
Incremental Least-Squares Temporal Difference Learning

Alborz Geramifard Michael Bowling Richard S. Sutton
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada
{alborz, bowling, sutton}@cs.ualberta.ca

Abstract

Approximate policy evaluation with linear function approx-
imation is a commonly arising problem in reinforcement
learning, usually solved using temporal difference (TD) algo-
rithms. In this paper we introduce a new variant of linear TD
learning, called incremental least-squares TD learning, or
iLSTD. This method is more data efficient than conventional
TD algorithms such as TD(0) and is more computationally ef-
ficient than non-incremental least-squares TD methods such
as LSTD (Bradtke & Barto 1996; Boyan 1999). In particular,
we show that the per-time-step complexities of iLSTD and
TD(0) are O(n), where n is the number of features, whereas
that of LSTD is O(n2). This difference can be decisive in
modern applications of reinforcement learning where the use
of a large number features has proven to be an effective so-
lution strategy. We present empirical comparisons, using the
test problem introduced by Boyan (1999), in which iLSTD
converges faster than TD(0) and almost as fast as LSTD.

Introduction
Policy evaluation strives to approximate the value function
of a fixed policy in a Markov decision process and is a
key component of the family of reinforcement-learning al-
gorithms based on policy iteration. This paper specifically
focuses on the problem of online policy evaluation, where
an approximate value function is maintained and updated
after each time step of following the policy. In particular
we examine the case of linear value function approximation,
which has been the focus of recent theoretical and practical
research.

Temporal difference (TD) learning (Sutton 1988) is the
traditional approach to policy evaluation in reinforcement
learning. TD learning can be guaranteed to converge with
any linear function approximator and appropriate step-size
schedule (Tsitsiklis & Van Roy 1997). In addition, TD learn-
ing is computationally inexpensive, requiring only O(n)
computation per time step where n is the number of state
features used in the approximator. However, conventional
TD methods do not use trajectory data optimally. After per-
forming a gradient update, the state transitions and rewards
are simply forgotten. Experience replay (Lin 1993) is an
approach to improve the data efficiency of TD learning by

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

saving trajectories and repeatedly performing gradient up-
dates over the saved trajectories. In this paper we focus on
TD(0), the one-step TD algorithm for policy evaluation.

The least-squares TD algorithm (LSTD) is a recent alter-
native proposed by Bradtke and Barto (1996) and extended
by Boyan (1999; 2002) and Xu et al. (2002). LSTD explic-
itly solves for the value function parameters that result in
zero mean TD update over all observed state transitions. The
resulting algorithm is considerably more data efficient than
TD(0), but less computationally efficient. Even using in-
cremental inverse computations LSTD still requires O(n2)
computation per time step. Hence, the improved data effi-
ciency is obtained at a substantial computational price.

The tradeoff between data and computational efficiency
is felt most when the value function approximator involves
a very large number of features. A large number of fea-
tures, though, is not a rare special case, but rather the
norm in applications of reinforcement learning with lin-
ear function approximators (e.g., Sutton 1996; Stone, Sut-
ton, & Kuhlmann 2005; Tedrake, Zhang, & Seung 2004).
Large feature sets arise naturally in large problems, where
they are used to avoid the theoretical quagmire of general
non-linear function approximation. Tile coding (e.g., Al-
bus 1971), coarse coding (e.g., Hinton, McClelland, &
Rumelhart 1986), and radial basis functions (e.g., Poggio
& Girosi 1990) all construct non-linear value functions by
learning linear functions in a modified and very large feature
representation. The number of features considered can be in
the millions or more, reaching the point where the quadratic
cost of LSTD is impractical.

One typical property of high dimensional feature repre-
sentations, such as tile coding, is that often only a small
number of features are “on” (i.e., non-zero) for any given
state. In this paper we focus on this common case, propos-
ing a compromise between the computational efficiency
of TD(0) and the data efficiency of LSTD. We introduce
iLSTD, which like LSTD seeks to minimize the mean TD
update over all of the observed trajectories. However, when
only a small number of features are non-zero, iLSTD re-
quires only O(n) computation per time step.

We begin by presenting an overview of the TD(0), LSTD,
and their computational demands. We follow with a descrip-
tion of iLSTD, showing that its computational complexity
per time step is indeed linear in the number of features.

We present empirical results comparing TD(0), LSTD, and
iLSTD, showing that iLSTD obtains the key advantages of
both of the other two methods: it is nearly as data efficient
as LSTD and nearly as computationally efficient as TD(0).
We discuss some future directions before concluding.

Background
Reinforcement learning is an approach to sequential deci-
sion making in an unknown environment by learning from
past interactions with that environment (e.g., see Sutton &
Barto 1998). This paper specifically considers the class of
environments known as Markov decision processes (MDPs).
An MDP is a tuple, (S,A,Pa

ss′ ,Ra
ss′ , γ), where S is a set of

states, A is a set of actions, Pa
ss′ is the probability of reach-

ing state s′ after taking action a in state s, and Ra
ss′ is the

reward received when that transition occurs, and γ ∈ [0, 1]
is a discount rate parameter. A trajectory of experience is a
sequence s1, a1, r2, s2, a2, r3, s3, . . ., where the agent in s1

takes action a1 and receives reward r2 while transitioning to
s2 before taking a2, etc.

In this work we focus on the problem of learning an ap-
proximation of a policy’s state-value function from sample
trajectories of experience following that policy. A method
for solving this problem is a key component of many rein-
forcement learning algorithms. In particular, maintaining an
online estimate of the value function can be combined with
policy improvement to learn a controller. The value of a
state given a policy is the expected sum of discounted future
rewards:

V π(s) = E

[∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, π

]
.

We can write the value function recursively as

V π(s) =
∑

a

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s′)]

= E [rt+1 + γV π(st+1)|st = s, π] . (1)

The recursive relationship involves an implicit expectation
which is made explicit in Equation 1. Notice that trajectories
of experience can be seen as samples of this expectation. For
a particular value function V let the TD error at time t be
defined as,

δt(V) = rt+1 + γV (st+1)− V (st). (2)

Then, Et [δt(V π)] = 0, that is, the mean TD error for the
policy’s true value function must be zero.

We are interested in approximating V π using a linear
function approximator. In particular, suppose we have a
function φ : S → <n, which gives a feature representation
of the state space. We are interested in approximate value
functions of the form Vθ(s) = φ(s)T θ, where θ ∈ <n are
the parameters of the value function. The focus of this work
is on situations where the feature representation is sparse,
i.e., for all states s the number of non-zero features in φ(s)
is no more than k � n. This situation arises often when us-
ing feature representations such as tile-coding. For example,
in Stone, Sutton, and Kuhlmann’s (2005) work on learning

0 s← s0

1 Initialize θ arbitrarily
2 repeat
3 Take an action according to π and observe r, s′

4 θ ← θ + αφ(s)
[
r +

(
γφ(s′)− φ(s)

)T
θ
]

5 end repeat

Algorithm 1: TD(0)

in simulated soccer, there were over ten thousand features
but the number of non-zero features for any state was only
416.

Because the policy’s true value function is probably not
in our space of linear functions, we want to find a set of pa-
rameters that approximates the true function. One possible
approach is to use the observed TD error on sample trajecto-
ries of experience to guide the approximation. Both TD(0)
and LSTD take this approach.

Temporal Difference Learning
The standard one-step TD method for value function ap-
proximation is TD(0).1 The basic idea of TD(0) is to ad-
just a state’s predicted value to reduce the observed TD er-
ror. Given some new experience tuple (st, at, rt+1, st+1),
the update with linear function approximation is,

θt+1 = θt + αtut(θt), where
ut(θ) = φ(st)δt(Vθ). (3)

Vθ is the estimated value with respect to θ and αt is the
learning rate. The vector ut(θ) is like a gradient estimate
that specifies how to change the predicted value of st to re-
duce the observed TD error. We will call ut(θ) the TD up-
date at time t. After updating the parameter vector, the ex-
perience tuple is forgotten. Pseudocode for TD(0) is shown
above as Algorithm 1.

The computational costs of TD(0) for each time step is
due mainly to the vector addition, which is linear in the
length of the vector, i.e., O(n). If only k features are non-
zero for any state, then a sparse vector representation can
further reduce the computation to O(k). So, the algorithm is
(sub)-linear in the number of features, which allows it to be
applied even with very large feature representations.

Least-Squares TD
The Least-Squares TD algorithm (LSTD) (Bradtke & Barto
1996) can be seen as immediately solving for the value func-
tion parameters for which the sum TD update over all the ob-
served data is zero. Let µt(θ) be the sum of the TD updates
over the data through time t,

µt(θ) =
t∑

i=1

ui(θ). (4)

1Although in this paper we treat only one-step methods, our
ideas can probably be extended to multi-step methods such as
TD(λ) and LSTD(λ).

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily
2 repeat
3 Take action according to π and observe r, s′

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s′))
7 A← A + φ(s)dT

8 if (first update)
9 Ã← A−1

10 else

11 Ã← Ã

(
I −

(φ(s)dT

1 + dT Ãφ(s)

)
Ã

)
12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-
nition of our linear value functions, we get,

µt(θ) =
t∑

i=1

φtδt(Vθ)

=
t∑

i=1

φt

(
rt+1 + γφT

t+1θ − φT
t θ
)

=
t∑

i=1

(
φtrt+1 − φt(φt − γφt+1)

T θ
)

=
(t∑

i=1

φtrt+1︸ ︷︷ ︸
bt

−
t∑

i=1

φt(φt − γφt+1)
T

︸ ︷︷ ︸
At

θ

)

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD
update is zero, we set Equation 5 to zero and solve for the
new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-
ward and state transition into the b vector and the A matrix
and then solves for a new θ. Notice that, once b and A are
updated, the experience tuple can be forgotten without los-
ing any information. Because A changes by only a small
amount on each time step, A−1 can also be maintained in-
crementally. This version of LSTD is shown above as Algo-
rithm 2.

LSTD after each time step computes the value function
parameters that have zero sum TD update. It essentially fully
exploits all of the observed data to compute its approxima-
tion. However, this data efficiency is at the cost of com-
putational efficiency. In the non-incremental form, the ma-
trix inversion alone is O(n3). Using the incremental form,
maintaining the matrix inversion still requires O(n2) com-
putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but
others such as multiplying A−1b are still O(n2) because
neither the matrix nor the vector are necessarily sparse. The
result is that LSTD can be computationally impractical for
problems with a large number of features even if they are
sparse.

Practitioners are currently faced with a serious tradeoff:
they must choose between data efficiency or computational
efficiency. In the next section, we introduce a new algo-
rithm that seeks to provide a compromise between these ex-
tremes. In particular, our algorithm exploits all of the data
like LSTD, while requiring only linear computation per time
step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-
poral difference learning algorithm (iLSTD). The algorithm
computes and uses the sum TD update over all observed tra-
jectories, thus making more efficient use of the data than TD.
However, iLSTD does not immediately solve for the param-
eters that give a zero sum TD update, which is too compu-
tationally expensive. Instead, the sum TD update is used in
a gradient fashion to move the parameters in the direction to
reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as
transitions are observed and θ changes. We begin by show-
ing that b and A can be computed in an incremental fashion
given a newly observed reward and transition:

bt = bt−1 + rtφt︸︷︷︸
∆bt

At = At−1 + φt(φt − γφt+1)
T︸ ︷︷ ︸

∆At

.

Given a new b and A, we can incrementally compute
µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an
update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations
after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead
we might consider taking a step in the direction of µ. This
can be thought of as applying the total change to θ if TD
were applied to all transitions from our previously observed
trajectories in a batch fashion. As such, it both makes use of
all the past data and will have a lower variance than TD’s tra-
ditional single sample update. Unfortunately, it too is com-
putationally expensive, as Equation 6 takes O(n2) to com-
pute if ∆θt has few zero components.

0 s← s0, A← 0, µ← 0, t← 0
1 Initialize θ arbitrarily
2 repeat
3 Take action according to π and observe r, s′

4 t← t + 1
5 ∆b← φ(s)r
6 ∆A← φ(s)(φ(s)− γφ(s′))T

7 A← A + ∆A
8 µ← µ + ∆b− (∆A)θ
9 for i from 1 to m do
10 j ← argmax(|µj |)
11 θj ← θj + αµj

12 µ← µ− αµjAei

13 end for
14 end repeat

Algorithm 3: iLSTD

The lack of many zero components in ∆θt suggests the
compromise that will be used by iLSTD. Instead of updating
all of θ, iLSTD only considers updating a small number of
components of θ. For example, consider updating only the
ith components:

θt+1 = θt + αtµt(i)ei

µt(θt+1) = µt(θt)− αtµt(i)Atei,

where µt(i) is the ith component of µt and ei is the column
vector with a single one in the ith row (thus Atei selects the
ith column of the matrix At). Multiple components can be
updated by repeatedly selecting a component and perform-
ing the one component update above. Our algorithm takes a
parameter m � n that specifies the number of updates that
are performed per time step.

What remains is to select which components to update.
Because we want to select a component that will most re-
duce the sum TD update, we can simply choose the compo-
nent with the largest sum TD update using the values main-
tained in µt(θt). This approach has a resemblance to pri-
oritized sweeping (Moore & Atkeson 1993), but rather than
updating the state with the largest TD update, we choose
to update the parameter component with the largest TD up-
date. Like prioritized sweeping, iLSTD can tradeoff data ef-
ficiency and computational efficiency by increasing m, the
number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-
ting the initial values, the agent begins interacting with the
environment. A and µ are computed incrementally in Lines
5–8.2. It is followed by updating selected parameter compo-
nents in Lines 9–13. For each of the m updates performed
during the single time step, the component with the highest
absolute value of the sum TD update vector (µt) is chosen.
After the update, µ is recomputed and so may affect the next
component chosen.

2b is not computed because it is implicitly included in µ.

.75

.25
.
.
0
0

N N-1 3 2 1

-3-3-3-3

-3 -3 -3 -2
0

0

1
0
.
.
0
0

0
0
.
.
0
0

.5

.5
.
.
0
0

0
0
.
.
.25
.75

0
0
.
.
0
1

Figure 1: The extended Boyan chain example with a variable
number of states.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive
parts of iLSTD outside the inner loop. Because each feature
vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s′))T has at most 2k2 non-zero elements. Therefore
lines 6-8 are computable in O(k2) with sparse matrices and
vectors. Inside the parameter update loop (Line 9), the ex-
pensive lines are 10 and 12. The argmax can be computed in
O(n) and because Aei is just the ithe column of A, the pa-
rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

Empirical Results
The experimental results in this paper follow closely with
Boyan’s experiments with LSTD(λ) (Boyan 1999). The
problem we examine is the Boyan chain problem: Figure 1
depicts the problem in the general form. In order to demon-
strate the computational complexity of iLSTD, results were
conducted with three different problem sizes: 14 (original
problem), 102 and 402 states. We will call these the small,
medium, and large problems, respectively. It is an episodic
problem, starting at state N and being terminated in state
zero. For all states, s > 2, there exists equal probability of
ending up in states (s− 1) or (s− 2), and reward of all tran-
sitions are −3, except from state 2 to 1 (when reward is −2)
and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same
form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was based on
experimentally finding the best parameters in the set α0 ∈
{0.01, 0.1, 1} and N0 ∈ {100, 1000, 106}. We only report
the results for the best set of parameters for each algorithm.
The m parameter for iLSTD was set to one, so on each time
step only one component was updated.

Figure 2: Results on the small problem (States = 14, Fea-
tures = 4).

Figure 3: Results on the medium problem (States = 102, Fea-
tures = 26).

The performance of all three algorithms on the small,
medium, and large problems, averaged over 30 runs, are
shown in Figures 2, 3, and 4, respectively. For each run
the algorithms were given the same trajectories of data. The
vertical axis shows the average RMS error value of all states
in a log scale, while the horizontal axis shows the number of
episodes. The vertical bars show the confidence interval for
the performance and are shifted a small number of episodes
in order to make them more visible. As the complexity of
the problem increases the gap between the two least-squares
algorithms and TD gets considerably wider. In addition,
iLSTD’s performance follows very closely to LSTD. The
relative difference is most dramatic in the large problem,
suggesting that the data efficiency of the least-squares ap-
proaches is more pronounced in larger problems.

Figure 4: Results on the large problem (States = 402, Fea-
tures = 101).

Running Time
All three methods were implemented using sparse vector al-
gebra to take advantage of the sparsity of φ(s) and A. They
were also compared to non-sparse versions to insure that the
overhead of sparse vectors did not actually result in slower
implementations. We performed timing experiments on a
single 3.06 GHz Intel Xenon processor with increasing num-
ber of states. The results were consistent with our timing
analyses and Theorem 1. Figure 5 shows the total running
time of 1000 episodes on a log scale.3

Discussion
iLSTD occupies the middle ground between the computa-
tional efficiency of TD and the data efficiency of LSTD.
When only a small number of features are non-zero,
iLSTD’s asymptotic computational complexity is only linear
in the number of features, while LSTD is quadratic. Our ex-
perimental results confirm this on simple problems. In these
experiments, we also observed iLSTD’s data efficiency was
on par with LSTD, and a vast improvement over TD.

In situations where data is overwhelmingly more expen-
sive than computation, LSTD makes the most sense. In
situations where computation is overwhelmingly more ex-
pensive than data, TD makes the most sense.4 But most
problems reside in the middle ground where neither data
nor computation are prohibitively costly, for which iLSTD
may be the best choice. Even when data is free, iLSTD can
still outperform other methods. In all of the problem sizes,
iLSTD took less wall-clock time to reach a strong level of
performance. For example, although TD was twice as fast

3The results for more then 101 features are based on a single
run of identical data.

4Notice that large problems with many features effectively raise
the cost of computation, as even simple vector algebra with large
non-sparse vectors can be time consuming. Thus for problems with
millions or billions of features, TD with its O(k) per time step
complexity likely remains the only viable option.

Figure 5: Running time of each method per time-step with
respect to the problem size.

computationally as iLSTD, its performance with twice as
much data was inferior.

Conclusions

Our experiments show that as the number of features grow,
computationally expensive methods like LSTD can become
impractical. However, computationally cheap methods like
TD do not make efficient use of the data. We introduced
iLSTD as an alternative when neither computation nor data
are prohibitively expensive. If the number of non-zero fea-
tures at any time step is small, iLSTD’s computation grows
only linearly with the number of features. In addition, our
experiments show that iLSTD’s performance is comparable
to that of LSTD.

There are a number of interesting directions for future
work. First, the convergence of iLSTD is an open question.
Whether it, in general, converges to the same parameters as
TD and LSTD is also unknown. Second, eligibility traces
have proven to be effective at improving the performance of
TD methods, giving birth to the TD(λ) (Sutton 1988) and
LSTD(λ) (Boyan 1999) algorithms. It would be interesting
to see if they can be used with iLSTD without increasing
computational complexity. Finally, we would like to apply
the iLSTD algorithm to a more challenging problem with a
large number of features for which LSTD is currently infea-
sible such as keepaway in simulated soccer (as in Stone,
Sutton, & Kuhlmann 2005).

Acknowledgments

We would like to thank Dale Schuurmans, Dan Lizotte,
Amir massoud Farahmand and Mark Ring for their invalu-
able insights. This research was supported by iCORE,
NSERC and Alberta Ingenuity through the Alberta Ingenu-
ity Centre for Machine Learning.

References
Albus, J. S. 1971. A theory of cerebellar function. Mathe-
matical Biosciences 10:25–61.
Boyan, J. A. 1999. Least-squares temporal difference
learning. In Proceedings of the Sixteenth International
Conference on Machine Learning, 49–56. Morgan Kauf-
mann, San Francisco, CA.
Boyan, J. A. 2002. Technical update: Least-squares tem-
poral difference learning. Machine Learning 49:233–246.
Bradtke, S., and Barto, A. 1996. Linear least-squares algo-
rithms for temporal difference learning. Machine Learning
22:33–57.
Hinton, G. E.; McClelland, J. L.; and Rumelhart, D. E.
1986. Distributed representations. In Rumelhart, D. E.; and
McClelland, J. L., eds., Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume
1: Foundations.
Lin, L. J. 1993. Reinforcement Learning for Robots Us-
ing Neural Networks. Ph.D. Dissertation, Carnegie Mellon
University.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103–130.
Poggio, T., and Girosi, F. 1990. Networks for approxima-
tion and learning. Proceedings of the IEEE (special issue:
Neural Networks I: Theory and Modeling) 78(9):1481–
1497.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement learning for robocup soccer keepaway. Interna-
tional Society for Adaptive Behavior 13(3):165–188.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Touretzky, D. S.; Mozer, M. C.; and Hasselmo, M. E.,
eds., Advances in Neural Information Processing Systems
8, 1038–1044. The MIT Press.
Tedrake, R.; Zhang, T. W.; and Seung, H. S. 2004. Stochas-
tic policy gradient reinforcement learning on a simple 3D
biped. In Proceedings of the IEEE International Confer-
ence on Intelligent Robots and Systems, 2849–2854.
Tsitsiklis, J. N., and Van Roy, B. 1997. An analysis of
temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control 42(5):674–690.
Xu, X.; He, H.; and Hu, D. 2002. Efficient reinforcement
learning using recursive least-squares methods. Journal of
Artificial Intelligence Research 16:259–292.

