Lecture 11: More on Undecidability and Reductions
Thursday (3/23)

Midterm: 2:35-4:00pm,
Walker Memorial (50-340)

All pset and practice midterm solutions are on piazza!
Thursday (3/23)

Midterm: 2:35-4:00pm,
Walker Memorial (50-340)

All pset and practice midterm solutions are on piazza!

FAQ: What material is on the midterm?
Everything up to this lecture (Lectures 1-11)
But we’ll focus more on earlier material

FAQ: Can I bring notes?
Yes, one single-sided sheet of notes, letter paper
Theorem: L is decidable iff both L and $\neg L$ are recognizable.
The Acceptance Problem for TMs

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Given: code of a Turing machine \(M \) and an input \(w \) for that Turing machine,

Decide: Does \(M \) accept \(w \)?

\(A_{TM} \) decidable \(\Rightarrow \) There is an algorithm ALG which, given any code and input, ALG determines in finite time if the code will stop and output 1 when executed.

Theorem [Turing]:

\(A_{TM} \) is recognizable, but NOT decidable!
Theorem: \(A_{TM} \) is recognizable but NOT decidable

Corollary: \(\neg A_{TM} \) is not recognizable!
Reducing One Problem to Another

$f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w.

A language A is **mapping reducible** to language B, written as $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that for every $w \in \Sigma^*$,

\[w \in A \iff f(w) \in B \]

f is called a mapping reduction (or many-one reduction) from A to B.

Let $f : \Sigma^* \rightarrow \Sigma^*$ be a **computable function** such that $w \in A \iff f(w) \in B$

Say: **“A is mapping reducible to B”**
Write: $A \leq_m B$
Another Example

\[EQ_{DFA} = \{ (D_1,D_2) \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1)=L(D_2) \} \]

\[EQ_{REGEX} = \{ (R_1,R_2) \mid R_1 \text{ and } R_2 \text{ are regexps, } L(R_1)=L(R_2) \} \]

Theorem: \(EQ_{REGEX} \leq_m EQ_{DFA} \)

Proof: Mapping reduction \(f \) from \(EQ_{REGEX} \) to \(EQ_{DFA} \):

\(f: \) On input \(z \), decode \(z \) into a pair \((R_1,R_2) \),
 Convert \(R_1,R_2 \) into NFAs \(N_1,N_2 \),
 Convert NFAs \(N_1,N_2 \) into DFAs \(D_1,D_2 \). Output \((D_1,D_2) \)

Then, \((R_1,R_2) \in EQ_{REGEX} \iff L(D_1)=L(R_1)=L(R_2)=L(D_2) \)
\(\iff L(D_1)=L(D_2) \iff (D_1,D_2) \in EQ_{DFA} \)

So \(f \) is a mapping reduction from \(EQ_{REGEX} \) to \(EQ_{DFA} \)
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
A mapping reduction from A_{TM} to $HALT_{TM}$

Theorem: $A_{TM} \leq_m HALT_{TM}$

Let $f(z) :=$ Decode z into a pair (M, w)

Construct a TM M' with the specification:

“$M'(w) =$ Simulate M on w.

if the sim accepts then accept
else loop forever”

Output (M', w)

We have $z \in A_{TM} \iff (M', w) \in HALT_{TM}$

Corollary: $HALT_{TM}$ is undecidable
Theorem: \(A_{TM} \leq_m HALT_{TM} \)

Corollary: \(\neg A_{TM} \leq_m \neg HALT_{TM} \)

Corollary: \(\neg HALT_{TM} \) is unrecognizable!

Proof: If \(\neg HALT_{TM} \) were recognizable, then \(\neg A_{TM} \) would also be recognizable, because \(\neg A_{TM} \leq_m \neg HALT_{TM} \). But it’s not!

Question: \(A_{TM} \leq_m \neg A_{TM} \)?
Theorem: \(\text{HALT}_{TM} \leq_m A_{TM} \)

Proof: Define the computable function \(f \):

\[
f(z) := \text{Decode } z \text{ into a pair } (M, w)
\]

Construct a TM \(M' \) with the specification:

“\(M'(w) = \text{Simulate } M \text{ on } w. \) If the simulation halts, then accept”

Output \((M', w)\)

Claim: \((M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM} \)
Corollary: $\text{HALT}_{TM} \equiv_m A_{TM}$

Yo, T.M.! I can give you the magical power to either solve the halting problem, or the acceptance problem. Which do you want?

Wow, hm, so hard to choose...

I can’t decide!
The Emptiness Problem for TMs

\[\text{EMPTY}_{\text{TM}} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \} \]

Given a program, does it reject or loop on all inputs?

Theorem: \(\text{EMPTY}_{\text{TM}} \) is not recognizable

Proof: Show that \(\neg A_{\text{TM}} \leq_m \text{EMPTY}_{\text{TM}} \)

\[f(z) := \text{Decode } z \text{ into } (M, w). \text{ Output code of the TM:} \]

\["M'(x) := \text{if } (x = w) \text{ then output answer of } M(w), \]

\[\text{else reject}" \]

Observe: EITHER \(L(M') = \emptyset \) OR \(L(M') = \{w\} \)

\[z=(M,w) \notin A_{\text{TM}} \iff M \text{ doesn’t accept } w \]

\[\iff L(M') = \emptyset \]

\[\iff M' \in \text{EMPTY}_{\text{TM}} \iff f(z) \in \text{EMPTY}_{\text{TM}} \]
The Emptiness Problem for Other Models

\[
\text{EMPTY}_{\text{DFA}} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \}
\]

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}}\) is decidable

Why?

\[
\text{EMPTY}_{\text{NFA}} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \}
\]

\[
\text{EMPTY}_{\text{REX}} = \{ R \mid M \text{ is a regexp such that } L(M) = \emptyset \}
\]
The Equivalence Problem

\[EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\} \]

Do two programs compute the same function?

Theorem: \(EQ_{TM} \) is not recognizable

Proof: Reduce \(EMPTY_{TM} \) to \(EQ_{TM} \)

Let \(M_\varnothing \) be a TM that always rejects immediately, so \(L(M_\varnothing) = \varnothing \)

Define \(f(M) := (M, M_\varnothing) \)

Then \(M \in EMPTY_{TM} \iff L(M) = L(M_\varnothing) \iff (M, M_\varnothing) \in EQ_{TM} \)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.
Two Problems

Problem 1

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input} \}

Problem 2

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}
Problem 1

$L' = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input } \}$

Proof: Reduce A_{TM} to L'

On input (M,w),
make a TM N that shifts w over one cell,
puts a special symbol # on the leftmost cell,
then simulates $M(w)$ on its tape.
If M’s head moves to the cell with # but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the #.

(M,w) is in A_{TM} if and only if (N,w) is in L'
Problem 2

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M,w)\), run \(M\) on \(w\) for \(|Q| + |w| + 1\) steps, where \(|Q| = \text{number of states of } M\)

Accept
If M’s head moved left at all
Reject
Otherwise

(Why does this work?)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.

How can we more easily tell when some “program analysis” problem is undecidable?
Problem 3

\[
\text{REVERSE} = \{ M \mid \text{M is a TM with the property: for all } w, \text{ M(w) accepts } \Leftrightarrow \text{ M(w}^R) \text{ accepts}\}.
\]

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem: Program Analysis is Hard

Let $P : \{\text{Turing Machines}\} \rightarrow \{0,1\}$. (Think of $0=\text{false}, 1=\text{true}$) Suppose P satisfies:

1. (Nontrivial) There are TMs M_{YES} and M_{NO} where $P(M_{\text{YES}}) = 1$ and $P(M_{\text{NO}}) = 0$

2. (Semantic) For all TMs M_1 and M_2, if $L(M_1) = L(M_2)$ then $P(M_1) = P(M_2)$

Then, $L = \{M \mid P(M) = 1\}$ is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

Semantic Properties $P(M)$

- M accepts 0
- $L(M) = \{0\}$
- $L(M)$ is empty
- $L(M) = \Sigma^*$
- M accepts 6045 strings
- for all w, $M(w)$ accepts if and only if $M(w^R)$ accepts

$L = \{M \mid P(M) = 1\}$ is undecidable

Not Semantic!

- M halts and rejects 0
- M has at least 6045 states
- M halts on all inputs
- M's head tries to move off the left end of the tape on some input

P is not semantic:
There are M_1 and M_2 such that $L(M_1) = L(M_2)$ and $P(M_1) \neq P(M_2)$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L

Define M_\emptyset to be a TM such that $L(M_\emptyset) = \emptyset$

Case 1: Suppose $P(M_\emptyset) = 0$

Since P is nontrivial, there’s M_{YES} such that $P(M_{YES}) = 1$

Reduction from A_{TM} to L On input (M,w), output:

“$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{YES} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}”$

If M accepts w, then $L(M_w) = L(M_{YES})$

Since $P(M_{YES}) = 1$, we have $P(M_w) = 1$ and $M_w \in L$

If M does not accept w, then $L(M_w) = L(M_\emptyset) = \emptyset$

Since $P(M_\emptyset) = 0$, we have $P(M_w) = 0$ and $M_w \notin L$
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L
Define M_\emptyset to be a TM such that $L(M_\emptyset) = \emptyset$

Case 2: Suppose $P(M_\emptyset) = 1$
Since P is nontrivial, there’s M_{NO} such that $P(M_{\text{NO}}) = 0$

Reduction from $\neg A_{TM}$ to L
On input (M,w), output:

"$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{\text{NO}} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}""

If M does not accept w, then $L(M_w) = L(M_\emptyset) = \emptyset$
Since $P(M_\emptyset) = 1$, we have $P(M_w) = 1$ and $M_w \in L$

If M accepts w, then $L(M_w) = L(M_{\text{NO}})$
Since $P(M_{\text{NO}}) = 0$, we have $M_w \not\in L$
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is *not recognizable*

Proof: Use Rice’s Theorem!

- \(P(M) := \text{“L(M) is regular”} \) is nontrivial:
 - there’s an \(M_\emptyset \) which never halts: \(P(M_\emptyset) = 1 \)
 - there’s an \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(P(M') = 0 \)

\(P \) is also semantic:

If \(L(M) = L(M') \) then \(L(M) \) is regular iff \(L(M') \) is regular, so \(P(M) = 1 \) iff \(P(M') = 1 \), so \(P(M) = P(M') \)

By Rice’s Thm (case 2), we have

\[\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \]
Next Episode:

Your Midterm... Good Luck!