Lecture 11: More on Undecidability and Reductions
Thursday (3/23)

Midterm: 2:35-4:00pm,
Walker Memorial (50-340)

All pset and practice midterm solutions are on piazza!
Thursday (3/23)

Midterm: 2:35-4:00pm, Walker Memorial (50-340)

All pset and practice midterm solutions are on piazza!

FAQ: What material is on the midterm?
Everything up to this lecture (Lectures 1-11)
But we’ll focus more on earlier material

FAQ: Can I bring notes?
Yes, one single-sided sheet of notes, letter paper
Theorem: L is decidable iff both L and \overline{L} are recognizable.

$L \in \Sigma^*$

$w \in L \ ?$

- **yes**: accept
- **no**: reject or loop

L is decidable (recursive)

L is recognizable (recursively enumerable)
The Acceptance Problem for TMs

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Given: code of a Turing machine M and an input w for that Turing machine,
Decide: Does M accept w?

\(A_{TM} \) decidable \(\Rightarrow \) There is an algorithm ALG which, given any code and input,
ALG determines in finite time if the code will stop and output 1 when executed

Theorem [Turing]:
\(A_{TM} \) is recognizable, but NOT decidable!
Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable!
Reducing One Problem to Another

$f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w.

A language A is mapping reducible to language B, written as $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that for every $w \in \Sigma^*$,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B.
Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function such that $w \in A \iff f(w) \in B$

Say: “A is mapping reducible to B”
Write: $A \leq_m B$
Another Example

\[
E_{Q_{DFA}} = \{ (D_1, D_2) \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2) \}
\]
\[
E_{Q_{REGEX}} = \{ (R_1, R_2) \mid R_1 \text{ and } R_2 \text{ are regexps, } L(R_1) = L(R_2) \}
\]

Theorem: \(E_{Q_{REGEX}} \leq_m E_{Q_{DFA}} \)

Proof: Mapping reduction \(f \) from \(E_{Q_{REGEX}} \) to \(E_{Q_{DFA}} \):

\(f \): On input \(z \), decode \(z \) into a pair \((R_1, R_2) \),

- Convert \(R_1, R_2 \) into NFAs \(N_1, N_2 \),
- Convert NFAs \(N_1, N_2 \) into DFAs \(D_1, D_2 \). Output \((D_1, D_2) \)

Then, \((R_1, R_2) \in E_{Q_{REGEX}} \iff L(D_1) = L(R_1) = L(R_2) = L(D_2) \)

\[\iff L(D_1) = L(D_2) \iff (D_1, D_2) \in E_{Q_{DFA}} \]

So \(f \) is a mapping reduction from \(E_{Q_{REGEX}} \) to \(E_{Q_{DFA}} \)
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
A mapping reduction from A_{TM} to $HALT_{TM}$

Theorem: $A_{TM} \leq_m HALT_{TM}$

$f(z) :=$ Decode z into a pair (M, w)

Construct a TM M' with the specification:

“$M'(w) =$ Simulate M on w.

if the sim accepts then accept

else loop forever”

Output (M', w)

We have $z \in A_{TM} \iff (M', w) \in HALT_{TM}$

Corollary: $HALT_{TM}$ is undecidable
Theorem: $A_{TM} \leq_m \text{HALT}_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$

Corollary: $\neg \text{HALT}_{TM}$ is unrecognizable!

Proof: If $\neg \text{HALT}_{TM}$ were recognizable, then $\neg A_{TM}$ would also be recognizable, because $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$. But it’s not!

Question: $A_{TM} \leq_m \neg A_{TM}$?
Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$

Proof: Define the computable function f:

$$f(z) := \text{Decode } z \text{ into a pair } (M, w)$$
Construct a TM M' with the specification:
“$M'(w) = \text{Simulate } M \text{ on } w.$
If the simulation halts, then accept”
Output (M', w)

Claim: $(M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM}$
Corollary: $\text{HALT}_{\text{TM}} \equiv_{\text{m}} \text{A}_{\text{TM}}$

Yo, T.M.! I can give you the magical power to either solve the halting problem, or the acceptance problem. Which do you want?

Wow, hm, so hard to choose...

I can’t decide!
The Emptiness Problem for TMs

\(\text{EMPTY}_{\text{TM}} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \} \)

Given a program, does it reject or loop on all inputs?

Theorem: \(\text{EMPTY}_{\text{TM}} \) is not recognizable

Proof: Show that \(\neg A_{\text{TM}} \leq_m \text{EMPTY}_{\text{TM}} \)

\[f(z) := \text{Decode } z \text{ into } (M, w). \text{ Output code of the TM:} \]
\["M'(x) := \text{if } (x = w) \text{ then output answer of } M(w), \]
\[\text{else reject}" \]

Observe: EITHER \(L(M') = \emptyset \) OR \(L(M') = \{w\} \)

\(z=(M,w) \notin A_{\text{TM}} \iff M \text{ doesn’t accept } w \)
\[\iff L(M') = \emptyset \]
\[\iff M' \in \text{EMPTY}_{\text{TM}} \iff f(z) \in \text{EMPTY}_{\text{TM}} \]
The Emptiness Problem for Other Models

\[\text{EMPTY}_{\text{DFA}} = \{ \text{M} \mid \text{M is a DFA such that } L(M) = \emptyset \} \]

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}} \) is decidable

Why?

\[\text{EMPTY}_{\text{NFA}} = \{ \text{M} \mid \text{M is a NFA such that } L(M) = \emptyset \} \]

\[\text{EMPTY}_{\text{REX}} = \{ \text{R} \mid \text{M is a regexp such that } L(M) = \emptyset \} \]
The Equivalence Problem

\[EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\} \]

Do two programs compute the same function?

Theorem: \(EQ_{TM} \) is *not recognizable*

Proof: Reduce EMPTY\(_{TM}\) to \(EQ_{TM} \)

Let \(M_\emptyset \) be a TM that always rejects immediately, so \(L(M_\emptyset) = \emptyset \)

Define \(f(M) := (M, M_\emptyset) \)

Then \(M \in \) EMPTY\(_{TM}\) \iff \(L(M) = L(M_\emptyset) \)
\iff \((M, M_\emptyset) \in EQ_{TM} \)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.
Two Problems

Problem 1 Undecidable
{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Problem 2 Decidable
{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}
Problem 1 Undecidable

\[L' = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input } \} \]

Proof: Reduce \(A_{\text{TM}} \) to \(L' \)

On input \((M, w)\),
make a TM \(N \) that shifts \(w \) over one cell,
puts a special symbol \# on the leftmost cell,
then simulates \(M(w) \) on its tape.
If \(M \)'s head moves to the cell with \# but has not yet accepted, \(N \) moves the head back to the right.
If \(M \) accepts, \(N \) tries to move its head past the #.

\((M, w)\) is in \(A_{\text{TM}} \) if and only if \((N, w)\) is in \(L' \)
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M, w)\), run \(M\) on \(w\) for
\(|Q| + |w| + 1\) steps,
where \(|Q| = \text{number of states of } M\)

Accept If M’s head moved left at all
Reject Otherwise

(Why does this work?)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.

How can we more easily tell when some “program analysis” problem is undecidable?
Problem 3

REVERSE = \{ M \mid M \text{ is a TM with the property: for all } w, M(w) \text{ accepts } \iff M(w^R) \text{ accepts} \}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem: *Program Analysis is Hard*

Let $P : \{\text{Turing Machines}\} \rightarrow \{0,1\}$. (Think of 0=false, 1=true) Suppose P satisfies:

1. (Nontrivial) There are TMs M_{YES} and M_{NO} where $P(M_{\text{YES}}) = 1$ and $P(M_{\text{NO}}) = 0$
2. (Semantic) For all TMs M_1 and M_2, if $L(M_1) = L(M_2)$ then $P(M_1) = P(M_2)$

Then, $L = \{M \mid P(M) = 1\}$ is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

Semantic Properties \(P(M) \)

- \(M \) accepts 0
- \(L(M) = \{0\} \)
- \(L(M) \) is empty
- \(L(M) = \Sigma^* \)
- \(M \) accepts 6045 strings
- for all \(w \), \(M(w) \) accepts \(\iff M(w^R) \) accepts

\[L = \{ M \mid P(M) = 1 \} \]

is undecidable

Not Semantic!

- \(M \) halts and rejects 0
- \(M \) has at least 6045 states
- \(M \) halts on all inputs
- \(M \)'s head tries to move off the left end of the tape on some input

P is not semantic:

There are \(M_1 \) and \(M_2 \) such that \(L(M_1) = L(M_2) \) and \(P(M_1) \neq P(M_2) \)
Rice’s Theorem: If P is nontrivial and semantic, then \(L = \{ M \mid P(M) = 1 \} \) is undecidable.

Proof: Either reduce \(A_{TM} \) or \(\neg A_{TM} \) to the language \(L \)

Define \(M_\emptyset \) to be a TM such that \(L(M_\emptyset) = \emptyset \)

Case 1: Suppose \(P(M_\emptyset) = 0 \)

Since \(P \) is nontrivial, there’s \(M_{YES} \) such that \(P(M_{YES}) = 1 \)

Reduction from \(A_{TM} \) to \(L \)
On input \((M, w)\), output:

\[M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{YES} \text{ accepts } x)) \text{ then ACCEPT, else REJECT} \]

If \(M \) accepts \(w \), then \(L(M_w) = L(M_{YES}) \)

Since \(P(M_{YES}) = 1 \), we have \(P(M_w) = 1 \) and \(M_w \in L \)

If \(M \) does not accept \(w \), then \(L(M_w) = L(M_\emptyset) = \emptyset \)

Since \(P(M_\emptyset) = 0 \), we have \(P(M_w) = 0 \) and \(M_w \notin L \)
Rice’s Theorem: If P is nontrivial and semantic, then \(L = \{M \mid P(M) = 1\} \) is undecidable.

Proof: Either reduce \(A_{TM} \) or \(\neg A_{TM} \) to the language \(L \)
Define \(M_\emptyset \) to be a TM such that \(L(M_\emptyset) = \emptyset \)

Case 2: Suppose \(P(M_\emptyset) = 1 \)

Since P is nontrivial, there’s \(M_{\text{NO}} \) such that \(P(M_{\text{NO}}) = 0 \)

Reduction from \(\neg A_{TM} \) to \(L \) On input \((M,w)\), output:

“\(M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{\text{NO}} \text{ accepts } x)) \text{ then ACCEPT, else REJECT} \)”

If M does not accept w, then \(L(M_w) = L(M_\emptyset) = \emptyset \)
Since \(P(M_\emptyset) = 1 \), we have \(P(M_w) = 1 \) and \(M_w \in L \)

If M accepts w, then \(L(M_w) = L(M_{\text{NO}}) \)
Since \(P(M_{\text{NO}}) = 0 \), we have \(M_w \notin L \)
The Regularity Problem for Turing Machines

$\text{REGULAR}_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular}\}$

Given a program, is it equivalent to some DFA?

Theorem: REGULAR_{TM} is not recognizable

Proof: Use Rice’s Theorem!

$P(M) := \text{“}L(M) \text{ is regular”}$ is nontrivial:

- there’s an M_\emptyset which never halts: $P(M_\emptyset) = 1$
- there’s an M' deciding $\{0^n1^n \mid n \geq 0\}$: $P(M') = 0$

P is also semantic:

If $L(M) = L(M')$ then $L(M)$ is regular iff $L(M')$ is regular, so $P(M) = 1$ iff $P(M') = 1$, so $P(M) = P(M')$

By Rice’s Thm (case 2), we have

$\neg \text{A}_{TM} \leq_m \text{REGULAR}_{TM}$
Next Episode:

Your Midterm... Good Luck!