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Abstract— The aquisition and improvement of motor skills and
control policies for robotics from trial and error is of essential
importance if robots should ever leave precisely pre-structured
environments. However, to date only few existing reinforcement
learning methods have been scaled into the domains of high-
dimensional robots such as manipulator, legged or humanoid
robots. Policy gradient methods remain one of the few exceptions
and have found a variety of applications. Nevertheless, the
application of such methods is not without peril if done in an un-
informed manner. In this paper, we give an overview on learning
with policy gradient methods for robotics with a strong focus on
recent advances in the field. We outline previous applications to
robotics and show how the most recently developed methods can
significantly improve learning performance. Finally, we evaluate
our most promising algorithm in the application of hitting a
baseball with an anthropomorphic arm.

I. INTRODUCTION

In order to ever leave the well-structured environments of
factory floors and research labs, future robots will require
the ability to aquire novel behaviors, motor skills and control
policies as well as to improve existing ones. Reinforcement
learning is probably the most general framework in which such
robot learning problems can be phrased. However, most of the
methods proposed in the reinforcement learning community to
date are not applicable to robotics as they do not scale beyond
robots with more than one to three degrees of freedom. Policy
gradient methods are a notable exception to this statement.
Starting with the pioneering work of Gullapali, Franklin and
Benbrahim [1], [2] in the early 1990s, these methods have been
applied to a variety of robot learning problems ranging from
simple control tasks (e.g., balancing a ball-on a beam [3], and
pole-balancing [4]) to complex learning tasks involving many
degrees of freedom such as learning of complex motor skills
[2], [5], [6] and locomotion [7]–[14]1.

The advantages of policy gradient methods for robotics are
numerous. Among the most important ones are that the policy
representations can be chosen so that it is meaningful for
the task and can incorporate previous domain knowledge, that
often fewer parameters are needed in the learning process than
in value-function based approaches and that there is a variety
of different algorithms for policy gradient estimation in the

1Recent advances in robot learning [15] clearly indicate that policy gradient
methods are currently the most feasible choice for robotics and that few
other algorithms appear applicable. Some methods used in robotics estimate
and apply policy gradients but are not well-known as such, e.g., differential
dynamic programming usually estimates a model-based gradient and the
PEGASUS [16] trick is often used to estimate finite difference gradients
efficiently.

literature which have a rather strong theoretical underpinning.
Additionally, policy gradient methods can be used model-free
and therefore also be applied to robot problems without an
in-depth understanding of the problem or mechanics of the
robot2.

Nevertheless, many of the current papers which apply policy
gradient methods in robotics neglect the current state of the
art in policy gradients. Therefore most of the practical applica-
tions require smart tricks in order to be applicable and are often
not safe for usage on real robots as infeasible policies might
have to be generated. The main goal of this paper is to review
which policy gradient methods are applicable to robotics and
which issues matter. The remainder of this paper will proceed
as follows: firstly, we will pose the general assumptions
and the problem statement for this paper. Secondly, we will
discuss the different approaches to policy gradient estimation
and discuss their applicability to robot planning and control.
We focus on the most useful methods and discuss several
algorithms in-depth. The presented algorithms in this paper are
highly optimized versions of the original algorithms – some of
these are unpublished in these more efficient forms. Thirdly,
we show how these methods can be applied to motor skill
learning in robotics and show learning results with a seven
degrees of freedom, anthropomorphic SARCOS Master ARM.

A. General Assumptions and Notations

Most robotics domains require the state space and the action
spaces to be continuous such that learning methods based
on discretizations are not applicable for higher dimensional
systems. However, as the policy is usually implemented on a
digital computer, we assume that we can model the control
system in a discrete-time manner and we will denote the
current time step by k. In order to take possible stochasticity
of the plant into account, we denote it using a probability
distribution xk+1 ∼ p (xk+1 |xk,uk ) as model where uk ∈
R

M denotes the current action, and xk, xk+1 ∈ R
N denote

the current and next state, respectively. We furthermore assume
that actions are generated by a policy uk ∼ πθ (uk |xk ) which
is modeled as a probability distribution in order to incorporate
exploratory actions; for some special problems, the optimal
solution to a control problem is actually a stochastic controller
[17]. The policy is assumed to be parameterized by some
policy parameters θ ∈ R

K .The sequence of states and actions

2Note that the focus in this paper is on reinforcement learning algorithms
applicable to robotics and not on solely geared for robotics as such usually
have just a limited application even in the actual field of robotics.



forms a trajectory (also called history or roll-out) denoted by
τ = [x0:H ,u0:H ] where H denotes the horizon which can be
infinite. At each instant of time, the learning system receives
a reward denoted by r (xk,uk) ∈ R.

B. Problem Statement

The general goal of policy optimization in reinforcement
learning is to optimize the policy parameters θ ∈ R

K so that
the expected return

J (θ) = E

{∑H

k=0
akrk

}
(1)

is optimized where ak denote time-step dependent weighting
factors, often set to ak = γk for discounted reinforcement
learning (where γ is in [0, 1]) or ak = 1/H for the average
reward case. For robotics, we require that any change to the
policy parameterization has to be smooth as drastic changes
can be hazardous for the robot, and for its environnment as
useful initializations of the policy based on domain knowledge
would otherwise vanish after a single update step. For these
reasons, policy gradient methods which follow the steepest
descent on the expected return are the method of choice. These
methods update the policy parameterization according to the
gradient update rule

θh+1 = θh + αh ∇θJ |θ=θh
, (2)

where αh ∈ R
+ denotes a learning rate and h ∈ {0, 1, 2, . . .}

the current update number. If the gradient estimate is unbiased
and learning rates fulfill

∑∞
h=0 αh > 0 and

∑∞
h=0 α2

h = const,
the learning process is guaranteed to converge to at least a local
minimum.

II. POLICY GRADIENT METHODS FOR ROBOTICS

The main problem in policy gradient methods is to ob-
tain a good estimator of the policy gradient ∇θJ |θ=θh

. In
robotics and control, people have traditionally used determinis-
tic model-based methods for obtaining the gradient [18]–[20].
However, in order to become autonomous we cannot expect
to be able to model every detail of the robot and environment.
Therefore, we need to estimate the policy gradient simply from
data generated during the execution of a task, i.e., without
the need for a model. In this section, we will study different
approaches and discuss which of these are useful in robotics.

A. General Approaches to Policy Gradient Estimation

The literature on policy gradient methods has yielded a
variety of estimation methods over the last years. The most
prominent approaches, which have been applied to robotics
are finite-difference and likelihood ratio methods, more well-
known as REINFORCE methods in reinforcement learning.

1) Finite-difference Methods: Finite-difference methods are
among the oldest policy gradient approaches; they originated
from the stochastic simulation community and are quite
straightforward to understand. The policy parameterization is
varied by small increments ∆θi and for each policy parameter
variation θh + ∆θi roll-outs are performed which generate

estimates ∆Ĵj ≈ J(θh + ∆θi) − Jref of the expected return.
There are different ways of choosing the reference value Jref,
e.g. forward-difference estimators with Jref = J(θh) and
central-difference estimators with Jref = J(θh − ∆θi). The
policy gradient estimate gFD ≈ ∇θJ |θ=θh

can be estimated
by regression yielding

gFD =
(
∆ΘT ∆Θ

)−1

∆ΘT ∆Ĵ, (3)

where ∆Θ = [∆θ1, . . . ,∆θI ]T and ∆Ĵ = [∆Ĵ1, . . . ,∆ĴI ]T

denote the I samples. This approach can be highly efficient in
simulation optimization of deterministic systems [21] or when
a common history of random numbers [22] is being used (the
later is known as PEGASUS in reinforcement learning [16]),
and can get close to a convergence rate of O

(
I−1/2

)
[22].

However, when used on a real system, the uncertainities de-
grade the performance resulting in convergence rates ranging
between O

(
I−1/4

)
to O

(
I−2/5

)
depending on the chosen

reference value [22]. An implementation of this algorithm is
shown in Table I.

Due to the simplicity of this approach, such methods have
been successfully applied to robotics in numerous applications
[6], [9], [11], [14]. However, the straightforward application
to robotics is not without peril as the generation of the ∆θj

requires proper knowledge on the system, as badly chosen
∆θj can destabilize the policy so that the system becomes
instable and the gradient estimation process is prone to fail.
Problems on robot control often require that each element
of the vector ∆θj can have a different order of magnitude
making the generation particularly difficult. Therefore, this
approach can only applied in robotics under strict supervision
of a robotics engineer.

2) Likelihood Ratio Methods / REINFORCE: Likelihood
ratio methods are driven by an important different insight.
Assume that trajectories τ are generated from a system by
roll-outs, i.e., τ ∼ pθ (τ) = p (τ | θ) with rewards r(τ) =∑H

k=0 akrk. In this case, the policy gradient can be estimated
using the likelihood ratio (see e.g. [22], [23]) or REINFORCE
[24] trick, i.e., by

∇θJ (θ) =
∫

T

∇θpθ (τ) r(τ)dτ (4)

= E {∇θ log pθ (τ) r(τ)} , (5)

TABLE I

FINITE DIFFERENCE GRADIENT ESTIMATOR.

input: policy parameterization θh.
1 repeat
2 generate policy variation ∆θ1.

3 estimate Ĵj ≈ J(θh + ∆θi) =
DPH

k=0 akrk

E
from roll-out.

4 estimate Ĵref, e.g., Ĵref = J(θh − ∆θi) from roll-out.
5 compute ∆Ĵj ≈ J(θh + ∆θi) − Jref.

6 compute gradient gFD =
`
∆ΘT ∆Θ

´−1
∆ΘT ∆Ĵ.

7 until gradient estimate gFD converged.
return: gradient estimate gFD.



as
∫

T
∇θpθ (τ) r(τ)dτ =

∫
T

pθ (τ)∇θ log pθ (τ) r(τ)dτ . Im-
portantly, the derivative ∇θ log pθ (τ) can be computed with-
out knowleged of the generating distribution pθ (τ) as pθ (τ) =
p(x0)

∏H
k=0 p (xk+1 |xk,uk ) πθ (uk |xk ) implies that

∇θ log pθ (τ) =
∑H

k=0
∇θ log πθ (uk |xk ) , (6)

i.e., the derivatives through the control system do not have to
be computed3. As

∫
T
∇θpθ (τ) dτ = 0, a constant baseline can

be inserted resulting into the gradient estimator

∇θJ (θ) = E {∇θ log pθ (τ) (r(τ) − b)} , (7)

where b ∈ R can be chosen arbitrarily [24] but usually with the
goal to minimize the variance of the gradient estimator. There-
fore, the general path likelihood ratio estimator or episodic
REINFORCE gradient estimator is given by

gRF =
〈(∑H

k=0
∇θ log πθ (uk |xk )

)(∑H

l=0
alrl − b

)〉
,

where 〈·〉 denotes the average over trajectories [24]. This type
of method is guaranteed to converge to the true gradient at
the fastest theoretically possible pace of O

(
I−1/2

)
where

I denotes the number of roll-outs [22] even if the data is
generated from a highly stochastic system. An implementation
of this algorithm will be shown in Table II together with the
estimator for the optimal baseline.

Besides the theoretically faster convergence rate, likelihood
ratio gradient methods have a variety of advantages in com-
parison to finite difference methods when applied to robotics.
As the generation of policy parameter variations is no longer
needed, the complicated control of these variables can no
longer endanger the gradient estimation process. Furthermore,
in practice, already a single roll-out can suffice for an unbiased
gradient estimate [21], [25] viable for a good policy update
step, thus reducing the amount of roll-outs needed. Finally, this
approach has yielded the most real-world robotics results [1],

3This result makes an important difference: in stochastic system optimiza-
tion, finite difference estimators are often prefered as the derivative through
system is required but not known. In policy search, we always know the
derivative of the policy with respect to its parameters and therefore we can
make use of the theoretical advantages of likelihood ratio gradient estimators.

TABLE II

GENERAL LIKELIHOOD RATIO POLICY GRADIENT ESTIMATOR “EPISODIC

REINFORCE” WITH AN OPTIMAL BASELINE.

input: policy parameterization θh.
1 repeat
2 perform a trial and obtain x0:H ,u0:H , r0:H
3 for each gradient element gh

4 estimate optimal baseline

bh =

fi“PH
k=0 ∇θh

log πθ(uk|xk )
”2 PH

l=0 alrl

fl
fi“PH

k=0 ∇θh
log πθ(uk|xk )

”2
fl

5 estimate the gradient element

gh =
D“PH

k=0 ∇θh
log πθ (uk |xk )

” “PH
l=0 alrl − bh

”E
.

4 end for.
7 until gradient estimate gFD = [g1, . . . , gh] converged.
return: gradient estimate gFD = [g1, . . . , gh].

[2], [5], [7], [10], [12], [13]. In the subsequent two sections,
we will strive to explain and improve this type of gradient
estimator.

B. ‘Vanilla’ Policy Gradient Approaches

Despite the fast asymptotic convergence speed of the gra-
dient estimate, the variance of the likelihood-ratio gradient
estimator can be problematic in practice. For this reason, we
will discuss several advances in likelihood ratio policy gradient
optimization, i.e., the policy gradient theorem/GPOMDP and
optimal baselines4.

1) Policy gradient theorem/GPOMDP: The trivial obser-
vation that future actions do not depend on past rewards
(unless the policy has been changed) can result in a significant
reduction of the variance of the policy gradient estimate. This
insight can be formalized as E {∇θ log πθ (ul |xl ) rk} = 0
for l > k which is straightforward to verify. This allows two
variations of the previous algorithm which are known as the
policy gradient theorem [17]

gPGT =
〈∑H

k=0
∇θ log πθ (uk |xk )

(∑H

l=k
alrl − bk

)〉
,

or G(PO)MD [25]

gGMDP =
〈∑H

l=0

(∑l

k=0
∇θ log πθ (uk |xk )

)
(alrl − bl)

〉
.

While these algorithms look different, they are exactly equiv-
alent in their gradient estimate5, i.e., gPGT = gGMPD, and
have been derived previously in the simulation optimization
community [27]. An implementation of this algorithm is
shown together with the optimal baseline in Table III.

However, in order to clarify the relationship to [17], [25],
we note that the term

∑H
l=kalrl in the policy gradient theorem

is equivalent to a monte-carlo estimate of the value func-
tion Qθ

k:H (xk,uk) = E
{∑H

l=k alrl

∣∣∣xk,uk

}
and the term∑l

k=0 ∇θ log πθ (uk |xk ) becomes the log-derivative of the
distribution of states µk

θ (xk) at step k in expectation, i.e.,

∇θ log µθ (xk) = E
{∑k

k=0 ∇θ log πθ (uk |xk )
∣∣∣xk

}
. When

either of these two constructs can be easily obtained by
derivation or estimation, the variance of the gradient can be
reduced significantly.

Without a formal derivation of it, the policy gradient
theorem has been applied in robotics using estimated value
functions Qθ

k:H (xk,uk) instead of the term
∑H

l=k alrl and a

baseline bk = V θ
k:H (xk) = E

{∑H
l=k alrl

∣∣∣xk

}
[7], [28].

2) Optimal Baselines: Above, we have already introduced
the concept of a baseline which can decrease the variance of
a policy gradient estimate by orders of magnitude. Thus, an

4Note that the theory of the compatible function approximation [17] is
omitted at this point as it does not contribute to practical algorithms in this
context. For a thorough discussion of this topic see [5], [26].

5Note that [25] additionally add an eligibility trick for reweighting trajectory
pieces. This trick can be highly dangerous in robotics as can be demonstrated
that already in linear-quadratic regulation, this trick can result into divergence
as the optimial policy for small planning horizons (i.e., small eligibility rates)
is often instable.



optimal selection of such a baseline is essential. An optimal
baseline minimizes the variance σ2

h = Var {gh} of each
element gh of the gradient g without biasing the gradient
estimate, i.e., violating E{g} = ∇θJ . This can be phrased
as having a seperate baseline bh for every element of the
gradient6. Due to the requirement of unbiasedness of the
gradient estimate, we have σ2

h = E
{
g2

h

} − (∇θh
J)2 and due

to minbh
σ2

h ≥ E
{
minbh

g2
h

}−(∇θh
J)2, the optimal baseline

for each gradient element gh can always be given by

bh =

〈(∑H
k=0 ∇θh

log πθ (uk |xk )
)2 ∑H

l=0 alrl

〉
〈(∑H

k=0 ∇θh
log πθ (uk |xk )

)2
〉

for the general likelihood ratio gradient estimator, i.e.,
Episodic REINFORCE. The algorithmic form of the optimal
baseline is shown in Table II in line 4. If the sums in the
baselines are modified appropriately, we can obtain the optimal
baseline for the policy gradient theorem or G(PO)MPD. We
only show G(PO)MDP in this paper in Table III as the policy
gradient theorem is numerically equivalent.

The optimal baseline which does not bias the gradient in
Episodic REINFORCE can only be a single number for all
trajectories and in G(PO)MPD it can also depend on the time-
step [35]. However, in the policy gradient theorem it can
depend on the current state and, therefore, if a good param-
eterization for the baseline is known, e.g., in a generalized
linear form b (xk) = φ (xk)T

ω, this can significantly improve
the gradient estimation process. However, the selection of the
basis functions φ (xk) can be difficult and often impractical
in robotics. See [24], [29]–[34] for more information on this
topic.

C. Natural Actor-Critic Approaches

One of the main reasons for using policy gradient methods
is that we intend to do just a small change ∆θ to the policy πθ

6A single baseline for all parameters can also be obtained and is more
common in the reinforcement learning literature [24], [29]–[34]. However,
such a baseline is of course suboptimal.

TABLE III

SPECIALIZED LIKELIHOOD RATIO POLICY GRADIENT ESTIMATOR

“G(PO)MDP”/POLICY GRADIENT WITH AN OPTIMAL BASELINE.

input: policy parameterization θh.
1 repeat
2 perform trials and obtain x0:H ,u0:H , r0:H
3 for each gradient element gh

4 for each time step k
estimate baseline for time step k by

bhk =

fi“Pk
κ=0 ∇θh

log πθ(uκ|xκ )
”2

akrk

fl
fi“Pk

κ=0 ∇θh
log πθ(uκ|xκ )

”2
fl

5 end for.
6 estimate the gradient element

gh =
DPH

l=0

“Pl
k=0 ∇θh

log πθ (uk |xk )
” `
alrl − bhl

´E
.

7 end for.
8 until gradient estimate gFD = [g1, . . . , gh] converged.
return: gradient estimate gFD = [g1, . . . , gh].

while improving the policy. However, the meaning of small is
ambiguous. When using the Euclidian metric of

√
∆θT ∆θ,

then the gradient is different for every parameterization θ of
the policy πθ even if these parameterization are related to each
other by a linear transformation [36]. This poses the question
of how we can measure the closeness between the current
policy and the updated policy based upon the distribution of
the paths generated by each of these. In statistics, a variety
of distance measures for the closeness of two distributions
(e.g., pθ (τ) and pθ+∆θ (τ)) have been suggested, e.g., the
Kullback-Leibler divergence7 dKL (pθ, pθ+∆θ), the Hellinger
distance dHD and others [38]. Many of these distances (e.g.,
the previously mentioned ones) can be approximated by the
same second order Taylor expansion, i.e., by

dKL (pθ, pθ+∆θ) ≈ ∆θT Fθ ∆θ, (8)

where Fθ =
∫

T
pθ (τ)∇ log pθ (τ)∇ log pθ (τ)T

dτ =〈
∇ log pθ (τ)∇ log pθ (τ)T

〉
is known as the Fisher-

information matrix. Let us now assume that we restrict the
change of our policy to the length of our step-size αn, i.e.,
we have a restricted step-size gradient descent approach
well-known in the optimization literature [39], and given by

∆θ = argmax∆θ̃

αn∆θ̃
T∇θJ

∆θ̃
T
Fθ ∆θ̃

= αnF−1
θ ∇θJ, (9)

where ∇θJ denotes the ‘vanilla’ policy gradient from Section
II-B. This update step can be interpreted as follows: determine
the maximal improvement ∆θ̃ of the policy for a constant
fixed change of the policy ∆θ̃

T
Fθ∆θ̃.

This type of approach is known as Natural Policy Gradients
and has its separate origin in supervised learning [40]. It was
first suggested in the context of reinforcement learning by
Kakade [36] and has been explored in greater depth in [5],
[26], [35], [41]. The strongest theoretical advantage of this
approach is that its performance no longer depends on the
parameterization of the policy and it is therefore safe to use for
arbitrary policies8. In practice, the learning process converges
significantly faster in most practical cases.

1) Episodic Natural Actor-Critic: One of the fastest general
algorithms for estimating natural policy gradients which does
not need complex parameterized baselines is the episodic
natural actor critic. This algorithm, originally derived in [5],
[26], [35], can be considered the ‘natural’ version of reinforce
with a baseline optimal for this gradient estimator. However,
for steepest descent with respect to a metric, the baseline also
needs to minimize the variance with respect to the same metric.
In this case, we can minimize the whole covariance matrix of

7While being ‘the natural way to think about closeness in probability
distributions’ [37], this measure is technically not a metric as it is not
commutative.

8There is a variety of interesting properties to the natural policy gradient
methods which are explored in [5].



the natural gradient estimate ∆θ̂ given by

Σ = Cov
{
∆θ̂

}
Fθ

= E

{(
∆θ̂ − F

−1

θ gLR (b)
)T

Fθ

(
∆θ̂ − F

−1

θ gLR (b)
)}

,

with gLR (b) = 〈∇ log pθ (τ) (r (τ) − b)〉 being the REIN-
FORCE gradient with baseline b. As outlined in [5], [26], [35],
it can be shown that the minimum-variance unbiased natural
gradient estimator can be determined as shown in Table IV.

2) Episodic Natural Actor Critic with a Time-Variant Base-
line: The episodic natural actor critic described in the previous
section suffers from drawback: it does not make use of
intermediate data just like REINFORCE. For policy gradients,
the way out was G(PO)MDP which left out terms which
would average out in expectation. In the same manner, we can
make the argument for a time-dependent baseline which then
allows us to reformulate the Episodic Natural Actor Critic.
This results in the algorithm shown in Table V. The advantage
of this type of algorithms is two-fold: the variance of the
gradient estimate is often lower and it can take time-variant
rewards significantly better into account.

III. EXPERIMENTS & RESULTS

In the previous section, we outlined the five first-order,
model-free policy gradient algorithms which are most relevant
for robotics (further ones exist but are do not scale into high-
dimensional robot domains). In this section, we will demon-
strate how these different algorithms compare in practice in
different areas relevant to robotics. For this pupose, we will
show experiments on both simulated plants as well as on real
robots and we will compare the algorithms for the optimization
of control laws and for learning of motor skills.

A. Control Law Optimization

As a first comparison, we use the linearized cartpole stan-
dard example which is described in detail in [26] (however, as

TABLE IV

EPISODIC NATURAL ACTOR CRITIC

input: policy parameterization θh.
1 repeat
2 perform M trials and obtain x0:H ,u0:H , r0:H for each trial.

Obtain the sufficient statistics
3 Policy derivatives ψk = ∇θ log πθ (uk |xk ).

4 Fisher matrix Fθ =

fi“PH
k=0 ψk

” “PH
l=0 ψl

”T
fl

.

Vanilla gradient g =
D“PH

k=0 ψk

” “PH
l=0 alrl

”E
.

5 Eligbility φ =
D“PH

k=0 ψk

”E
.

6 Average reward r̄ =
DPH

l=0 alrl

E
.

Obtain natural gradient by computing

7 Baseline b = Q
“
r̄ − φT F−1

θ g
”

with Q = M−1
“
1 + φT

`
MFθ − φφT

´−1
φ

”
8 Natural gradient gNG = F−1

θ (g − φb) .
9 until gradient estimate gNG = [g1, . . . , gh] converged.
return: gradient estimate gNG = [g1, . . . , gh].
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Fig. 1. This figure shows a comparison of the algorithms presented in this
paper on a linearized cart-pole standard benchmark.

[26] does not focus on episodic tasks, we cannot compare
these results). We have a cart-pole system simulated as a
linear stochastic system p(x′|x,u) = N (x′|Ax + Bu, σ̂2I)
around its equilibrium point (up-right pole and centered cart
with zero verlocities) and using a quadratic reward r(x,u) =
xT Qx + uT Ru. Each system is given a stochastic policy
π(u|x) = N (u|θT

gainx, σbase + exp(θexploration)) with policy
parameters θ = [θT

gain, θexploration]T . As the optimal solution
is well-known in this example and can be derived using
dynamic programming, this serves as good benchmark. The
larges stochasticity injected into the system makes this a
hard problem. The learning system is supposed to optimize
the policy without knowledge of the system. The results
shown in Figure 1 illustrate the efficiency of natural gradients:

TABLE V

EPISODIC NATURAL ACTOR CRITIC WITH A TIME-VARIANT BASELINE

input: policy parameterization θh.
1 repeat
2 perform M trials and obtain x0:H ,u0:H , r0:H for each trial.

Obtain the sufficient statistics
3 Policy derivatives ψk = ∇θ log πθ (uk |xk ).

4 Fisher matrix Fθ =
DPH

k=0

“Pk
l=0 ψl

”
ψT

k

E
.

Vanilla gradient g =
DPH

k=0

“Pk
l=0 ψl

”
akrk

E
,

5 Eligbility matrix Φ = [φ1, φ2, . . . , φK ]

with φh =
D“Ph

k=0 ψk

”E
.

6 Average reward vector r̄ = [r̄1, r̄2, . . . , r̄K ]
with r̄h = 〈ahrh〉.

Obtain natural gradient by computing

7 Baseline b = Q
“
r̄ − ΦT F−1

θ g
”

with Q = M−1
“
IK + ΦT

`
MFθ − ΦΦT

´−1
Φ

”
.

8 Natural gradient gNG = F−1
θ (g − Φb) .

9 until gradient estimate gNG = [g1, . . . , gh] converged.
return: gradient estimate gNG = [g1, . . . , gh].
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Fig. 2. This figure shows different experiments with motor task learning.
In (a,b), we see how the learning system creates minimum motor command
goal-achieving plans using both (a) splines and (b) motor primitives. For this
problem, the natural actor-critic methods beat all other methods by several
orders of magnitude. In (c,d), the plan has to achieve an intermediary goal.
While the natural actor-critic methods still outperform previous methods, the
gap is lower as the learning problem is easier. Note that these are double
logarithmic plots.

Episodic REINFORCE is by an order of magnitude slower
than the Episodic Natural Actor-Critic; the same holds true
on G(PO)MDP and the time-variant baseline version of the
Episodic Natural Actor-Critic. The lower variance of the time-
variant versions allows a higher learning rate, hence the faster
convergence. The finite-difference gradient estimator performs
initially well although with a large variance. However, closer to
the optimal solution, the performance of the gradient estimate
degraded due to the increased influence of the stochasticty of
the system. In general, the episodic natural actor-critic with a
time-variant baseline performs best.

B. Motor Task Planning

This section will turn towards optimizing motor plans for
robotics. For this purpose, we consider two forms of motor
plans, i.e., (1) spline-based trajectory plans and (2)nonlinear
dynamic motor primitives introduced in [42]. Spline-based
trajectory planning is well-known in the robotics literature,
see e.g., [43], [44]. A desired trajectory is represented by
piecewise connected polynomials, i.e., we have yi (t) = θ0i +
θ1it + θ2it

2 + θ3it
3 in t ∈ [ti, ti+1] under the constraints that

both yi (ti+1) = yi+1 (ti+1) and ẏi (ti+1) = ẏi+1 (ti+1). A
PD control law ensures that the trajectory is tracked well.
For nonlinear dynamic motor primitives, we use the approach
developed in [42] where movement plans (qd, q̇d) for each
degree of freedom (DOF) of the robot is represented in terms
of the time evolution of the nonlinear dynamical systems

q̈d,k = h(qd,k, zk, gk, τ, θk) (10)

where (qd,k, q̇d,k) denote the desired position and velocity of a
joint, zk the internal state of the dynamic system, gk the goal
(or point attractor) state of each DOF, τ the movement duration
shared by all DOFs, and θk the open parameters of the function
h. The original work in [42] demonstrated how the parameters
θk can be learned to match a template trajectory by means of
supervised learning – this scenario is, for instance, useful as
the first step of an imitation learning system. Here we will add
the ability of self-improvement of the movement primitives
in Eq.(10) by means of reinforcement learning, which is
the crucial second step in imitation learning. The system in
Eq.(10) is a point-to-point movement, i.e., this task is rather
well suited for the introduced episodic reinforcement learning
methods. In Figure 2 (a) and (b), we show a comparison of
the presented algorithms for a simple, single DOF task with a
reward of rk(x0:N , u0:N ) =

∑N
i=0 c1q̇

2
d,k,i + c2(qd;k;N − gk)2;

where c1 = 1, c2 = 1000 for both splines and dynamic
motor primitives. In Figure 2 (c) and (d) we show the
same with an additional punishment term for going through
a intermediate point pF at time F , i.e., rk(x0:N , u0:N ) =∑N

i=0 c̃1q̇
2
d,k,i + c̃2(qd;k;N − gk)2 + c̃2(qd;F ;N − pF )2. It is

quite clear from the results that the natural actor-critic methods
outperform both the vanilla policy gradient methods as well
as the likelihood ratio methods. Finite difference gradient
methods behave differently from the previous experiment as
there is no stochasticity in the system, resulting in a cleaner
gradient but also in local minima not present for likelihood
ratio methods where the exploratory actions are stochastic.

C. Motor Primitive Learning for Baseball

We also evaluated the same setup in a challenging robot
task, i.e., the planning of these motor primitives for a seven
DOF robot task using our SARCOS Master Arm. The task
of the robot is to hit the ball properly so that it flies as far
as possible; this game is also known as T-Ball. The state of
the robot is given by its joint angles and velocities while the
action are the joint accelerations. The reward is extracted using
color segment tracking with a NewtonLabs vision system.
Initially, we teach a rudimentary stroke by supervised learning
as can be seen in Figure 3 (b); however, it fails to reproduce
the behavior as shown in (c); subsequently, we improve the
performance using the episodic Natural Actor-Critic which
yields the performance shown in (a) and the behavior in (d).
After approximately 200-300 trials, the ball can be hit properly
by the robot.

IV. CONCLUSION

We have presented an extensive survey of policy gradient
methods. While some developments needed to be omitted
as they are only applicable for very low-dimensional state-
spaces, this paper represents the state of the art in policy
gradient methods and can deliver a solid base for future
applications of policy gradient methods in robotics. All three
major ways of estimating first order gradients, i.e., finite-
difference gradients, vanilla policy gradients and natural policy
gradients are discussed in this paper and practical algorithms
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Fig. 3. This figure shows (a) the performance of a baseball swing task
when using the motor primitives for learning. In (b), the learning system is
initialized by imitation learning, in (c) it is initially failing at reproducing the
motor behavior, and (d) after several hundred episodes exhibiting a nicely
learned batting.

are given. The experiments presented here show that the time-
variant episodic natural actor critic is the preferred method
when applicable; however, if a policy cannot be differentiated
with respect to its parameters, the finite difference methods
may be the only method applicable. The example of motor
primitive learning for baseball underlines the efficiency of
natural gradient methods.
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