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The Robust Control of
Robot Manipulators

Jean-Jacques E. Slotine
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

A new scheme is presented for the accurate tracking control
of robot manipulators. Based on the more general suction
control methodology, the scheme addresses the following
problem: Given the extent of parametric uncertainty (such as
imprecisions or inertias, geometry, loads) and the frequency
range of unmodeled dynamics (such as unmodeled structural
modes, neglected time delays), design a nonlinear feedback
controller to achieve optimal tracking performance, in a
suitable sense. The methodology is compared with standard
algorithms such as the computed torque method and is
shown to combine in practice improved performance with
simpler and more tractable controller designs.

1. Introduction

This paper presents a new scheme to achieve accurate

tracking control of robot manipulators in the presence
of model uncertainty and disturbances.
The development of efficient feedback control algo-

rithms for robot manipulators has recently been the
object of considerable interest (Brady et al. 1982). The
complexity of the manipulator control problem largely
reflects that of manipulator dynamics itself: Beyond
three degrees of freedom, the derivation of manipula-
tor dynamics becomes cumbersome to manage analyt-
ically and requires the use of sophisticated on-line
computational algorithms (Luh, Waker, and Paul
1980a; Hollerbach 1980; Silver 1982; Renaud 1983).
A major drawback of such algorithms is that they lack
physical tractability, that is, they do not allow one to
effectively exploit engineering insight during the design
process (Bejczy and Lee 1983; Luh and Gu 1984).
Further, the performance of standard control schemes

based on these algorithms (for example, the computed
torque or inverse method) is very sensitive to paramet-
ric uncertainty, that is, to imprecision on manipulator
inertias, geometry, loads, and so on (Gilbert and Ha
1983).
In this paper, the suction control methodology (Slo-

tine 1984) is proposed as a remedy to these draw-
backs. For a class of nonlinear systems, suction control
addresses the following problem: Given the extent of
parametric uncertainty (such as imprecisions on iner-
tias, geometry, loads) and of disturbances (such as
Coulomb or viscous friction) and the frequency range
of unmodeled dynamics (such as unmodeled struc-
tural modes, neglected time delays), design a nonlinear
feedback controller to achieve optimal tracking preci-
sion, in a suitable sense. The explicit robustness guar-
antees provided by the methodology are shown to
allow the use of simpler, more tractable manipulator
models (such as &dquo;decoupled&dquo; arm and hand in a six-
degree-of-freedom robot) while preserving stability in
the face of model imprecision.

Section 2 summarizes the major features of suction
controller design. The specific application of the meth-
odology to the accurate tracking control of robot ma-
nipulators is described in Section 3. Section 4 con-
cludes that the gains in engineering insight and
controller simplicity offered by the methodology gen-
erally come for free because suction control schemes
based on simplified models outperform standard algo-
rithms based on higher-order models at most practical
levels of parametric uncertainty.

2. Suction Control of Nonlinear Systems

In this section we review the basic results of Slotine
and Sastry (1983) and Slotine (1984). For notational
simplicity, the development is presented for systems
with a single control input, although the extension to a
large class of multi-input nonlinear systems is straight-
forward, as illustrated in an example. The specific
design of suction controllers for robot manipulators is
detailed in Section 3.

The author formerly was with the Robotics Systems Research De-
partment, AT&T Bell Laboratories, Holmdel, New Jersey.
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2.1. SLIDING SURFACES

Consider the dynamic system

where u(t) is the control input (say the applied torque
at a manipulator joint) and X = [x, X, , ... , x~n~’~]T
is the state. In Eq. (1), the function f(X;t), in general
nonlinear, is not exactly known, but the extent of the
imprecision I Af on f{X;t) is upper-bounded by a
known continuous function of X and t; similarly, con-
trol gain b(X;t) is not exactly known but is of constant
sign and is bounded by known, continuous functions
of X and t. Disturbance d(t) is unknown but upper-
bounded by a known continuous function of X and t.
The control problem is to get the state X to track a
specific state Xd = [Xd, .~d, ... , xd -’a]T in the pres-
ence of model imprecision on f(X;t) and b(X;t) and of
disturbances d(t). For this to be achievable using a
finite control u, we must assume

where

is the tracking error vector.
We define a time-varying sliding surface S(t) in the

state-space Rn as

with

where h is a positive constant (design parameter A will
later be interpreted as the desired control bandwidth).
Given initial condition (2), the problem of tracking
X = Xd is equivalent to that of remaining on the sur-
face S(t) for all t > 0. Now a sufficient condition for
such positive invariance of S(t) is to choose the control
law u of Eq. (1) such that outside of sliding condition
S(1),

Fig. 1. The sliding condition.

were 17 is a positive constant. Sliding condition (4)
constrains state trajectories to point toward S(t), as il-
lustrated in Fig. 1.

The idea behind Eqs. (3) and (4) is to pick up a
well-behaved function of the tracking error, s, accord-
ing to Eq. (3) and then select the feedback control law
u in Eq. (1) such that s remains a Lyapunov function
(Vidyasagar 1978) of the closed-loop system, in a suit-
able sense, despite the presence of model imprecision
and disturbances. Further, satisfying Eq. (4) guarantees
that if condition (2) is not exactly verified, that is, if
Xi,.o is actually off Xdl,.O, the surface S(t) will none-
theless be reached in a finite time (inferior to s(X(0);
0)/n), while definition (3) then guarantees that R- 0 as
t --’Jo 00.

The controller design procedure consists of two
steps. First, a feedback control law u is selected so as
to verify sliding condition (4). To account for the pres-
ence of modeling imprecision and of disturbances,
however, such a control law is discontinuous across
S(t), which leads to control chattering. Chattering is
undesirable in practice because it involves high control
activity and further may excite high-frequency dy-
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namics neglected in the course of modeling (such as
unmodeled structural modes, neglected time delays,
and the like). Thus, in a second step, discontinuous
control law u is suitably smoothed to achieve an opti-
mal trade-off between control bandwidth and tracking
precision. While the first step accounts for parametric
uncertainty, the second steps achieves robustness to
high-frequency unmodeled dynamics.
Remark: The notion of sliding surface and the asso-

ciated theory of variable structure systems (VSS) have
been studied in great detail in the Soviet literature (see
Utkin 1977 for a review). As discussed extensively in
Slotine and Sastry (1983) and Slotine (1983), the VSS
methodology has several important drawbacks, partic-
ularly high control authority and control chattering.
An application of classical VSS theory to manipulator
control is described in Young (1978).

2.2. PERFECT TRACKING USING SWITCHED
CONTROL LAWS

Given the bounds on uncertainties on f(X;t) and
b(X;t) and on disturbances d(t), constructing a control
law to verify sliding condition (4) is straightforward, as
we now illustrate on a simple multivariable example
(numerous examples can be found in Slotine 1983).
Example: Consider the coupled multi-input system

where parameter a(t) is estimated as a(t), with

Consider the problem of getting 81 to track a desired
trajectory 0 dl , specified in real time, such that

in the presence of disturbances dl(t) such that

where v and d are known positive constants. We define

the sliding surface S,(t) according to Eq. (3), namely

where 0i = ~ &horbar; Odl is the tracking error. Note that s,
depends on 61 only. To satisfy a sliding condition of
the form (4), we define control law u 1 as

where sgn(s) _ -1 for s < 0, and sgn(s) = + 1 for
s ~ 0. Cpntrol law (7) is composed of a term (- a(t)Bj -
202 - ~.~1) that merely compensates for the known
part of the dynamics of the variable s and of a term
(-[a[0113 + y] sgn s,), discontinuous across S1(t), that
allows one to keep sliding condition (4) verified de-
spite the presence of disturbances and parametric un-
certainty. We have indeed

so control law (7) applied to system dynamics (5) leads
to

where

Hence this satisfies sliding condition (4) for surface
SI(t):

Note that control discontinuity at Sl(t) increases with
parametric imprecision and strength of disturbances to
be compensated for. Further, if desired acceleration
Öd1(t) is explicitly available, we may rather use

 at RICE UNIV on November 10, 2009 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


52

instead of Eq. (7), thus reducing control discontinuity
at S1(t).
Assume now that Eq. (5) is replaced by

where gain bl(t) is estimated by b,(t) such that

Parameter /3l in Eq. (9) can be interpreted as the gain
margin on control law u, relative to (possibly time-
varying or state-dependent) control gain estimate 6,(t).
Letting

we can satisfy condition (4) by now choosing

instead of (7). We thus have further increased control
discontinuity at SI(t) to compensate for uncertainty
on gain b,(t) (note that the choice of ul to satisfy slid-
ing condition 4 is not unique; expression 10 mini-
mizes the continuous part of sl).

Notice the decoupling in the design: If 92 were also
prescribed to track a given trajectory, one would define
S2 := 02 + A202 and repeat the procedure independently.

As illustrated in the preceding example, and shown
in further detail in Slotine and Sastry (1983), the
methodology can easily be extended to multivariable
systems of the form

where Xj = [xj, xl, ... , x~n~-’>]’’. We assume again
that disturbances dj and imprecisions on fj and bj are
bounded by known continuous functions of Xj and of
time. Dynamics of the form ( 1 I ) describe a large num-
ber of nonlinear systems encountered in practice, in-

cluding a vast class of mechanical systems (from La-
grange’s equations). Further, Hunt, Su, and Meyer
(1983) have shown that a wide class of controllable
nonlinear systems could be put in the form (11) by
using appropriate &dquo;global&dquo; transformations: Being able
to deal explicitly with imprecision on the system
model allows for numerical conditioning problems
that may affect such transformations to be easily ac-
counted for.

2.3. SUCTION CONTROL

2.3. 1. Continuous Control Laws to Approximate
Switched Control

As seen in the example of Section 2.2, control laws
that satisfy sliding condition (4) are discontinuous
across the surface S(t), thus leading to control chatter-
ing. Chattering is in general highly undesirable in
practice because it involves extremely high control
activity and further may excite high-frequency dy-
namics neglected in the course of modeling. We can
remedy this situation by smoothing out the control
discontinuity in a thin boundary layer neighboring the
switching surface (see Fig. 2):

where 4$ is the boundary layer thickness and E := (D/
An- is the boundary layer width. This is achieved by
choosing outside of B(t) control law u as before-that
is, satisfying sliding condition (4), which guarantees
boundary layer attractiveness, and hence positive in-
variance ; all trajectories starting inside B(t = 0) remain
inside B(t) for all 1 > 0-and then interpolating u
inside B(t)-for instance, replacing in the expression
of u the term sgn s by sl(D, inside B(t), as illustrated in
Figs. 2 and 3. As proved in Slotine (1983), this leads
to tracking to within a guaranteed precision E and
more generally guarantees that for all trajectories start-
ing inside B(t = 0),

These bounds are understood asymptotically, with a
time constant (n - 1 )/~; they hold for all 1 > 0 if

Xlt=o = 0. We now show that the smoothing of control
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Fig. 2. Construction of the
boundary layer in the case
that n = 2.

discontinuity inside B(t) essentially assigns a lowpass
filter structure to the local dynamics of the variable s,
thus eliminating chattering. Recognizing this filter
structure allows us to tune up the control law so as to
achieve a trade-off between tracking precision and
robustness to unmodeled dynamics.
For clarity, we first consider the case of no gain

margin ( fl = I ) and then generalize. Further details on
the following development can be found in Slotine
(1984).
Consider the system

where

In Eq. (14), f(X;t) is the available model of f(X;tj.
Further, as in Section 2, we assume

where F, D, and/are known continuous functions of
X and t; uncertainty Af(X;t) on dynamicsf(X;t) is
assumed to be continuous in X.
The control problem is to get the state X to track a

desired state Xd, specified in real time, such that a priori:

although xa ~(t) itself is not explicitly available. Defin-

Fig. 3. Sample interpolation
of the control law in the
boundary layer.

ing s(X;t) according to Eq. (3) and letting

where 17 is a positive constant, the control law

satisfies sliding condition (4).’ As in the example of
Section 2.2, control law (18) is composed of a term,

that compensates for the known part of the dynamics
of the variable s and of a term -1~(X;t) sgn(s), discon-
tinuous across S(t), that keeps sliding condition (4)
verified in spite of parametric uncertainty and distur-
bances. Let us now smooth out the control discontinu-

ity inside the boundary layer B(t) of thickness 0, de-
fined by Eq. (12). Control law (18) then becomes
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where the saturation function sat is defined by

jyj ~ 1 => sat(y) = Y~ IYI > 1 => sat(y) = sgn(y).

Since by construction control u satisfies Eq. (4) outside
of B(t ), the boundary layer is attractive and hence
(positively) invariant. Thus, for trajectories starting
inside B(t = 0) (in particular, if ~Ir-o = 0) we can
write from Eqs. (3) and (19), for all t - 0,

Moreover, since by construction a tracking error of E
is achieved, we can rewrite Eq. (20) as

since af(X;t} and k(X;t) are continuous in X. We see
from Eq. (21 ) that the variable s, which is a measure
of the algebraic distance to the surface S(t), is the out-
put of a stable first-order filter whose dynamics de-
pend only on the desired state Xd(t) and perhaps ex-
plicitly on time and whose inputs are (to first order)
perturbations: disturbance d(t), uncertainty ~f(Xd;t)
on the dynamics, and nth derivative x» of the desired
trajectory.

Equation (21 ) shows that chattering is indeed elimi-
nated, as long as high-frequency unmodeled dynamics
are not excited. The dynamic structure of the closed-
loop system is summarized in Fig. 4: perturbations are
filtered according to Eq. (21 ) to give s, which in turn
provides tracking error x by further lowpass filtering,
according to definition (3); control u is a function of s,
X and Xd as specified by Eq. (19). Since h is the break
frequency of the filter described by Eq. (3), it must be
chosen to be &dquo;small&dquo; with respect to high-frequency
unmodeled dynamics (such as unmodeled structural
modes or neglected time delays). Assume now that
F(Xd;t), D(Xd;t), and v(t) can be a priori upper-
bounded so that k(Xd;t) can be upper-bounded, say by
kmax. The constant k.14) may be thought of as the
&dquo;break frequency&dquo; of Eq. (21); as À, it must also be
chosen to be small with respect to high-frequency
unmodeled dynamics. Thus, if A is set to be the largest
acceptable break frequency of Eq. (3), we must have

Fig. 4. Dynamic structure of
the closed-loop system.

which fixes the best attainable tracking precision e:

We will refer to Eq. (22) as the balance conditions for
the control system. Intuitively, it amounts to tuning up
the control law so that the closed-loop system will be
as close as possible to &dquo;critical damping&dquo; (if k(Xd;t)
were constant, Eq. 22 would exactly correspond to
critical damping). Of course, desired trajectory xd(t)
itself must be slow with respect to unmodeled dynamics.
The preceding development was for /3 = 1 (no gain

margin). Assume now that Eq. (13) is replaced by

where gain b(X;t) is estimated by b(X;t), with a gain
margin fl:

If, instead, /3~~ - ~(x;t)/b(X;t) = /3~~, set
/~m~ and use bnew(X;t) := I< X;1>/ p~;~ fl~_
as the new estimate of b(X;t); note that,8,,~,flmaxi and
/3 can be time-dependent. One can then show that the
balance condition is now of the form

instead of Eq. (22). Thus, having chosen h to be small
with respect to high-frequency unmodeled dynamics,
the balance condition (23) fixes the best attainable
tracking precision E, given bandwidth requirements
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and a choice of k(X;t) accounting for modeling uncer-
tainties, disturbances to be rejected, and range of tra-
jectories to be tracked. Further, as shown in Slotine
(19$3), extension of the balance condition to the class
of multivariable systems in Eq. (10) is straightforward:
for each degree of freedom j{ j = 1, ... , ~n) we ob-
tain a condition of the form

where in general kjmax depends on all Xdl, - .. , Xdm’
Example: Consider again the system (8) of Section

2.2, with (discontinuous) control law ul defined as in
Eq. (10). The corresponding gain kl(X;t) is

Assume now that

Then

Assume further that the system exhibits an unmodeled
structural mode at Vstructure = 5 Hz. A reasonable
choice for A may then be, for instance,

which then fixes tracking precision ei :

Continuous control law u 1 is then obtained by replac-
ing the term sgn S1 by sat(s¡/AE1) in expression (10).

Remarks::

1. Effect of data sampling can also be interpreted
as part of high-frequency unmodeled dy-

namics. It can be shown that the corresponding
&dquo;soft&dquo; upper bound that sampling rate Sampling
imposes on A is

where (¡process’ Vsampling) is the ratio of process-
ing delay over sampling period. For instance,
in the case of a full-period processing delay we
must choose

2. By an argument similar to that of the above
discussion, it can be shown that the specific
choice of the dynamics of Fq. (3) used to define
sliding surfaces is the best conditioned among
linear dynamics, in the sense that it guarantees
the best tracking precision E given the desired
control bandwidth and the extent of parametric
uncertainty and disturbances. Conversely, the
definition of the sliding surface can be shaped
to address more general applications than
tracking control. For instance, in the context
of compliance control (Hogan 1984), s = 0 can
be chosen to describe a desired dynamic re-
sponse to measured forces exerted by the envi-
ronment. The methodology developed in this
paper largely extends to such problems and in
particular represents an effective and system-
atic procedure to reduce sensitivity to modal
uncertainty in compliance control schemes for

, 
robot manipulators.

2.3.2. The Dynamic Balance Conditions 
.

The above trade-off between robustness and tracking
precision, quantified by balance conditions (24), can
be further improved by allowing boundary layer
widths to be time-dependent.

In Section 2.3.1, by seeking the smallest constant
such that

we obtained the static balance condition (22):
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If we now allow boundary layer width E to be time-
varying, we expect to be able to refine the balance
condition, that is, to define a boundary layer width
history E(t) such that

while preserving system bandwidth A However, to
maintain boundary attractiveness while allowing for
variations of boundary layer thickness <1> = ~.&dquo;~’~, we
must now choose the control law u such that outside of

B(1)

instead of Eq. (4). The additional term 0~ in Eq. (26)
reflects the fact that the boundary layer attractiveness
condition is more stringent during boundary layer
contraction (0 < 0) and less stringent during boundary
layer expansion ((~ > 0).

It is shown in Slotine (1984) that, to satisfy condi-
tion (26) while preserving control bandwidth A, one
can simply replace gain k(X;t) of Eq. (19) by a new
gain k(X;t), where

with static balance condition (23) replaced by the dy-
namic balance conditions

with, initially,

This particular type of sliding control, which uses
time-varying boundary layer widths to account for
time dependence of parametric uncertainty, will be re-
ferred to as suction control. It is often the case in prac-
tice that k(Xd;t) shows large variations along a desired

trajectory. In these instances, the use of time-varying
boundary layer widths, as specified by the dynamic
balance conditions, greatly improve tracking perform-
ance while introducing only modest additional com-
plexity. In robot manipulator control, for instance,
~(X~) involves centripetal terms 8; and Coriolis terms
8¡Oj (where the Oi are joint angles). The dynamic bal-
ance conditions then allow one to efficiently trade off
speed against tracking precision while preserving sys-
tem robustness to unmodeled dynamics. Also, recall-
ing that k(X;t) reflects uncertainty on system dy-
namics, k(Xd;t) may be decreased as the result of a
parameter estimation process, for instance. The dy-
namic balance conditions allow one to easily account
for such on-line improvement on modeling precision.
The suction control methodology is thus likely to pro-
vide robust &dquo;adaptive&dquo; schemes because it guarantees
stability and fixes control system bandwidth while
achieving best tracking precision given current model-
ing uncertainties.

Further, in some practical instances, desired band-
width itself may vary with time. In robot manipulator
control, for example, structural resonant frequencies
decrease as the load mass at the tip of the arm gets
larger (Paul 1981 ). The control law, initially tuned not
to excite the lowest expectable mode (that is, to handle
maximum load), can thus exploit on-line load estima-
tion by increasing control bandwidth in addition to
decreasing k(Xd;t). Further, structural resonant fre-
quencies actually vary with manipulator configuration
(although because of its complexity this effects is rarely
modeled). Similarly, it is desirable to monitor me-
chanical compliance when performing automatic as-
sembly of close-tolerance parts (Hogan 1981; Asakawa,
Akiya, and Tabata 1982). Let us call ~.o the constant
value of ..1 that we previously used, that is, the desired
control bandwidth based on a uniform lower bound
on frequencies of unmodeled dynamics. It can be
shown that Eqs. (27) - (29) remain valid for time-vary-
ing A = A(t), provided control u is now defined as

instead of Eq. (19). Time derivative A in Eq. {31} must
be chosen smooth enough not to excite high-frequency
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unmodeled dynamics. A practical way to do so is to
generate h(i) by filtering desired bandwidth value
~desired through a second-order critically damped filter
of break frequency ~,o. Of course, initial condition (30)
is now replaced by

Remarks:

1. Since E essentially varies as À-n for given para-
metric uncertainty, bandwidth variations are
strongly reflected in tracking performance.

2. In the case that ~3 = 1 (no gain margin), Eqs.
(28)-(29) reduce to

3. When the dynamics of k(Xd;t) is slow with
respect to frequency ~,o //32, one can simply use

instead of Eqs. (27)-(29).
4. The preceding development remains valid in

the case that gain margin ~3 is time-varying.
5. The s-trajectory, that is, the variation of s/qS

with time, is a compact descriptor of the closed-
loop system behavior: Control activity directly
depends on s/~, while by definition (3) tracking
error x is merely a filtered version of s. Further,
the s-trajectory represents a time-varying mea-
sure of the validity of the assumptions on model
uncertainty. Similarly, boundary layer thickness
4$ describes the evolution of dynamic model
uncertainty with time. The use of s-trajectories
for multivariable control system design and
testing is demonstrated in Slotine, Yoerger, and
Sheridan, in press).

2.4. SUMMARY

By controlling the system along time-varying sliding
surfaces in the state-space, we achieved perfect tracking

of desired trajectories for a class of multivariable non-
linear time-varying systems.
By substituting smooth transitions across a bound-

ary layer to control switching at the sliding surface, we
eliminated chattering and obtained a trade-off be-
tween tracking precision and robustness to unmodeled
dynamics.
By allowing boundary layer width to be time-vary-

ing, we refined the above trade-off to account for
time-dependence of parameter uncertainties, thus
improving tracking precision while still maintaining
robustness to high-frequency unmodeled dynamics.

Finally, we monitored the orientation of the bound-
ary layer in the state-space (defined by h) to account
for possible time dependence of desired bandwidth
(whether due to actual changes in the plant or to on-
line modeling improvements), thus further improving
tracking performance.
We now describe more specifically the application

of the methodology to the feedback control of robot
manipulators. The scheme is compared to standard al-
gorithms such as the computed torque method and is
shown to significantly simplify controller design, thus
permitting us to retain and exploit engineering insight
all along the design and implementation process.

3. The Robust Control of Robot Manipulators

3.1. ROBUSTNESS ISSUES IN MANIPULATOR CONTROL

There has recently been a considerable interest in
developing efficient control algorithms for robot ma-
nipulators (Brady et al. 1982). The complexity of the
.control problem for manipulators arises mainly from
that of manipulator dynamics itself: The dynamics of
articulated mechanisms in general, and of robot ma-
nipulators in particular, involves strong coupling ef-
fects between joints as well as centripetal and Coriolis
forces (particularly significant at high speeds). The
equations of motion for an n-link manipulator may be
expressed as follows (Paul 1981 ):

where 0 is the n-vector of joint angles (or more gener-
ally of joint displacements), T is the vector of applied
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torques (or generalized forces), R(8) is the inertia ma-
trix (symmetric, positive definite) that reflects cou-
pling effects between joints, and h = h(O, 8; t) contains
centripetal and Coriolis forces as well as friction and
gravitational terms. For an articulated manipulator,
the dynamics is reasonably manageable with pencil
and paper only up to three degrees of freedom (Horn,
Hirokawa, and Varizani 1977). Thus, much effort has
been devoted to developing efficient procedures for
real-time computation of the dynamics. A substantial
improvement in computational efficiency was ob-
tained by using recursive algorithms (Hollerbach 1980;
Luh, Walker, and Paul 1980a; Silver 1982; Renaud
1983) to generate the torques required to support a de-
sired motion (inverse dynamics), achieving linear vari-
ation of the computation complexity with the number
of links.
While the inverse dynamics computes the torques

theoretically needed to compensate for nonlinearities
and to follow a specific trajectory, assuming an exact
model, explicit values of inertia matrix R(9) and non-
linear terms h are required to analyze how joint accel-
erations (hence subsequent motion) are affected not
only by control torques and known dynamics but also
by disturbances (such as Coulomb and viscous fric-
tion) and modeling errors: parametric uncertainties
such as inaccuracies on inertias, geometry, loads; and
high-frequency unmodeled dynamics, such as unmo-
deled structural modes or neglected time delays. Cur-
rently, the most efficient algorithm to compute R(O)
and h (in fact, to estimate these terms, precisely be-
cause of parametric uncertainties) is due to Walker and
Orin (1982) and uses the inverse recursive dynamics
formulation of Luh, Walker, and Paul { 1980a) as an
important component. The algorithm could be further
simplified by exploiting geometric features of &dquo;well-
structured&dquo; manipulators, using the results of Holler-
bach and Sahar (1983), and even further by customiz-
ing the computations for a specific robot, along the
lines of Kanade, Khosla, and Tanaka ( 1984).
Now there are several reasons for insisting on ex-

plicit robustness guarantees for the robot control sys-
tem. The first is obvious: Control instabilities are un-

pleasant, especially at high speeds (an elegant stability
analysis of computed-torque-like schemes can be
found in Gilbert and Ha 1983). Conversely, guaran-
teed robustness properties allow one to design simple

controllers. Consider, for instance, a six-degree-of-free-
dom manipulator composed of a three-degree-of-free-
dom arm and a three-degree-of-freedom hand. Kine-
matic decoupling between hand and arm can be
achieved by having the three rotational axe of the
wrist intersect at a point (spherical wrist). Physically it
seems natural to seek a similar decoupling at the dy-
namic level, in other words to be able to consider
motions of arm and hand as &dquo;disturbances&dquo; to one
another (each of these disturbances being possibly
further decomposed into an average, quickly estimated
term to be directly compensated for and a genuine
perturbation term to be accounted for by the controller
robustness). Further, desired bandwidth is likely to be
much larger for the hand than for the arm itself (Salis-
bury 1984). Robust controller design does allow such
natural reduction of the original problem into two
lower-order control problems: In the case of a six-de-
gree-of-freedom manipulator, both of these problems
are amenable to closed-form, pencil-and-paper treat-
ment, thus allowing one to maintain clear physical
insight and exploit engineering judgment all along the
design and implementation process.2 Finally, by easily
accounting for large model imprecision, robust con-
trollers simplify higher-level programming.
The relevance of suction controllers to robot manip-

ulator control is precisely that they feature such ex-
plicit, built-in robustness properties. Depending on the
structure of model uncertainty and on the type of user
space considered (configuration space, task-oriented or
hybrid (force/position) coordinates, and so on), the
suction control ideas of Section 2 may be applied in
various ways. The following scheme assumes for sim-
plicity that desired trajectories are specified in joint
space. Also, as discussed above, if N is the total num-
ber of degrees of freedom of the manipulator and NH
is the number of degrees of freedom of the wrist and
hand, the first N - NH and the last NH degrees of free-
dom of the arm can be treated separately (for a wrist-
partitioned robot). Thus, in the sequel, system size n
refers to either N - N~ or NH.

2. The importance of model tractability has been stressed by several
authors in a different context; see, for example, Bejczy and Lee
(1983) and Luh and Gu (1984).
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3.2. SUCTION CONTROLLER STRUCTURE

Let ~ be the desired control bandwidth, chosen small
enough not to excite unmodeled structural modes or
interefere with neglected time delays (see the example
of Section 2.3.1 ), and let j

be the available model of the manipulator described
by Eq. (33). Discrepancies between Eqs. (33) and (34)
may arise from several factors: imprecisions on the
manipulator geometry or inertias, uncertainties on the
friction terms or the loads, on-line computation limi-
tations, or purposeful model simplification, as dis-
cussed earlier. The suction controller for the manipu-
lator of Eq. (33) takes the form

where the components ui (i = 1, ... , n) of the vector
u are defined as

_, 
I

In Eq. (36), 0~; is the acceleration of the desired trajec-
tory at joint i, 5i is the tracking error at joint i, and
ki(O, 0; t) and (Di are defined according to the dynamic
balance conditions (27)-(30) of Section 2 (the scaling
factor G~(6) of Eq. (36) and the bounds on model un-
certainty used in the computation of k;(0, 8; t) will be
discussed next). The surfaces s; in Eq. (36) are set to be

so as to use integral control and reduce the effects of
friction. It is important to remark that the major dif-
ference with the computed-torque method is the pres-
ence of the robustifying terms in Gi(O) k;(0, 6; t) j
sat(si/(Di) in Eq. (36), which allow one to maintain
stability and optimize performance in the face of
model uncertainty. I

3.3. PRACTICAL EVALUATION OF PARAMETRIC
DISTURBANCES

There remains only to evaluate explicit bounds on
parametric uncertainty so as to generate a set of con-
trol discontinuity gains k;(0, 6; t), as in Section 2;
these gains will then be fed into the dynamic balance
conditions (27)-(30) to compute modified gains k;(6,
0; t) and boundary layer thicknesses (Di of Eq. (36). A
simplified, easily implementable approach to such
evaluation is as follows: Define two sets of n-vectors,

(LJ ; j = 1, ... , n) and (AR~ ; j = 1, ... , n} by

The vectors Lj and ARj are functions of configuration
0 only. Substituting control law (35) into robot dy-
namics (33), we can write the dynamics of the closed-
loop system as

where I is the n X n identity matrix and Ah = h - h
reflects the effects of unmodeled gravitational loads,
friction, or model simplification. Define then a set of
scalars A, = ~;(B) such that for all e,

where the components of ARt and Lt are the absolute
values of the components of OR; and LI . We assume that

for all configurations 8. This condition will later be
relaxed. The function of multiplier Gi = G~(9) in Eq.
(36) is then simply to center the estimated geometric
mean gain, according to Section 2.3.1:

Corresponding gain margins = Pie 8) are
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Gains k~{e, 0; t) are computed so as to meet the sim-
plified conditions

with

where the r¡¡ in Eq. (43) are the positive constants used
in Eq. (4) of each sliding condition and, by definition,
the components of Ah+ in Eq. (44) are the absolute
values of the components of Ah. Conditions (39) and
(43) are fairly straightforward to satisfy for n = 3
(hence in particular for a six-degree-of-freedom wrist-
partitioned robot) as closed-form dynamics remain
manageable analytically; in particular, an off-line
worst-case analysis may be sufficient in practice (an
extreme example of such analysis can be found in
Slotine and Sastry 1983). In the general case, an ade-
quate first-order approximation is to evaluate bounds
(39) and (43) by using estimates L± (obtained by in-
verting R) in place of the actual L; . Similarly, approx-
imate upper bounds on the components of AR~ or
Ah+ may be easily expressed in terms of R; or h+ (with
obvious notations); for instance, if the only source of
uncertainty on estimated inertia matrix R is that ma-
nipulator inertias are known to within a 10 percent
precision, one may use in practice the approximation
ARt -- 10% Rt, where the inequality is understood
componentwise.

Remarks:

1. Complete expressions of the ~(0, 6; t) are de-
rived in the Appendix.

2. In the case that A is time-varying (as discussed
in Section 2.3.2), the term

should be added to control law ui in Eq. (36)
while augmenting gain ~(~, 0; t) ofEq. (43)
accordingly by the quantity/~M~(/?, &horbar; l/Pi)/
(~+im

3. Assumption (40) can be relaxed to

This condition is quite mild: It simply means
that ui contributes to Oi with a predictable
sign-actually, inequality (45) can always be
satisfied by letting R be a (possibly time-vary-
ing) positive definite diagonal matrix. In the
general case, with

with conditions (43) and (44) replaced by

i

The degree of simplification in the system model
may be varied according to the on-line computing
power available: The balance conditions clearly quan-
tify the trade-off between model precision and track-
ing accuracy. Further, the s-trajectories provide a mea-
sure of the validity of the assumptions on model
uncertainty and of the adequacy of bound simplifica-
tions.

4. Concluding Remarks

Conceptually, the preceding development can be illus-
trated by Fig. 5. Consider a fast manipulator motion,
say a 1 /2-s stop-to-stop trajectory across the work-
space, including a full flipping of the wrist, and plot
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Fig. 5. Effect of parametric
uncertainty on controller
performance.

the average tracking precision against parametric un-
certainty (say average imprecision on manipulator
inertias). Using the computed-torque method based
on a full six-degree-of-freedom model, we obtain curve
l: Tracking is perfect in the absence of model uncer-
tainty and then quickly degrades as uncertainty in-
creases, with the system eventually becoming unstable.
Using a robust suction controller based on a simplified
model (two &dquo;decoupled&dquo; three-degree-of-freedom sys-
tems), the result is curve II. Because of model simplifi-
cation, performance is not perfect in the absence of
parametric uncertainty, as when using the full six-de-
gree-of-freedom model; but the robust controller
quickly outperforms the computed-torque scheme as
uncertainty increases. The crossing point a of Fig. 5
typically corresponds to a very low level of parametric
uncertainty; further, a - 0 as allowable bandwidth A
increases, as could be expected from the dynamic
balance conditions of Section 2. For direct-drive arms,
for instance, the crossing point a of Fig. 5 corresponds
to a few percent imprecision on manipulator inertias-
a value fairly smaller than typical uncertainty. This
effect would likely be further enhanced for geared
manipulators involving significant friction terms. The
suction control methodology thus combines in prac-
tice improved performance with simpler and more
tractable controller designs.

Appendix: Uncertainty on the Manipulator
Mass Properties

Although simplified conditions (43) or (50) of Section
3.3 were found to be generally adequate in practice,
exact expressions for the gains ki( 8, 8; t) are presented
here for completeness. The derivation is of interest in
itself since it provides insight into the effect of uncer-
tainty about the manipulator mass properties. The
development is presented directly for the general case
of Eq. (46).

Let us define a set of scalars ~~~ = Ol~ (B) such that,
for all 0,

Given the expression of the closed-loop dynamics,

and definitions (47), (48), and (49), gains k1(e, 6; t)
must verify

where

From the expression (49) of the uj and the definition
(27) of the k;(0, 8; t), a sufficient condition for (A2) to
be satisfied is that

where k§ (0, 0; t) is defined so that
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Now since all terms in sat(~/0~) vanish for 0 - 0~,
e = Od, expressions (A3) and (A4) allow us to compute
k¡(8d, 8d; t) = k~ (Bd, 8d; t) directly. Further, from the
dynamic balance conditions (28)-(30), boundary
layer thicknesses 4Sj depend only on the g(0~, Od; t),
so that in turn the knowledge of the k~{8d, 8d; t) allows
expressions (A3) and (A4) to completely define the
ki(8, 0; t): The vector k(O, 9; t) of components ki(8, 9;
t) is the solution of the linear system

where k’(0, 8; t) is the vector of components ~(0, 8;
t), and the matrix A(8, 8; t) is defined as

Further, all components k;(0, 6; t) of the solution k(O,
0; t) of Eq. (A5) must be strictly positive for this solu-
tion to be admissible: Given the Metzler structure

(Siljak 1978) of the matrix -A, this is the case as long
as all real eigenvalues of A remain positive. Equiva-
lently, defining Ao = Ao(~, 8; t) as

where the second equality stems from definitions (47)
and (48) of the Gj and ~3~, then k(e, e; t) of Eq. (A5) is
admissible as long as all real eigenvalues of Ao remain

positive. Note that A = Ao = I in the absence of un-
certainty on the inertia matrix.
Remarks:

1. A sufficient condition for k(O, 6; t) to be ad-
missible is that all real eigenvalues of the matrix

be positive.
2. Regardless of the level of parametric uncer-

tainty, it is always possible to generate admissi-
ble k(O, ~; t) by selecting large enough k’(0, 0;
t). This can be achieved by multiplying the
right-hand side of inequality (A4) by an appro-
priately large scaling factor p, such as a constant
upper bound on the Frobenius-Perron roof3 pl
of the matrix

We assume that pi > 1, or else gain vector k( 8,
B; t) is already guaranteed to be admissible.
This scaling has the effect of artificially in-
creasing boundary layer thicknesses 4Sj by the
same factor p without actually modifying the
control action inside the (original and still
effective) boundary layers B° since gains k~(9,
0; t) also scale up by the same factor. The
values of the 5j are thus left unchanged (as is
the tracking performance, which allows us to
use constant p’s), so that the off-diagonal terms
of the matrix A are divided by the scaling fac-

3. See, for example, Siljak (1978). The Frobenius-Perron roof &rho;1 of
a matrix A1 with nonnegative elements is the largest (automatically
nonnegative) real eigenvalue of A1. The equation (I &mdash; &rho;-1A1)y = y’
admits positive solutions y for positive y’ if &rho; > &rho;1.
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tor, which in turn guarantees that the solution
k(8, 6; t) of Eq. (A5) is admissible. Further, it
is desirable that (A5) be guaranteed to have
admissible solutions regardless of the values of
the s~. This can be achieved by substituting
pg lsat( pis~ /4S,) to sat(s~/~~) in the expression
of A, with pi % pj % p, which further guarantees
that the B° are attractive for all trajectories
starting inside boundary layers of thicknesses
( p/pi)4S) (where 4S) is the thickness of BJ).
Note that a convenient upper bound of p, is

3. The solution k(O, 0; t) of Eq. (A5) is bounded
for bounded 0~, provided all real eigenvalues of
Ao (or A) are uniformly bounded away from
zero (that is, remain larger than some strictly
positive constant). Indeeda A-1(0, 6; t) is then
bounded for bounded 6, 8, and, further, k(O, 6;
t) is admissible. This in turn implies that track-
ing error is indeed limited by boundary layer
thicknesses (Dj, which depend only on the
k~;{ed, 8d; t), so that 0, 8 and thus both A-1{B,
0; t) and k’(0, 0; t) are bounded.

4. The condition that k(9, 8; t) of Eq. (A5) be
admissible can be given a slightly different in-
terpretation (based again on the Metzler struc-
ture of - Ao). It is satisfied if

for all Xl such that 0 = xl = ~ Isat(s)<I>j)/’ Let us
now assume that

Condition (A8) is automatically satisfied for any
physically motivated choice of R, since then

R = RT > 0. Now from R = RT > 0, condition
(A8) implies that

which can be written ,

The comparison of expressions (A7) and (A 10)
shows that it is desirable that the ~3~ of Eq.
(46) and the Aii of Eq. (Al) be compatible, that
is, be generated in a way that preserves the nat-
ural structure of Eq. (A 10).
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