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Abstract— In the control-based approach to robotics, complex
behavior is created by sequencing and combining control primi-
tives. While it is desirable for the robot to autonomously learn the
correct control sequence, searching through the large number of
potential solutions can be time consuming. This paper constrains
this search to variations of a generalized solution encoded in
a framework known as an action schema. A new algorithm,
schema structured learning, is proposed that repeatedly executes
variations of the generalized solution in search of instantiations
that satisfy action schema objectives. This approach is tested
in a grasping task where Dexter, the UMass humanoid robot,
learns which reaching and grasping controllers maximize the
probability of grasp success.

I. I NTRODUCTION

In contrast to the sense-think-act paradigm, control-based
and behavior-based approaches to robotics realize desired
behavior by sequencing and combining primitive controllers
or behaviors. These approaches depend on a higher-level
decision-making mechanism that selects the correct primitives
to execute. One way to automatically learn the correct se-
quence of primitives is to encode the problem as a Markov De-
cision Process, and solve it using Reinforcement Learning [1],
[2]. However, in the absence of ana priori model of controller
performance, this approach requires the robot to explore the
effects of executing every action in every state. Although the
system designer can manually constrain the potential action
choices [1], the need to explore a large number of actions can
slow down learning. The current paper addresses this problem
by encoding a generalized solution as anaction schema.
Learning speed is increased by constraining the system to
consider only variations of this generalized solution. A new
algorithm calledschema structured learningdiscovers which
instantiations of the action schema are appropriate in different
problem contexts. This paper explores this approach in the
context or reaching and grasping. This paper is an expansion
of our earlier work reported in [3]. The current paper better
defines optimality in the context of the action schema and
proposes a sample-based version of the algorithm.

Reinforcement learning (RL) is an attractive approach to
robot learning because it allows the robot to autonomously
learn to solve different problems using a single underlying
set of control actions. For example, Huber and Grupen use
RL to learn autonomously a rotation gait for a quadrupedal

robot [1]. Martinson, Stoytchev, and Arkin use RL to solve
a tank intercept problem using a small discrete set of states
and control actions [4]. Rosenstein and Barto use a version
of RL to learn to parameterize controllers that participate in
a robot weightlifting task [5]. Unfortunately, the solutions to
many practical robot problems are far too complex to learn
autonomously starting from a low-level and general set of
control primitives. In each of the above approaches, this com-
plexity is managed by manually supplying significant structure
to simplify learning. Huber prunes the number of potential
actions that the robot must explore. Martinson,et al. hand-
craft specific states and actions for the task. Rosenstein and
Barto manually specify a control structure and autonomously
learn parameters that optimize its performance. The current
paper acknowledges that such structure may be necessary in
practical robotics problems and proposes a new framework that
is inspired by the Piagetian notion of a schema for specifying
this structure.

Piaget loosely defines a schema to be a mental represen-
tation of an action or perception [6]. Through the process of
assimilation, the child adapts an existing schema to incorporate
new experiences, encoding these experiences as variations on
the same general structure. Piaget proposes that infants posses
a basic tendency to exercise existing schemas, especially when
those structures are not “well formed.”

Two important previous approaches to incorporating the
notion of a schema into a computational framework are that of
Arbib and Drescher [7], [8]. Arbib’sschema theoryproposes
two major types of schemas: the perceptual schema and
the motor schema [7]. A perceptual schema is a process
that responds to only a specific, task-relevant concept. A
motor schema is a generalized program that describes how to
accomplish a task. Schema theory proposes that a large number
of perceptual schemas and motor schemas can interact in the
context of acoordinated control program, thereby generating
intelligent behavior [7]. Arkin applies some of these ideas
to behavior-based robotics [2]. Gary Drescher also develops
a schema-based approach to intelligent behavior based on
Piagetian ideas [8]. Learning starts with a few schemas and
primitive concepts that represent basic motor activities and
perceptions. By executing schemas, the system discovers new
concepts and proposes new schemas for interacting with these



concepts.
This paper proposes a new approach to robot learning based

on a generalized representation of robot behavior known as
the action schema. The action schema may beinstantiated
by specific implementations of the generalized behavior. An
instantiation is considered tosucceedor fail depending upon
whether it results in desired state transitions specified by the
action schema. A new on-line learning algorithm, schema
structured learning, is proposed that explores different in-
stantiations and discovers through a process of trial-and-error
which instantiations are most likely to succeed. This paper
explores the action schema approach in the context of robotic
reaching and grasping. Schema structured learning discovers
how to select appropriate reach and grasp control actions
based on coarse visual information including object location,
orientation, eccentricity, and length. A series of experiments
are reported where Dexter, the UMass bimanual humanoid
robot, attempts to grasp objects using various different reach
and grasp primitives. The robot learns to select reach and grasp
primitives that optimize the probability of a successful grasp.

Section II gives a brief overview of thecontrol basis
approach to robot behavior used in this paper and describes
controllers used for localizing, reaching, and grasping. Sec-
tions III and IV describe the action schema framework, de-
fine the notion of the optimal policy instantiation, and give
an algorithm, schema structured learning, for autonomously
discovering these optimal instantiations. Finally, Section V
presents experimental results.

II. CONTROL-BASED REACHING AND GRASPING

This paper’s development of schema structured learning
uses Huber and Grupen’scontrol basisframework [1]. This
framework systematically defines a set of control primitives
and provides a robust and general way of representing system
state. This section describes the control basis framework and
details controllers that are used for localizing, reaching, and
grasping.

The control basis can systematically specify an arbitrary
closed-loop controller by matching anartificial potential func-
tion with a sensor transformand effector transform[1]. The
artificial potential specifies controller objectives, the effector
transform specifies what degrees of freedom the controller
uses, and the sensor transform implements the controller
feedback loop. For example, aREACH controller is defined by
a REACH artificial potential, a sensor transform that specifies
the goal configuration of the end-effector, and an effector
transform that specifies what degrees of freedom are used to
accomplish the task.

In general, the control basis realizes a complete con-
troller by selecting one artificial potential from a set
Φ = {φ1, φ2, . . .}, one sensor transform from a setΣ =
{σ1, σ2, . . .}, and one effector transform from a setΥ =
{τ1, τ2, . . .}. Given Φ, Σ, and Υ, the set of controllers that
may be generated isΠ ⊆ Φ × Σ × Υ. When specifying
a fully-instantiated controller, the notationφi|στ denotes the

controller constructed by parameterizing potential functionφi

with sensor transformσ and effector transformτ .
The control basis framework also allows composite con-

trollers to be constructed that execute multiple constituent con-
trollers concurrently. Each constituent controller is assigned a
priority, and controllers with lower priority are executed in
the nullspace of controllers with higher priority. Composite
controllers are denoted,φb|στ / φa|στ , where φb|στ is said to
execute “subject-to” (i.e. in the nullspace of)φa|στ .

System state is measured in terms of controller dynamics. At
any point in time, the instantaneous error and the instantaneous
gradient of error can be evaluated. Although the more general
system dynamics can be treated [9], in this paper we will
consider only controller convergence to establish system state.
For example, the state of having grasped an object with some
effector is represented by the convergence status of a grasp
controller parameterized by that effector transform.

This paper’s ideas are illustrated in the context of a
LOCALIZE-REACH-GRASP action schema that implements
generalized grasping behavior. TheLOCALIZE controller in
LOCALIZE-REACH-GRASP, φl|στ , segments the object and
characterizes the resulting blob in terms of its three-
dimensional Cartesian position, orientation, length, and eccen-
tricity.

In this paper,LOCALIZE-REACH-GRASP uses twoREACH

control primitives: a reach-to-position primitive,φrp|σ(x)
τ , and

a reach-to-orientation primitive,φro|σ(θ)
τ . Whenφrp|σ(x)

τ exe-
cutes on its own, the robot reaches to an offset ofx along the
object major axis without regard for orientation. When reach-
to-orientation executes subject to reach-to-position,φro|σ(θ)

τ /

φrp|σ(x)
τ , then the robot attempts to achieve a desired orien-

tation while reaching to a position. Orientation is measured
with respect to the lines running from the contact set centroid
through each contact.φro|σ(θ)

τ orients the manipulator so that
the average angle between these lines and the object major
axis isθ.

GRASPcontrollers displace contacts toward good grasp con-
figurations using feedback control [10], [11]. This approach
uses tactile feedback to calculate an error gradient and displace
grasp contacts on the object surface without using a geometric
object model. After making light contact with the object using
sensitive tactile load cells, the controller displaces contacts
toward minima in the grasp error function using discrete
probes [10] or a continuous sliding motion [12]. This paper
uses twoGRASP controllers:φg|σ123

τ123
andφg|σ12

τ12
. φg|σ123

τ123
uses

three physical contacts to synthesize a grasp, whileφg|σ12
τ12

combines two physical contacts into avirtual finger[13] that is
considered to apply a single force that opposes a third physical
contact.

III. T HE ACTION SCHEMA

Although the control basis gives the robot access to a
general-purpose set of control primitives, the large number of
action choices can make autonomous trial-and-error learning
computationally complex. The action schema framework is a
systematic way of structuring a trial-and-error robot learning
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Fig. 1. The localize-reach-grasp action schema. The circles with binary
numbers in them represent abstract states. The arrows represent abstract
actions and transitions.

problem by encoding a generalized robot behavior that con-
strains the number of potential solutions that learning must
consider. The generalized behavior is represented by a policy
defined over an abstract state and action space. A one-to-
many mapping is defined between the abstract state and action
space and an underlying state and action space. The underlying
space is assumed to represent system state and action with
the finest granularity available to the robot. This allows the
action schema’s abstract policy to be translated into a number
of policy instantiationsthat define a set of potential solutions.
The action schema also specifies an abstract transition function
that defines desired transition behavior in the underlying space.
The objective of schema structured learning is to discover
which instantiations of an action schema’s abstract policy are
most likely to result in transitions that are consistent with the
abstract transition function.

Let S′×A′ be the abstract state-action space defined by the
action schema, and letS × A be the underlying state-action
space that can represent possible robot behavior. The abstract
policy is a mapping from abstract states to abstract actions,

π′ : S′ → A′. (1)

This function deterministically specifies which abstract action
the system should take in any given abstract state. When the
control basis is used with the action schema, abstract states
and actions can be defined in terms of artificial potentials. For
example, Figure 1 illustrates theLOCALIZE-REACH-GRASP

action schema. The three abstract actions,φl (LOCALIZE), φrp

(REACH), andφg (GRASP), correspond to controllers stripped
of their parameterizations (leaving only artificial potentials).
The circles illustrate the four abstract states, also derived
from artificial potentials. The abstract policy,π′, defines which
abstract actions are to be taken from abstract states:

π′(000) = φl (2)

π′(001) = φrp

π′(011) = φg.

For example, if the robot is in abstract state(000), then π′

executes abstract actionφl.
The abstract policy is mapped to policy instantiations that

implement the same qualitative type of behavior. This policy
mapping is derived from state and action mappings that group
together similar states and actions as follows. Letf : S → S′

and g : A → A′ be state and action functions that uniquely
assign each underlying state and action to an abstract state
and action. The inverses of these functions are defined to be
f−1(s′) = {s ∈ S|f(s) = s′} andg−1(a′) = {a ∈ A|g(a) =

(  )

2

s3

s4 s5

s1

φg

σ
τ1,2,3

1,2,3φg

σ
τ1,2

1,2

lφ
lφ

rpφ

gφ

σ
τ

(  )θ
rpφ

rpφ−1
g  (    )

s2f(    )

......

...

001

011

111

000

σ
τ

(  )θ
ro

x

rpφ σ
τφ

s

Fig. 2. Possible instantiations of theLOCALIZE-REACH-GRASP action
schema. The inverse action mapping,g−1, projects the abstractREACH action
onto the set of possibleREACH actions.

a′}. g−1 maps each abstract action to an equivalence class
of actions that perform the same function in different ways.
Similarly, f−1 maps each abstract state to an equivalence class
of states.

When the control basis is used, the abstract actions are
represented by artificial potentials that can be instantiated
by different choices for sensor and effector transform. In
addition, when composite controllers are possible, arbitrary
subordinate control primitives may be added to create even
more instantiations. Controllers related to an artificial potential
(the abstract action) in this way are guaranteed to share
certain characteristic functionality. For example, inLOCALIZE-
REACH-GRASP, the three abstract actions,φl, φrp, andφg map
to underlying controllers as follows:

g−1(φl) = {φl|στ }, (3)

g−1(φrp) = {φrp|σ(x)
τ |x ∈ [0, 1]} ∪

{φro|σ(θ)
τ / φrp|σ(x)

τ |x ∈ [0, 1], θ ∈ [0,
π

2
]},

g−1(φg) = {φg|σ123
τ123

, φg|σ12
τ12
}.

In this example, the abstract action,φg, can be instantiated
by φg|σ123

τ123
or φg|σ12

τ12
(either a three-fingered grasp or a two-

fingered grasp).
The state and action mappings,f and g, allow the ab-

stract policy to be translated into a set of potential policy
instantiations. This is accomplished by determining the set
of actions that are consistent with the abstract policy in a
given state. Assume that the system is in abstract state,s′t.
The abstract action specified byπ′(s′t) can be projected onto
a set of equivalent underlying actions using the inverse action
mapping,g−1(π′(s′t)). Therefore, given the state and action
mapping, the abstract policy,π′, can be mapped onto any
policy, π, such that,

∀st ∈ S, π(st) ∈ B(st), (4)



where

B(st) = g−1(π′(f(st))). (5)

These policies are calledpolicy instantiationsof the abstract
policy.

This is illustrated in Figure 2. Suppose that the robot is in
states2 ∈ S. The state mapping,f , projects this state onto
(001) ∈ S′. Sinceπ′(001) = φrp, the abstract policy takesφrp

from (001). Finally, the inverse action mapping,g−1, projects
this onto the reach choices,{φrp|σ(x)

τ |x ∈ [0, 1]}∪{φro|σ(θ)
τ /

φrp|σ(x)
τ |x ∈ [0, 1], θ ∈ [0, π

2 ]}.
The action schema also defines transition constraints that

specify how the robot is to behave while executing a policy
instantiation. The desired behavior of the action schema is
deterministically characterized by the abstract transition func-
tion,

T ′ : S′ ×A′ → S′. (6)

This specifies how the system must transition in response to
executing the action. When taken from statest ∈ S, action
a ∈ A must deliver the system to

st+1 ∈ f−1(T ′(f(st), g(a))). (7)

As long as actiona ∈ A causes the robot to transition to
one of these next states, the action is said tosucceed. If
the action causes a different transition, then the actionfails.
The goal of schema structured learning is to discover which
policy instantiation maximizes the probability of meeting these
transition constraints.

For example, in the case of theLOCALIZE-REACH-GRASP

action schema, the abstract transition function is defined to be:

T ′(000, φl) = 001 (8)

T ′(001, φrp) = 011
T ′(011, φg) = 111.

Suppose that the robot is in states2 ∈ S, and executes
φrp|σ(0.5)

τ . If the system does not transition to a state,st+1 ∈
S, that maps to(011) ∈ S′, f(st+1) = (011), thenφrp|σ(0.5)

τ

fails.
In schema structured learning, the robot continues to execute

actions in accordance with the abstract policy until an action
fails or an absorbing state is reached. In theLOCALIZE-
REACH-GRASP action schema,(111) is an absorbing state.

Bringing these pieces together, an action schema is a
represented as a tuple,

S = 〈S′, A′, π′, T ′〉 , (9)

where S′ is the abstract state set,A′ is the abstract action
set,π′ defines the abstract policy, andT ′ defines the abstract
transition function. When defining an action schema, we will
require that the path implicitly specified byπ′ and T ′ does
not contain cycles.

IV. OPTIMAL POLICY INSTANTIATIONS

The abstract policy encoded by the action schema maps
to many different policy instantiations. The goal of schema
structured learning is to discover which policy instantiations
maximize the probability of satisfying the action schema’s
transition constraints. This is called theoptimalpolicy instanti-
ation. This section defines the optimal policy instantiation and
introduces the schema structured learning algorithm given in
Table I.

A. Definition of the Optimal Policy Instantiation

Recall that the abstract transition function defines how the
robot system must transition after executing actions. An action
succeeds when the resulting transition is consistent with these
constraints and fails otherwise. A state-action trajectory will
be said to succeed when each component action succeeds.
An optimal policy instantiation,π∗, is one that maximizes
the probability of a successful trajectory. LetPπ(a|st) be the
probability of a successful trajectory, given that the system
takes actiona ∈ A, starting in statest ∈ S, and follows
policy instantiationπ after that. IfΠ is defined to be the set
of all possible policies, then

P ∗(a|st) = max
π∈Π

Pπ(a|st) (10)

is the maximum probability of a successful trajectory taken
over all possible policies. This allows the optimal policy to be
calculated using,

π∗(st) = arg max
a∈B(st)

P ∗(a|st), (11)

where B(st) = g−1(π′(f(st))) (Equation 5) is the set of
actions that are consistent with the abstract transition function
when the system is in statest ∈ S. The optimal policy always
selects the action that maximizes the probability of satisfying
action schema transition constraints.

B. Schema Structured Learning

Schema structured learning autonomously discovers the
optimal policy instantiations. The robot explores and models
the expected success of different policy instantiations in or-
der to estimateP ∗(a|st). However, instead of directly using
Equation 10, it is possible to use a dynamic programming
approach to estimateP ∗(a|st). For convenience, we assume
that the outcome of a successful action is knowna priori,

Ts : S ×A → S, Ts(st, a) = st+1. (12)

Given this assumption, the maximum probability of a success-
ful trajectory can be calculated recursively,

P ∗(at|st) = P (succ|st, at) max
a∈B(Ts(st,at))

P ∗(a|Ts(st, at)), (13)

whereP (succ|st, at) is the probability that actionat succeeds
from statest. Assuming thatTs is modeleda priori is a rea-
sonable assumption in many robot learning problems because
the human designer frequently knows the desired state of the
robot after a particular controller executes. However, in cases



TABLE I

SCHEMA STRUCTURED LEARNING ALGORITHM

FunctionSCHEMA STRUCTURED LEARNING

1. While not in an absorbing state
2. Get current statest ∈ S
3. Let B(st) = g−1(st)(π′(f(st)))
4. Executeπ∗(st) = arg maxa∈B(st) P ∗(a|st)
5. If action failed, break from loop.
6. Get next statest+1 ∈ S
7. Update transition modelP (succ|st, a)
8. Repeat

where this is not true, a more complex version of Equation 13
can be used that is based on estimates ofP (st+1|st, a) rather
thanP (succ|st, a).

The schema structured learning algorithm is illustrated in
Table I. First, the robot assesses its current state and de-
termines which actions instantiate the abstract policy at that
point (steps two and three). Next, the robot executes an action
that is estimated to be most likely to be part of a successful
trajectory (step four). Finally, the transition model is updated
and the process repeats. Note that as long as the algorithm’s
probability estimates are correct, then Equation 13 gives the
optimal policy instantiation. Therefore, as long as schema
structured learning’s probability estimates converge to their
true values, the algorithm can be expected to converge to a
set of optimal policies.

Schema structured learning based on the action schema
framework can be expected to learn faster than learning
algorithms that solve Markov Decision Processes (MDPs)
for at least two reasons. First, the action schema’s abstract
policy reduces the search space of learning. Second, schema
structured learning only estimates the probability of success
- not the probability of arriving in every possible next state
(P (succ|st, a) - not ∀st+1 ∈ S P (st+1|st, a). Therefore, the
algorithm must estimate fewer probabilities and learning can
be expected to be faster.

C. Large Action Spaces

Another key feature of schema structured learning is that
a sample-based version of the algorithm exists. This sample-
based version is effective in large or real-valued action spaces
where it may be difficult to use other function approximation
techniques to estimate the optimal action. In the case of large
or real-valued action spaces, it is difficult or impossible to
evaluate Equation 11 for all possible values ofa ∈ B(st).
However, notice that actions with a high probability of success
are more likely to be part of a successful trajectory. In
particular, when the optimal policy instantiation has a high
probability of success, the action that maximizesP ∗(a|st) is
also likely to be near the maximum ofP (succ|st, a). This
enables a sample-based version of schema structured learning
to use its estimate ofP (succ|st, a) (derived from previous
experience) to bias its action sampling in step three (Table I).

The above observation leads to a sample-based version of
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Fig. 3. Results from the first experiment (grasping the vertical cylinder)
showing median initial grasp controller error (moment residual error) as a
function of trial. A high error indicates a poor grasp and a low error indicates a
good grasp. Note that median error reaches its lowest point after approximately
10 trials.

schema structured learning. Assume that the robot is in state,
st ∈ S, and thata′ = π′(f(st)). Instead of evaluating every
instantiation of the abstract policy in step three, the sample-
based version of the algorithm only evaluates a fixed number
of samples,Dst(a

′) ⊆ g−1(a′), drawn from the probability
distribution P (succ|st, a). This sample set is updated every
time the estimate ofP (succ|st, a) improves.

V. EXPERIMENTS

Two experiments were performed to characterize the learn-
ing performance of schema structured learning in the context
of grasp synthesis. Both experiments were performed using
Dexter, a bi-manual humanoid upper torso consisting of two
Barrett arms, two Barrett hands, and a Bisight head. In the
first experiment, Dexter learned to localize, reach, and grasp
a towel roll measuring 20cm high and 10cm in diameter by
attempting to grasp it 26 times. At the beginning of each trial,
the towel roll was placed vertically in approximately the same
tabletop location. Only three-fingered grasps,φg|σ123

τ123
, were

allowed. On each trial, schema structured learning executed
using theLOCALIZE-REACH-GRASPaction schema until either
the absorbing state was reached or an action failed. In either
case, the trial was terminated, the system was reset, and a new
trial was begun. This experiment was repeated eight times.

Figure 3 shows median grasp error as a function of trial
number. This is the grasp error measured after reaching to the
object, but before executing theGRASP controller. Before the
10th trial, the large median grasp errors indicate that schema
structured learning had not yet discovered how to grasp the
towel roll. This means that theGRASPcontroller must correct
this poor configuration by displacing the contacts along the
object surface toward a good grasp configuration. However,
by the 10th or 15th trial, the robot has learned to select an
instantiation of theREACH controller that minimizes moment
residual errors.

In the second experiment, Dexter learned to adjust its
grasp strategy based on the orientation of the object. A long
box measuring 7x7x27cm was alternately presented to Dexter



(a) (b)

Fig. 4. Results from the second experiment showing the two grasp strategies learned for the different box orientations. The contour plot in (a) shows that the
probability of success is maximized when the manipulator reaches to the center of the box and orients itself perpendicular to the box major axis. (b) shows
that position matters less when the box is presented vertically.

horizontally and vertically. Dexter attempted to grasp and lift
this object 40 times using aLOCALIZE-REACH-GRASP-HOLD-
LIFT action schema. In addition to attempting to reach and
grasp the object, this action schema also applied a grasping
force and attempted to lift the object. The lift was only
considered to succeed when the object did not exert a large
moment about the contact points and it did not swing out of
the grasp or drop. On each trial, the action schema executed
until either the absorbing state was reached or an action failed.
Only two-fingered grasps were allowed.

The contour plots in Figure 4 illustrate the results of the
second experiment. Both figures show the probability of grasp
success as a function of orientation (vertical axis) and position
(horizontal axis) relative to the object. Position and orientation
are measured in the same way as with theREACH controllers
in Section II: position is the distance of the contact centroid
between the center and one end of the major axis; orientation
is the average angle formed by the major axis and the line
between a contact and the contact centroid. Figure 4(a) shows
the probability of lift success for the horizontally presented
box, and Figure 4(b) shows the probability of success for
the vertically presented box. Both graphs show that the robot
learns to orient its hand perpendicular to the major axis of
the box (in both graphs, the probability density is maximized
near the top.) However, notice that when the box is presented
horizontally, the robot also learns to grasp it near its center.
This behavior improves the robot’s chances of lift success
because it is less likely to drop the object in this configuration.

VI. CONCLUSION

This paper expands on the action schema approach to robot
learning proposed in [3]. In this approach, the search for
desired robot behavior is constrained by a generalized policy
encoded by the action schema. This simplifies learning: instead
of considering all possible behaviors, the robot must only
consider instantiations of the generalized action schema policy.
This paper defines the optimal policy instantiation as that

which maximizes the probability of satisfying action schema
transition specifications. In an approach reminiscent of Piaget’s
process of assimilation, this paper proposes a sample-based
algorithm, schema structured learning, whereby the robot
repeatedly executes instantiations of the action schema policy
in a search for optimal instantiations. The results show that the
system quickly learns how best to reach and grasp an object
and that the robot is able to adjust its strategy based on how
an object is presented.
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