Introduction to robot algorithms CSE 410/510

Rob Platt robplatt@buffalo.edu

Times: MWF, 10-10:50

Location: Clemens 322

Course web page:

http://people.csail.mit.edu/rplatt/cse510.html

Office Hours: 11-12 MW, 330 Davis Hall

TA:

What is robotics?

Answer from science fiction: a mechanical person

What do robotics researchers do?

...try to build mechanical people

The hard part?

Hardware?

or

Smarts?

The hard part?

Smarts!

An enduring approach to robotics

- SRI, 1967
- Sense-think-act paradigm
 - 1. Sense the world using vision, sonar range finder
 - 2. Plan a sequence of actions that achieves specified goal (STRIPS)
 - 3. Execute plan
- Tasks: navigation around blocks and over bridges, rearranging blocks by pushing them

This course: objectives

- 1. Understand "the" basic problems in robotics
- 2. Understand a few key algorithms in detail
- 3. Learn mathematical/algorithmic tools that you can use elsewhere

Topics

- 1. Planning
- 2. Control
- 3. Localization and mapping
- 4. Planning/Control as Optimization

Topics

1. Planning

- configuration space, topology, rotation
- dynamic programming
- sample-based methods
- cell methods
- A^* and its variants
- kinodynamic planning

Problem statement:

Given: model of state space

Given: a model obstacles in state space

Problem: find a path from start to goal

Applications:

1. mobile robot path planning

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Applications:

2. "Piano movers problem"

Applications:

3. articulated arm motion planning

Applications:

3. articulated arm motion planning

Two main algorithms:

- 1. Probabilistic Road Maps (PRM)
- 2. Rapidly Exploring Random Tree (RRT)

Also kinodynamic applications:

- inverted pendulum

Also kinodynamic applications:

- "Acrobot"

Topics

2. Control

- Markov Decision Processes
- Value iteration, policy iteration
- continuous state spaces
- function approximation
- linear optimal control
- differential dynamic programming

Reinforcement learning

Given: the ability to take actions

Given: the ability to perceive state exactly

Given: "rewards"

Objective: gradually calculate a policy for acting optimally with respect to the reward function.

observation

Topics

3. Localization and mapping

- Bayes filtering
- particle filtering
- EKF, UKF, etc.
- Rao-blackwellization
- scan matching
- gMapping, EKF-SLAM, FastSLAM, etc.

Problem statement:

<u>Given:</u> noisy sensors that measure partial information

Given: a model of the system

Problem: estimate state

For example:

Given: mobile robot with laser scanners moving in an office building

\ Segway RMP equipped with laser range finders IMU.

For example:

Given: mobile robot with laser scanners moving in an office building

Given: a map of the building, model

of how wheels move

\ Segway RMP equipped with laser range finders

For example:

Given: mobile robot with laser scanners moving in an office building

Given: a map of the building, model

of how wheels move

Objective: localize robot

\ Segway RMP equipped with laser range finders

Potential algorithms: variants of Bayesian

filtering:

- 1. Extended Kalman filter (EKF)
- 2. Unscented Kalman filter (UKF)
- 3. Ensemble Kalman filter
- 4. Histogram (Markov) filter
- 5. Particle filter
- 6. Others?

Potential applications:

- 1. mobile robot localization
- 2. localization of object held in hand
- 3. ?

Mapping

In principle, same as localization:

<u>Given:</u> mobile robot with laser scanners moving in an office building

Given: no map!

Objective: localize robot, estimate map

Algorithms:

- same as for localization
- new problem: high dimensionality of estimation problem
- other problems too...
- solutions: various tricks to deal w/ high dimensionality

Mapping

Mapping

Ground truth

Odometry

Topics

- 4. optimization in planning and control
 - standard convex optimization problems
 - model predictive control
 - sequential quadratic programming
 - semi-definite relaxations
 - polynomial optimization, controller stability

Convex optimization

Model predictive control

- 1. Parameterize trajectory by a sequence of via points.
- 2. define cost function and dynamics constraints
- 3. solve the following optimization problem:

Minimize: cost function

Subject to: dynamics constraints

Under certain circumstances, this problem is convex...

Course Prerequisites

- 1. Ability to program in Matlab (of the ability to learn to do this)
- 2. Comfortable with linear algebra.

Reading material, notes

- 1. There is no single assigned text. I will assign papers and chapters as we go. This will be posted to my webpage.
- 2. I'll try to have my notes posted the day prior to lecture.

Course Requirements

1. Approximately four homework/lab assignments

2. Final exam

- you can be tested on things that I say in class as well as what's in the notes and reading.