexity : the total number of
bits ever sent or written on the blackboard during the
protocol.

• Round complexity : how many rounds of communica-
tion are required (where in each round each player can
send/write one message).

• Message size: how many bits the players send or write
on the blackboard in each round. This parameter is
usually specified as an external constraint, and we de-
note it by B.

Task-player expansion. The hardness of an instance of
TaskAllocation depends on the properties of the input
assignment, represented by the task-player graph H. In par-
ticular, we will show that the complexity depends on how
well tasks can be distributed among the players, as formally
captured by the following definition.

Definition 1 (Task-Player Expansion). The task-
player expansion of a task-player graph H = (V ∪̇T, F) is
defined as

α(H) := min
T ′⊆T

∣∣⋃
x∈T ′ Vx

∣∣
|T ′| .

Informally, when the task-player expansion is large, each
set of tasks can be assigned to many different players; the
problem is in some sense less constrained, which makes it
easier to solve. The smallest value α(H) can take is 1/n,
which occurs when one player receives all the tasks in his
input and the others receive nothing. The largest value,
obtained when H is the complete bipartite graph, is m/n.

General definitions and notation. We conclude this
section with a few general definitions and notation that will
be used throughout the paper. For an integer k ≥ 1, we
denote by [k] the set [k] := {1, . . . , k}. Some of our results
concern directed graphs. The graphs are always assumed
strongly-connected; for a strongly-connected directed graph
G, the diameter D(G) is the length of the longest directed
shortest path between any two nodes in G.

4. TWO-PLAYER LOWER BOUND FOR
TASK ALLOCATION

We begin by analyzing the complexity of task allocation
in the classic two-party model, where two players, Alice and
Bob, wish to allocate n tasks between them. In this section
we let TaskAllocationn stand for TaskAllocation2,n,
and we use U, V to denote the inputs to Alice and Bob re-
spectively and A,B to denote Alice and Bob’s outputs. It
is assumed that T = [n] and both players know n.

The tasks over which Alice and Bob“contend”are the ones
in the intersection of their inputs, U ∩ V ; these tasks must
be output by one player but not by both. If Alice does not
output some task that she received in her input, then she
must know that this task is in the intersection of the inputs,
and that Bob will output it. The connection between task
allocation and finding the intersection of the players’ inputs
is formalized in the following easy lemma:

Lemma 4.1. Let (A,B) be a valid output on instance (U, V)
of TaskAllocationn; that is, A ∪ B = [n], A ∩ B = ∅,
A ⊆ U , and B ⊆ V . Then (1) U \ A ⊆ U ∩ V and
V \B ⊆ U ∩ V ; and (2) U ∩ V ⊆ (U \A) ∪ (V \B).

Proof. For (1), let x ∈ U \ A (the other inclusion is
similar). In particular, then, x 6∈ A, and since A ∪ B = [n],
we must have x ∈ B. But B ⊆ V , and therefore x ∈ U ∩ V .

For (2), let x ∈ U∩V . Since A∪B = [n] we have x ∈ A∪B;
assume w.l.o.g. that x ∈ A. Because A ∩ B = ∅ we have
x 6∈ B, but on the other hand we have x ∈ V (as x ∈ U ∩V).
Together we have x ∈ V \B.

Theorem 4.2. The randomized (public-coin) communi-
cation complexity of two-player task allocation is Ω(n).

Proof. Suppose the input (U, V) is generated according
to the following distribution D. Choose a random subset
X ⊆ [n] of size pn. Next, choose a random subset Y ⊆ [n]\X
of size (1−p)n/2. Let U := X ∪Y and let V := X ∪ Ȳ = Ȳ .
Let C be the support of the distribution (i.e., each set is of
size (1 + p)n/2, and the intersection is of size pn).

We are interested in the probability over (U, V) ∼ D that
given only U , Alice can guess U∩V = X. Given U , the set X
is a uniformly-chosen subset of pn elements of U . Therefore,
given U , Alice’s chance of guessing X is at best(

(1 + p)n/2

pn

)−1

≤
(

(1 + p)n/2

pn

)−pn
=

(
1 + p

2p

)−pn
.

Informally, we will show that if there exists a protocol
P for task allocation with communication complexity o(n),
then Alice can guess X = U∩V with statistically impossible
accuracy (i.e., she can succeed with probability better than
the bound above). For an execution of P , let A and B be
the outputs of Alice and Bob, respectively. By Lemma 4.1,
U\A ⊆ U∩V ; in other words, after executing P , Alice knows
that each element in her input that she did not output is in
U ∩ V . If U \ A is large, this provides Alice with enough
information to guess the remaining elements of U ∩ V “too
accurately”.

More formally, let P be a public-coin protocol for task
allocation with t rounds, which succeeds with probability
at least 1/2 on each input. For each input (U, V) ∈ C we
have |U ∩ V | = pn (by definition of C), and by Lemma 4.1,
|(U\A)∪(V \B)| ≥ pn (in fact the lemma shows equality, but
we do not require it here). Thus, if P succeeds then either
|U \A| ≥ pn/2 or |V \B| ≥ pn/2; assume w.l.o.g. that with
probability at least 1/4 over both the choice of (U, V) and
the coin tosses of P , the players eventually output a correct
output (A,B) with |U \A| ≥ pn/2.

Now Alice can guess X = U ∩ V given U as follows: she
simulates protocol P by guessing a t-bit transcript (in ad-
dition to P ’s own randomness), obtaining some output A.
With probability at least 1/4 ·2−t, Alice guesses a transcript
for P that matches the input and P ’s randomness, and in
addition, with this transcript and public randomness, P suc-
ceeds (so U \ A ⊆ X), and we have |U \ A| ≥ pn/2. Now
there are only at most(

((1 + p)n/2− |U \A|
pn− |U \A|

)
≤

(
(1 + p)n/2

pn/2

)

≤
(

(1 + p)en/2

pn/2

)pn/2
=

(
(1 + p)e

p

)pn/2
possibilities for X. By choosing the most likely possibility
given the transcript and the public randomness, Alice can

guess the correct value of X with probability at least(
(1 + p)e

p

)−pn/2
=

(
1 + p

2p
· 2e
)−pn/2

.

Therefore we must have

1

4
· 2−t ·

(
1 + p

2p
· 2e
)−pn/2

≤
(

1 + p

2p

)−pn
.

Simplifying yields

t ≥ pn

2

(
log

1 + p

2p
− (1 + log e)

)
− 2.

To obtain a non-trivial lower bound we must select p such
that log 1+p

2p
> (1 + log e) ≈ 2.4. For example, p := 1/16

satisfies this constraint.
To conclude, if P is a protocol for 2-player task allocation,

then there must exist at least one input on which with prob-
ability at least 1/2, at least n

32

(
log 17

2
− (1 + log e)

)
− 2 =

Ω(n) bits are exchanged. Therefore the worst-case expected
communication complexity of P is Ω(n).

Remark 1. The lower bound can be extended to a relaxed
variant of TaskAllocation, where we allow an ε-fraction
of tasks to be assigned to both players for a sufficiently small
constant ε ≥ 0.

Remark 2. The two-player communication complexity of
TaskAllocationn is O(n), since Alice can always just send
her complete input (represented as the n-bit characteristic
vector) to Bob, claim all the tasks in her input, and have
Bob claim the remaining tasks. Theorem 4.2 shows that
this strategy is optimal. Moreover, if we wish to find all the
elements in the intersection, when the intersection is of size
Ω(n), repeatedly sampling a random element is the optimal
strategy up to a log(n) factor.

5. LOWER BOUND ON FINDING ROOTED
SPANNING TREES

Next we show how to apply the lower bound from the
previous section to obtain a lower bound on computing a
rooted spanning tree. Formally, the distributed rooted span-
ning tree problem in a network G = (V,E) requires each
node v in the network to output a value pv ∈ V ∪{⊥}, such
that the edges {(v, pv) | v ∈ V } form a rooted spanning tree
(oriented upwards toward the root) of G. (Exactly one node
v may output pv = ⊥, and this node is the root of the tree.)
In each round of the algorithm, each node v ∈ V broadcasts
B bits, which are delivered to all of v’s out-neighbors in G.
Each node of G initially knows the size n of the graph and
has a unique identifier (UID) drawn from the set [n]. 2

Our lower bound shows that finding a rooted spanning
tree is hard even in a restricted class Gn of networks, where
each G ∈ Gn is strongly-connected, has a diameter of 2,
and has no simple directed path of length more than 4. (In
particular, all spanning trees have depth at most 4, so the
algorithm cannot be “confused” by long paths or by tall po-
tential spanning trees.)

2In [16], two of the authors proved a weaker version of this
lower bound, which relied entirely on the assumption that
the size of the network is not known a-priori. We now show
that this assumption did not capture “the core hardness” of
finding a rooted spanning tree; the problem remains hard
without it.

Theorem 5.1. Any algorithm for finding a rooted span-
ning tree in networks of Gn requires at least Ω(n/B) rounds
to succeed with probability 1/2.

Proof. We prove the theorem by reduction to the two-
party task allocation problem TaskAllocationn−2. Specif-
ically, we show that if there is an algorithm for finding a
rooted spanning tree in all networks of Gn which requires
t rounds to succeed with probability 1/2, then there is a
public-coin protocol for solving TaskAllocationn−2 with
communication complexity O(B · t). The theorem then fol-
lows from Theorem 4.2.

Fix an algorithm A for finding a rooted spanning tree.
Given inputs U, V (respectively), Alice and Bob can solve
TaskAllocationn−2 by simulating the execution of A in a
network GU,V = ([n], EU,V), where

EU,V = ({n− 1, n} × [n− 2]) ∪ {(n− 1, n), (n, n− 1)}
∪ (U × {n− 1}) ∪ (V × {n}) .

Informally, in GU,V nodes n − 1 and n represent Alice and
Bob respectively, and nodes 1, . . . , n − 2 represent the task
set of the TaskAllocationn−2 problem. Nodes n− 1 and
n always have edges to all nodes of the network, regardless
of the input. In addition, the nodes of U have edges to node
n− 1 (that is, to “Alice”) and the nodes of V have edges to
node n (“Bob”). It is easy to verify that GU,V ∈ Gn.

Alice and Bob cooperate to simulate the execution of A,
using the public randomness to assign outcomes to the coin
tosses of nodes 1, . . . , n; bit n · k + i − 1 of the public ran-
dom string is interpreted as bit k of node i’s randomness (for
i ∈ [n] and k = 0, 1, 2, . . .). Alice is responsible for locally
simulating nodes U∪{n− 1}; she keeps track of these nodes’
states throughout the execution. Similarly, Bob is responsi-
ble for simulating nodes V ∪ {n}. (The nodes in U ∩ V are
simulated by both players independently.)

To simulate one round of A, the players update the states
of their locally-simulated nodes as follows: Alice computes
the messages output by nodes U ∪ {n− 1}, and Bob com-
putes the messages output by nodes V ∪{n− 1} in the cur-
rent round; then Alice and Bob send each other the messages
output by nodes n − 1 and n (resp.). Now Alice computes
the new state of each node in U after receiving the messages
sent by nodes n − 1 and n, and Bob does the same for the
nodes in V . Finally, Alice computes the new state of node
n−1 after receiving the messages sent by nodes U∪{n}, and
Bob updates the state of node n after receiving the messages
of nodes V ∪ {n− 1}. Note that in the final step, Alice and
Bob know which nodes’ messages to deliver, because Alice
knows U and Bob knows V . It is not hard to see that for
nodes i ∈ U ∩ V , Alice and Bob agree on the local state of
i at every step of the simulation.

Suppose that A succeeds with probability at least 1/2 af-
ter t rounds. Then after simulating round t of the execution,
with probability at least 1/2 each node i ∈ [n − 2] outputs
a parent pi ∈ [n] ∪ {⊥}, with exactly one node r ∈ [n] out-
putting ⊥. The edges {(i, pi)} form a directed spanning tree
with root r. To handle the root r, the protocol concludes
with one final exchange: Alice sends Bob one bit b indicat-
ing whether some node i ∈ U (that Alice was simulating)
output pi = ⊥. Finally the players output the following sets:

A = {i ∈ U | pi = n− 1} ∪ {r, if r ∈ U and pr = ⊥} ;

B = {i ∈ V | pi = n} ∪ {r, if r ∈ V and pr = ⊥ and b = 0} .

It is easy to verify that A,B form a valid output on instance
(U, V), as each node in [n−2] except possibly r must choose
either n−1 or n as its parent (but not both), and if r ∈ [n−2]
then it is assigned to exactly one player.

The total amount of communication used by the protocol
is 2Bt+ 1 = O(Bt), and a correct output is produced with
probability at least 1/2.

The lower bound above can be shown to be nearly-tight
for networks of constant diameter (and in particular, the
class Gn). More generally, in networks of diameter D it
is possible to construct a rooted spanning tree in O(D2 +
n logn/B) rounds, as we will see in Section 8. It is also easy
to show that O(D + |E|/B) rounds suffice for networks of
any diameter. The time complexity of finding a spanning
tree in networks with diameter D = ω(

√
n) and |E| = ω(n)

remains open to the best of our knowledge.

6. MULTIPARTY COMPLEXITY IN THE
SHARED BLACKBOARD MODEL

In this section we study the complexity of distributed task
allocation in the shared blackboard communication model.
First note that the two-player lower bound (Thm. 4.2) can
be embedded into the multi-player setting, yielding the fol-
lowing lower bound:

Theorem 6.1. The shared-blackboard communication com-
plexity of multi-player task allocation is Ω(n). Further, for
any α > 0, n ≥ 2, and m ≥ 2/α, there is a class of inputs
with task-player expansion α for which some player needs to
communicate Ω(1/α) bits.

Proof. The 2-player scenario is a special case of the
multi-player shared blackboard model. Therefore, it follows
from Theorem 4.2 that the communication complexity of the
multi-player task allocation problem is Ω(n).

For the bound involving the expansion α, choose two play-
ers u, v ∈ V , and partition the tasks into two sets T ′, T \ T ,
where |T ′| = 2/α. All the tasks in T ′\T are assigned to each
of the players in V \ {u, v}. As for the tasks in T ′, we use
them to construct a random 2-player input for the player u
and v as in Theorem 4.2. Because the sub-problem defined
by {u, v} and T ′ is statistically independent of the problem
defined by the remaining players and tasks, u and v have to
solve their sub-problem by themselves. Hence, by Theorem
4.2 either u or v has to communicate at least Ω(1/α) bits.

In the remainder of this section we give two algorithms for
task assignment in the shared blackboard model. Our algo-
rithms show that up to logarithmic factors, the bounds of
the theorem above are tight.

In both of our algorithms, each round causes some player-
task assignments to become fixed for the remainder of the
algorithm (i.e., some tasks become permanently assigned).
We let T (i) denote the set of tasks that have not been perma-
nently assigned by the beginning of round i, and V (i) denote
the set of players that still have some unassigned tasks at
the beginning of round i. Further, let H(i) be the subgraph
of H (the task-player graph) induced by V (i) ∪ T (i). In a
similar manner, we use n(i) := |T (i)|, m(i) := |V (i)| and
Xv(i) to denote the number of remaining tasks, the number
of remaining players, and player v’s remaining (unassigned)
tasks at the beginning of round i.

6.1 Large Messages, Small Total Complexity
We first give a randomized algorithm that tries to mini-

mize the overall number of bits while keeping the number of
rounds small at the same time. We do not restrict B, that
is, individual players can potentially send large messages, as
long as the total number of bits sent in by all players in all
messages is not too large.

The algorithm proceeds as follows. In round i ≥ 1, each
player v ∈ V (i) selects a subset of its remaining tasks Xv(i):
each task x ∈ Xv(i) is selected independently with probabil-
ity min

{
1, 2i/m

}
. Then, v proposes the assignments (v, x)

for all selected tasks x ∈ Xv(i), by writing these proposals on
the shared blackboard. Each task that some player proposed
to claim is assigned to the smallest player that attempted to
claim it (note that this requires no further communication,
as all players can see all proposals). This process continues
until all tasks have been assigned.

In round dlogme, each remaining player selects each of its
remaining tasks with probability 1. Therefore the algorithm
terminates in at most dlogme rounds. In the following, we
show that with high probability, the total number of an-
nounced proposals is O(n).

For a task x ∈ T , let Ax be the number of proposals of
the form (v, x) that are announced throughout an execution
of the algorithm. The following lemma analyzes the distri-
bution of Ax for a task x.

Lemma 6.2. The random variable Ax is dominated by a
constant multiple of a geometric random variable, that is, for
k ≥ 1, P(Ax ≥ k) ≤ cρk for constants c > 0 and ρ ∈ (0, 1).

Proof. Let d = |Vx| be the degree of task x in H, i.e.,
the number of players that received task x in their input.
The number of proposals made for each task depends on
the round in which it is assigned: if task x is not assigned
before round i, the number of proposals (v, x) in round i is
binomially distributed with parameters d and 2i/m.

Let I be the round in which task x is assigned. Note
that, since each task is permanently assigned in the first
round where someone attempts to claim it, proposals (v, x)
for task x are only made in round I. For k ∈ {0, . . . , d} and
i ∈ [dlogme], we define

p(k, i) := P(Ax = k|I = i) =

(
d

k

)
2ik

mk

(
1− 2i

m

)d−k
.

We can express the probability distribution of Ax in terms
of these probabilities as follows. For k ∈ {0, . . . , d}, we have

P(Ax = k) =

dlogme∑
i=1

p(k, i) · P(I = i)

=

dlogme∑
i=1

p(k, i) ·
i−1∏
j=1

p(0, j)

=

dlogme∑
i=1

p(k, i) ·
i−1∏
j=1

(
1− 2j

m

)d

≤
dlogme∑
i=1

1

k!
·
(
d2i

m

)k
·
i−1∏
j=1

(
1− 2j

m

)d
︸ ︷︷ ︸

q(k,i)

. (1)

In the last inequality we used the fact that
(
d
k

)
≤ dk

k!
. Let us

consider the values of the expression q(k, i) from Inequality
(1) for a fixed k and different i. Let i0 be the maximal
value for i such that 2i ≤ m/d. We have q(k, i0) ≤ 1/k!

and q(k, i) ≤ 2−(i0−i)kq(k, i0) for i < i0. Because k ≥ 1, we
therefore get

i0∑
i=1

q(k, i) ≤
i0∑
i=1

1

k!
· 2−(i0−i) ≤ 2

k!
. (2)

Further, we obtain q(k, i0 + 1) ≤ 2k/k!, and for i > i0 + 1
we have

q(k, i) ≤ q(k, i0 + 1) · 2k ·
(

1− 2i−1

m

)d
≤ q(k, i0 + 1) · 2k · e−

2i−1d
m ≤ q(k, i0 + 1) ·

(
2

e2i−i0−1

)k
.

In the first inequality, we used the fact that 1 − x ≤ e−x

for all x ∈ R, and in the second inequality the fact that
i > i0 + 1 and k ≤ d. Combining with (2) and applying (1),
we get that

P(Ax = k) ≤
dlogme∑
i=1

q(k, i) = O

(
2k

k!

)
.

The claim of the lemma now follows because P(Ax ≥ k) =∑d
k′=k P(Ax = k′).

The total number of assignment proposals throughout the
execution is A =

∑
x∈T Ax. The random variables Ax are

independent, and by Lemma 6.2, the sum A can be bounded
from above (up to a constant factor) by the sum of n inde-
pendent geometric variables. Thus we obtain the following:

Lemma 6.3. In an execution of the above algorithm, the
total number of announced potential assignment (v, x) for
v ∈ V and x ∈ T is at most O(n) = O(|T |) with probability
at least 1− e−cn for any constant c > 0.

Proof. Let A be the total number of announced poten-
tial assignments (v, x). By the definition of the random vari-
ables Ax, we have A =

∑
x∈T Ax. Note further that the

random variables Ax are independent because they depend
on disjoint set of edges of the player-task graph H and edges
are picked independently.

By Lemma 6.2, each Ax is dominated by a c ·Yx for a con-
stant c > 0 and a geometric random variable Yx ∼ Geom(p)
for a constant parameter p ∈ (0, 1). Consequently, A is
dominated by c ·Y , where Y is the sum of n independent ge-
ometric random variables with parameter p. Let k > 0 be a
positive integer and let Z ∼ Bin(k, p) be a binomial random
variable with parameter k and p. We have Y > k iff in a
sequence of k Bernoulli trials with success probability p, less
than n succeed. We therefore have P(Y > k) = P(Z < n). If
we choose k = γn/p for a constant γ > 1, we have E[Z] = γn

and therefore Z ≥ n with probability at least 1 − e−Ω(n),
where the hidden constant in the exponent can be made ar-
bitrarily large if the constant γ is chosen sufficiently large.

The performance of the algorithm follows directly from
the lemma above:

Theorem 6.4. The above algorithm solves the task as-
signment problem in the shared blackboard model in O(logm)
rounds and with an overall communication complexity of
O(n log(n+m)) bits.

6.2 Task Allocation with Small Messages
The first algorithm we presented is efficient in terms of

total bit complexity and number of rounds. However, it
might require individual players to send a large number of
bits in a single round. We now consider the case where in
each round, each player can only send a message of at most
B = O(log(n + m)) bits. We give an algorithm that has
a good round complexity when the expansion α(H) of the
task-player graph is large (cf. Definition 1). In the follow-
ing, we assume that α(H) ≤ 1, i.e., the number of players
does not exceed the number of tasks. (If α(H) > 1, all
appearances of α(H) in our bounds can be replaced by 1.)

Description of the algorithm. As before, the algorithm
runs in rounds, and we let H(i) = (V (i)∪T (i), F (i)) be the
remaining task-player graph at the beginning of round i. In
each round, every player v picks a random task x ∈ Xv(i)
uniformly, and proposes the assignment (v, x) by writing it
on the blackboard. Task x is then permanently assigned to
the smallest player u that attempted to claim it (i.e., that
wrote (u, x) on the blackboard). Unassigned tasks y ∈ T (i)
for which that no assignment (v, y) was proposed in round
i remain unassigned. We continue until all tasks in T have
been assigned to some player.

Analysis of the running time. The algorithm above
makes progress in one of two ways. Let λ ∈ (0, α(H)) be
a parameter whose value will be fixed later.

Definition 2 (Task-reducing rounds). We say that
round i is a task-reducing round if given the random choices
up to the beginning of round i, the expected number of tasks
assigned in round i is at least λ|V (i)|.

Definition 3 (Edge-reducing rounds). Round i is
called edge-reducing for player v ∈ V (i) if given the random
choices up to the beginning of round i, in expectation at least(
1 −

√
λ/α(H)

)
· |Xv(i)| tasks from Xv(i) are permanently

assigned in round i.

Informally, if a round is task-reducing, we make progress
because many tasks become assigned. On the other hand, if
the round is not task-reducing, this means that many play-
ers picked the same task to propose (because each player
proposes one task, but not many tasks were proposed in to-
tal). Each task x proposed in round i becomes assigned to
some player, and the other players v then remove this task
from their remaining input Xv(i), causing edge (v, i) to be
removed from H(i). If H has good expansion, many players
are incident to (i.e., have in their input) some task among
the tasks proposed in round i, and all such players now shed
all edges corresponding to proposed tasks. Therefore the
round is edge-reducing for a good fraction of players.

More formally, we prove the following lemma.

Lemma 6.5. For each round i of the algorithm, either
round i is a task-reducing round, or round i is an edge-
reducing task for at least a

(
1 −

√
λ/α(H)

)
-fraction of the

remaining players v ∈ V (i).

Proof. Let S ⊆ T (i) be a random variable representing
the number of tasks that are assigned in round i, given the
random choices up to the beginning of the round. If round
i is not task-reducing, then E[S] < λ|T (i)|. We will show
that in this case round i is edge-reducing for a large frac-
tion of remaining players. In the sequel all probabilities and

expectations are implicitly conditioned on events up to the
beginning of round i.

Let Cu be the event that player u ∈ V (i) picks a task
x ∈ Xv(i) that is also picked by another player v ∈ V (i).
From the assumption that the round is not task-reducing,∑

u∈V (i)

P(Cu) > |V (i)| − E[S] > |V (i)| − λ|T (i)|

≥ |V (i)| ·
(

1− λ

α(H)

)
. (3)

The last inequality follows because |V (i)| ≥ α(H)|T (i)|, by
the assumption that H has task-player expansion α(H).

For u ∈ V (i), let Zu be the number of tasks in Xu(i) that
are assigned in round i, and let Z′u be the number of tasks
in Xu(i) that are proposed by other players v ∈ V (i) \ {u}.
Clearly, Z′u ≤ Zu, and therefore also E[Z′u] ≤ E[Zu]. We
have

P(Cu) =
∑
x

P(Z′u = x) · P(Cu|Z′u = x)

=
∑
x

P(Z′u = x) · x = E[Z′u] < E[Zu].

We need to show that for at least
(
1 −

√
λ/α(H)

)
|V (i)|

players u ∈ V (i) we have E[Zu] ≥
(
1 −

√
λ/α(H)

)
· |V (i)|

(i.e., round i is edge-reducing for these players). Suppose
not. Then∑

u∈V (i)

P(Cu) <
∑

u∈V (i)

E[Zu]

<

(
1−

√
λ

α(H)

)
|V (i)| · 1

+

√
λ

α(H)
· |V (i)| ·

(
1−

√
λ

α(H)

)

=

(
1− λ

α(H)

)
· |V (i)|,

a contradiction to Inequality (3).

To see the intuition behind the algorithm’s progress, con-
sider the simple case where λ and α(H) are both constant.
Then each task-reducing round causes a constant fraction
of tasks to be eliminated, and each edge-reducing round
causes a constant fraction of players to shed a constant frac-
tion of their edges in the task-player graphs. After roughly
log(n) edge-reducing rounds, a constant fraction of play-
ers have no tasks remaining, and they are removed from
V (i). To eliminate all players (and hence all tasks) we re-
quire logarithmically-many such“phases”, so the overall time
complexity is O(logn · logm).

In the following theorem we obtain a slightly better bound
by carefully setting the parameter λ:

Theorem 6.6. With high probability, the algorithm runs
in at most T rounds, where

T = O

(
logm logn

log2(α(H) logm)

)
if α(H) = Ω

(
1

logm

)
, and

T = O

(
logn

α(H)

)
if α(H) = O

(
1

logm

)
.

Proof. Let λ ≤ α(H)/5 be a positive parameter. The
value of λ will be fixed later. Consider some round i. We
call i a task-reducing round if the expected number of tasks
assigned in round i is at least λ|V (i)|. For a player v ∈ V (i),
we call round i an edge-reducing round for v if in expectation
at least

(
1−
√
λ/α(H)

)
·|Xv(i)| tasks fromXv(i) are assigned

to some player in round i. By Lemma 6.5, each round i is
either a task-reducing round or an edge-reducing round for
at least a

(
1−

√
λ/α(H)

)
-fraction of the players in V (i).

Let us first look at a task-reducing round i. For a task
x ∈ T (i), let Sx be an indicator random variable that is 1
iff task x is assigned in round i. The sum S =

∑
x∈T (i) Sx

then counts the number of tasks that are assigned to some
player in round i. The picking of tasks by players can be
seen as a balls-into-bins process in which each ball (player)
independently chooses a random bin according to some dis-
tribution.

Consider two tasks x 6= y ∈ T (i) and a player v ∈ V (i)
and let Avx be the event that player v picks task x. We
have P(Avx) = 1/|Xv(i)|. If we condition on Sy = 0, we
have P(Avx|Sy = 0) = 1/(|Xv(i)|−1) > P(Avx) if y ∈ Xv(i)
and P(Avx|Sy = 0) = P(Avx) otherwise. We therefore have
P(Sx = 1|Sy = 0) ≥ P(Sx = 0) and thus P(Sx = 1|Sy =
1) ≤ P(Sx = 1). Consequently it holds that E[SxSy] ≤
E[Sx] · E[Sy], i.e., Sx and Sy are negatively correlated. We
therefore get Var(S) ≤

∑
x∈T (i) Var(Sx) =

∑
x∈T (i) P(Sx =

1)
(
1 − P(Sx = 1)

)
<
∑
x∈T (i) E[Sx] = E[S]. Note that It

therefore follows from Chebyshev’s inequality (and because
S ≥ 1 in any case) that S ≥ λ|T (i)|/2 with at least constant
probability.

Let us now consider a round i that is edge-reducing for
player v ∈ V (i). Let Zv be the number of edges of player v
after round i. By assuming the round i is edge-reducing for
v, we have E[Zv] ≤

√
λ/α(H) · |Xv(i)|. Hence, by applying

the Markov inequality to Zv, we get that

P

(
Zv >

(
λ

α(H)

)1/4

· |Xv(i)|

)
<

(
λ

α(H)

)1/4

. (4)

Assume that there are k = c logα(H)/λ(n) edge-reducing
rounds for player v for a sufficiently large constant c. Let
Y be the number of these k rounds in which more than a
4
√
λ/α(H)-fraction of v’s tasks remain. By (4), Y is domi-

nated by a binomial random variable with parameters k and
4
√
λ/α(H). As long as Y < k − 4 logα(H)/λ(n), all tasks of

player v get assigned to some player during these k rounds.
Using a standard Chernoff bound, we get that for c suffi-
ciently large, Y < k − 4 logα(H)/λ(n) with high probabil-
ity. Therefore, as soon as there are c logα(H)/λ(n) edge-
reducing rounds for each player v ∈ V , all tasks have been
assigned. We next show that this has to be the case after
O(logα(H)/λ(n) · logα(H)/λ(m)) rounds i such that round i is

edge-reducing round for at least a
(
1−

√
λ/α(H)

)
-fraction

of the players in V (i).
As before, let k = c logα(H)/λ(n) be the number of edge-

reducing rounds for a player v needed to assign all tasks
of v w.h.p. Consider the state at the beginning of some
round i0 and assume that there are 2k rounds that are edge-
reducing for at least a

(
1−
√
λ/α(H)

)
-fraction of the players

in that round. In each round i of these ` rounds, there
are at most

√
λ/α(H) · |V (i0)| players in V (i) for which

round i is not edge-reducing. For a player v ∈ V (i0) to still
have tasks at the end of the 2k rounds, at least k of these

rounds are not edge-reducing for v (conditioned on the event
that all the high probability events occur). The number of

players for which this is the case can be at most 2k
√
λ/α(H)·

|V (i0)|/k. Therefore, w.h.p
”

in these 2k rounds at least a(
1−2

√
λ/α(H)

)
-fraction of the players in V (i0) are removed

because all their tasks get assigned. Note that we assumed
that λ ≤ α(H)/5 and therefore 2

√
λ/α(H) ≤ 2/

√
5 < 1.

Consequently, after at most 2k log(m)/ log(
√
α(H)/4λ) =

O(logα(H)/λ(n)·logα(H)/λ(m) rounds that are edge-reducing

for at least a
(
1 −

√
λ/α(H)

)
-fraction of the players, there

are no players remaining and we are done. The number of
rounds of the algorithm can therefore by upper bounded by

O

(
logn

λ
+

logm logn

log2(α(H)/λ)

)
,

for any λ ≤ α(H)/5. For α(H) = O(1/ logm), choos-
ing λ = α(H)/5, the first term of the above expression
dominates the second one, and we get a round complex-
ity of O

(
log(n)/α(H)

)
. For large α(H) (i.e., if α(H) =

Ω(1/ logm)), we set λ = log(α logm)/(α logm), and both
terms evaluate to O

(
(logm logn)/ log2(α logm)

)
.

Since each player writes a B-bit message on the black-
board in each round, the total bit complexity of the algo-
rithm is mB · T , where T is the running time from Theo-
rem 6.6. In typical scenario where m = O(n), this is optimal
to within polylogarithmic factors (by Theorem 6.1). How-
ever, if the number of players greatly exceeds the number
of tasks, it becomes wasteful to have all the players propose
task assignments in each round.

7. ARBITRARY NETWORKS
Our results for the shared-blackboard model can be trans-

lated to the more decentralized setting, where players are
connected by an arbitrary communication network, using
the pipelining technique from [22]. Pipelining allows k pieces
of information (henceforth called tokens) to be disseminated
to all players in D + k rounds, where D is the diameter of
the communication network. The strategy is quite simple:
each node keeps a pool of tokens it has received but not yet
sent on, and in each round selects an arbitrary token from
the pool and sends it. If the message size is large enough
to allow β > 1 tokens per message, we can achieve better
throughput by packing multiple tokens per message. Using
an inductive argument that appears in [22] (also cf. [15]),
the following statement can be shown:

Lemma 7.1. After d + t rounds, every node v has either
received all the tokens that originated at nodes at distance at
most d from v, or node v has received at least β · t different
tokens.

In particular, at time D + dk/βe, each node has either re-
ceived all tokens originating anywhere in the network, or it
has received at least β · dk/βe ≥ k different tokens; these
amount to the same thing, since there are only k tokens in
total. Consequently disseminating k tokens requires O(D+
k/β) rounds.

If the diameter D and the number of tokens k are known in
advance, the strategy above allows all nodes to halt in O(D+
k/β) rounds; however, if D and k are not known, the nodes
may not know when they have collected all tokens. It is
easier to deal with an unknown number of tokens than with

an unknown diameter: ifD is known but k is not, Lemma 7.1
shows that nodes may halt as soon as they reach a time D+t
in which fewer than β·t tokens have been received. Therefore
we can still disseminate k tokens in O(D+k/β) rounds. For
the case where D is unknown, it is shown in [16] that w.h.p.,

an upper bound D̂ ≤ D + O(
√
m/B · logm) on D can be

computed in time D̂ (recall that m is the number of nodes
in the network G). Thus we obtain:

Lemma 7.2. [16, 22] Even if D and k are not known to
the nodes, with high probability, k tokens are disseminated
(and all nodes can terminate) after O(D +

√
m/B logm +

k/β) rounds.

Distributed task allocation. We can now solve a given
task allocation instance as follows. First, the players com-
pute an upper bound of D̂ on the diameter D, as described
above. Then the players elect a unique leader among them
(e.g., the player with the smallest ID). This can be done in D̂
rounds. Afterwards, we start the token dissemination proto-
col from Lemma 7.2, using all the pairs {(v, x) | x ∈ Xv} as
our tokens. To avoid redundancy (and too many tokens),
each player only forwards the first pair (v, x) that it re-
ceives for each task x; subsequent pairs (u, x) for u 6= v
are eliminated and not forwarded. It is not hard to show
that this can be viewed as running the pipelining protocol
from Lemma 7.2, except using tasks x as tokens, instead
of pairs (v, x). At the end of the protocol, the leader node
has received some pair (v, x) for each task x (or possibly
more than one pair for some tasks); the leader now selects a
permanent assignment for each task, and disseminates these
assignments using the pipelining protocol.

Theorem 7.3. TaskAllocationm,n can be solved w.h.p.

in time O(D +
√
m/B logm+ n log(n+m)/B).

Remark. In the typical case, when m = O(n), the time
bound in the Theorem 7.3 simplifies to O(D + n log(n)/B).
The algorithm described above is randomized, because the
diameter-estimation algorithm from [16] is randomized. How-
ever, when m = O(n) we can replace this part by a deter-
ministic coarse upper bound on the diameter D: simply use
pipelining to count the number of players in the network
(see [15]), and use this number m as an upper bound on the
diameter. This yields a deterministic O(D + n log(n)/B)-
round algorithm for task dissemination.

8. AN ALGORITHM FOR CONSTRUCTING
ROOTED SPANNING TREES

We conclude our technical results with a simple algorithm
for computing rooted spanning trees in directed broadcast
networks. Our strategy is similar to the solution for task
allocation in Section 7: we treat each network node as both
a task and a player, where the input to player v is its set
of in-children. Since we need to make sure that we do not
create any cycles, we have to make task assignments in a
more coordinated fashion than in Section 7. Therefore we
assign children to parents in a top-down fashion, from the
root towards the leaves.

We first assume that the nodes know the diameter D, or
a linear upper bound on D. The first step, as in Section 7,
is to select a leader r, which will serve as the root of the
tree. Subsequently the algorithm runs in D phases. In the

first phase, the root node r assigns all its in-neighbors as its
children, and communicates this decision by applying the to-
ken dissemination protocol described in Lemma 7.2. In each
subsequent phase we solve an instance of task allocation:
the players are the nodes that are already assigned to some
parent node and that still have unassigned in-neighbors;
the tasks are all the unassigned in-neighbors of the play-
ers. Hence, the players of phase i are a subset of the nodes
at in-distance i − 1 from the root (the ones that have in-
neighbors at in-distance i from the root), and the tasks are
all the nodes at in-distance i from the root. The algorithm
terminates as soon as all nodes are assigned to some parent
node.

Theorem 8.1. The above algorithm solves the spanning
tree problem in O(D2 + n log(n)/B) rounds.

Proof. It follows from the construction of the algorithm
that in phase i all nodes at in-distance i from the root are
assigned to a parent node. Therefore, the time complexity of
the algorithm is determined throughD sequential executions
of the task assignment protocol from Section 7. Let ki be
the number of nodes at in-distance i from the root. The
number of tasks in tokens in phase i is ki. Therefore the
running time of the task assignment protocol of round i is
O(D+ ki) (recall that we assumed that the nodes know D).
Hence, the overall time complexity is

O

(
D2 +

D∑
i=1

ki ·
log(n)

B

)
= O

(
D2 +

n logn

B

)
.

Dealing with an unknown diameter. If the diameter
is initially unknown and we plug in the time complexity
from Theorem 7.3, we obtain an overall time complexity of
O
(
D(D +

√
n/B logn) + n log(n)/B

)
. This can be slightly

improved by observing that phases do not necessarily need
to be synchronized. As soon as a node receives a notifi-
cation that it has been assigned to some parent node, it
can start broadcasting its in-neighbors so that they can be
assigned. With this modification, the additive

√
n/B logn

penalty term for an unknown diameter is paid only once,
instead of D times (once per phase); the penalty is domi-
nated by the n logn/B in Theorem 8.1, so the overall time
complexity from Theorem 8.1 is preserved. Note, however,
that spanning tree constructed in this way is no longer a
BFS tree.

9. DISCUSSION AND OPEN PROBLEMS
Our results in this paper leave several problems open.

First, our lower bound from Section 5 shows that computing
a spanning tree requires Ω(n/B) rounds, but the best upper
bound of which we are aware, even assuming the diameter D
is known in advance, isO(min

{
D + |E|/B,D2 + n logn/B

}
).

For dense networks with a large diameter, the bounds do
not match. However, TaskAllocationn,n can be solved in
O(D + n logn/B) rounds (see Section 7). The existence of
a fast spanning tree algorithm implies a fast algorithm for
task allocation, where we view each node as both a task and
a player; the input of each player is its set of in-neighbors
(viewed as “tasks”), and its output is the set of in-neighbors
that chose it as their parent in the tree. The other direc-
tion is not necessarily true, since in general a task allocation

may contain cycles (when we view nodes as both tasks and
players). If the network is sufficiently dense, and perhaps
enjoys good expansion as well, is it nevertheless possible to
use a fast task allocation algorithm to find a rooted spanning
tree? Can we prove that cycles are unlikely to occur, and if
so, can we resolve the few cycles that do occur quickly?

Another open problem concerns task-allocation with good
task-player expansion and the hardness of finding a spanning
tree in directed constant-degree expanders. In a constant-
degree network with bounded bandwidth B, each node only
receives O(B) bits of information per round. This bottle-
neck bounds the number of nodes with which a given node
can “exchange meaningful information”, even though the di-
ameter is small. To tackle this issue in a communication-
complexity setting, we could charge the protocol not just
for the total bits exchanged, but also for activating the (di-
rected) channel between two players. We could then ask
what is the smallest number of channels that must be acti-
vated to solve TaskAllocation or other problems. All the
algorithms we have given for TaskAllocation require ei-
ther all players to exchange information with all other play-
ers (as in the shared blackboard model), or one player to
exchange Ω(n) information with all other players (as in the
algorithm from Section 7). A strong lower bound on the
number of player-to-player channels that must be activated
would yield insight into the problem and perhaps lead to a
lower bound on finding spanning trees in directed constant-
degree expanders.

10. REFERENCES
[1] J. Aas. Understanding the Linux 2.6.8.1 CPU

scheduler. Unpublished manuscript, 2005.

[2] B. Awerbuch, S. Kutten, and D. Peleg. Competitive
distributed job scheduling. In Proc. 24th Symp. on
Theory of Computing (STOC), pages 571–580, 1992.

[3] Y. Bartal and A. Rosen. The distributed k-server
problem–a competitive distributed translator for
k-server algorithms. In Proc. 33rd Symp. on
Foundations of Computer Science (FOCS), pages
344–353, Oct 1992.

[4] A. Das Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness
of distributed approximation. In Proc. 43rd Symp. on
Theory of Computing (STOC), pages 363–372, 2011.

[5] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput.
Surv., 43:35:1–35:44, Oct. 2011.

[6] M. L. Dertouzos and A. K. Mok. Multiprocessor
on-line scheduling of hard-real-time tasks. IEEE
Trans. Software Eng., 15(12):1497–1506, 1989.

[7] A. Fiat, Y. Rabani, and Y. Ravid. Competitive
k-server algorithms. In Journal of Computer and
System Sciences, pages 454–463, 1990.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
In Proc. 19th Conf. on Programming Language Design
and Implementation (PLDI), pages 212–223, 1998.

[9] S. Frischknecht, S. Holzer, and R. Wattenhofer.
Networks cannot compute their diameter in sublinear
time. In Proc. 22nd Symp. on Discrete Algorithms
(SODA), pages 1150–1162, 2012.

[10] A. Gronemeier. Asymptotically optimal lower bounds
on the NIH-multi-party information complexity of the
AND-function and disjointness. In Proc. 26th Symp.
on Theoretical Aspects of Computer Science (STACS),
pages 505–516, 2009.

[11] T. S. Jayram. Hellinger strikes back: A note on the
multi-party information complexity of AND. In Proc.
13th Workshop on Randomization and Computation
(RANDOM), pages 562–573, 2009.

[12] T. S. Jayram. Information complexity: a tutorial. In
Proc. 29th Symp. on Principles of Database Systems
(PODS), pages 159–168, 2010.

[13] M. Karchmer and A. Wigderson. Monotone circuits
for connectivity require super-logarithmic depth.
SIAM J. Discrete Math., 3(2):255–265, 1990.

[14] E. Koutsoupias. The k-server problem. Computer
Science Review, 3(2):105–118, 2009.

[15] F. Kuhn, N. A. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In Prof. 42nd
Symp. on Theory of Computing (STOC), pages
513–522, 2010.

[16] F. Kuhn and R. Oshman. The complexity of data
aggregation in directed networks. In Proc. of 25th
Symp. on Distributed Computing (DISC), pages
416–431, 2011.

[17] E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge University Press, 1997.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, 1973.

[19] B. Patt-Shamir. A note on efficient aggregate queries
in sensor networks. Theor. Comput. Sci.,
370(1-3):254–264, 2007.

[20] A. A. Razborov. On the distributional complexity of
disjointness. Theor. Comput. Sci., 106:385–390,
December 1992.

[21] A. A. Shvartsman and C. Georgiou. Cooperative
Task-Oriented Computing: Algorithms and
Complexity. Morgan&Claypool Publishers, 2011.

[22] D. M. Topkis. Concurrent broadcast for information
dissemination. IEEE Trans. Softw. Eng.,
11:1107–1112, October 1985.

