Lecture 14: Foundations of Math and Kolmogorov Complexity
Computability and the Foundations of Mathematics
A *formal system* describes a formal language for
- writing (finite) mathematical statements,
- has a definition of a proof of a statement

Example: Every TM M defines some formal system F
- $\{\text{Mathematical statements in } F\} = \Sigma^*$

 String w represents the statement “M halts on w”
- A *proof* that “M halts on w” can be defined to be the *computation history* of M on w: the sequence of configurations $C_0 C_1 \cdots C_t$ that M goes through while computing on w

Could sometimes prove “M doesn’t halt on w”...
Interesting Systems of Mathematics

Define a formal system \mathcal{F} to be *interesting* if:

1. Any mathematical statement about computation can be (computably) described as a statement of \mathcal{F}. Given (M, w), there is a (computable) $S_{M,w}$ of \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a candidate proof of a theorem is correct. This set is decidable: $\{(S, P) \mid P$ is a proof of S in $\mathcal{F}\}$

3. If S is in \mathcal{F} and there is a proof of S describable as a computation, then there’s a proof of S in \mathcal{F}. If M halts on w, then there’s either a proof P of $S_{M,w}$ or a proof P of $\neg S_{M,w}$.
Consistency and Completeness

A formal system \mathcal{F} is **inconsistent** if there is a statement S in \mathcal{F} such that both S and $\neg S$ are provable in \mathcal{F}.

\mathcal{F} is **consistent** if it is NOT inconsistent.

A formal system \mathcal{F} is **incomplete** if there is a statement S in \mathcal{F} such that neither S nor $\neg S$ are provable in \mathcal{F}.

\mathcal{F} is **complete** if it is NOT incomplete.
For every consistent and interesting F,

Theorem 1. (Gödel 1931) F must be *incomplete*!
“There are mathematical statements that are *true* but cannot be proved.”

Theorem 2. (Gödel 1931) The *consistency* of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Unprovable Truths in Mathematics

(Gödel) Every consistent interesting \mathcal{F} is incomplete: there are statements that cannot be proved or disproved.

Let $S_{M, w}$ in \mathcal{F} be true if and only if M accepts w

Proof: Define TM $G(w)$:
1. Obtain own description G [Recursion Theorem!]
2. For all strings P in lexicographical order,
 If (P is a proof of $S_{G, w}$ in \mathcal{F}) then reject
 If (P is a proof of $\neg S_{G, w}$ in \mathcal{F}) then accept

Note: If \mathcal{F} is complete then G cannot run forever!

1. If (G accepts w) then have proof P of “G doesn’t accept w”
2. If (G rejects w) then found proof P of “G accepts w”

In either case, \mathcal{F} is inconsistent! Proof of $S_{G, w}$ and $\neg S_{G, w}$
(Gödel 1931) The consistency of F cannot be proved within any interesting consistent F

Proof: Assume we can prove “F is consistent” in F
We constructed $\neg S_{G, w} = \text{“G does not accept w”}$
which is true, but has no proof in F

G does not accept $w \iff$ There is no proof of $\neg S_{G, w}$ in F

But if there’s a proof of “F is consistent” in F, then there is a proof of $\neg S_{G, w}$ in F (here’s the proof):

“If $S_{G, w}$ is true, then there is a proof in F of $S_{G, w}$
and a proof in in F of $\neg S_{G, w}$

But since F is consistent, this cannot be true.
Therefore, $\neg S_{G, w}$ is true”

This contradicts the previous theorem!
Proof: Suppose PROVABLE_F is decidable with TM P. Then we can decide A_{TM} with the following procedure:

On input (M, w), run the TM P on input $S_{M,w}$

If P accepts, examine all proofs in lex. order

If a proof of $S_{M,w}$ is found then accept
If a proof of $\neg S_{M,w}$ is found then reject

If P rejects, then reject.

Why does this work?

Undecidability in Mathematics

$\text{PROVABLE}_F = \{S \mid \text{there's a proof in } F \text{ of } S, \text{ or there's a proof in } F \text{ of } \neg S\}$

(Church-Turing 1936) For every interesting consistent F, PROVABLE_F is undecidable
Kolmogorov Complexity: A Universal Theory of Data Compression
The Church-Turing Thesis:

Everyone’s Intuitive Notion of Algorithms = Turing Machines

This is not a theorem – it is a falsifiable scientific hypothesis.

A Universal Theory of Computation
A Universal Theory of *Information*?

Can we quantify how much *information* is contained in a string?

A = 01010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can “compress” a string, the less “information” it contains....
Information as Description

Thesis: The amount of information in a string x is the length of the *shortest description* of x.

How should we “describe” strings?

Use Turing machines with inputs!

Let $x \in \{0,1\}^*$

Def: A *description of x* is a string $<M,w>$ such that M on input w halts with only x on its tape.

Def: The *shortest description of x*, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that $M(w)$ halts with only x on its tape.
Theorem. There is a 1-1 computable function $<,> : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \rightarrow \Sigma^*$ such that:

$$z = <M,w> \iff \pi_1(z) = M \text{ and } \pi_2(z) = w$$

Define:

$$<M,w> := 0^{|M|}1Mw$$

(Example: $<10110,101> = 0000011011010101$)

Note that $|<M,w>| = 2|M| + |w| + 1$
Kolmogorov Complexity (1960’s)

Definition: The *shortest description of x*, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that $M(w)$ halts with only x on its tape.

Definition: The *Kolmogorov complexity of x*, denoted as $K(x)$, is $|d(x)|$.

EXAMPLES??

Let’s first determine some properties of K. Examples will fall out of this.
Theorem: There is a fixed c so that for all x in $\{0,1\}^*$

$$K(x) \leq |x| + c$$

“The amount of information in x isn’t much more than $|x|$”

Proof: Define a TM $M = \text{“On input } w, \text{ halt.”}$
On any string x, $M(x)$ halts with x on its tape.
Observe that $<M,x>$ is a description of x.

Let $c = 2|M| + 1$
Then $K(x) \leq |<M,x>| \leq 2|M| + |x| + 1 \leq |x| + c$
Theorem: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“The information in x^n isn’t much more than that in x”

Proof: Define the TM

$N =$ “On input $<n,<M,w>>$, Let $x = M(w)$. Print x for n times.”

Let $<M,w>$ be the shortest description of x. Then $K(x^n) \leq K(<N,<n,<M,w>>>)$

$\leq 2|N| + d \log n + K(x) \leq c \log n + K(x)$

for some constants c and d
Repetitive Strings have Low K-Complexity

Theorem: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“The information in x^n isn’t much more than that in x”

Recall:

$A = 01$

For $w = (01)^n$, we have $K(w) \leq K(01) + c \log n$

So for all n, $K((01)^n) \leq d + c \log n$ for a fixed c, d
Does The Computational Model Matter?

Turing machines are one “programming language.” If we use other programming languages, could we get significantly shorter descriptions?

An interpreter is a “semi-computable” function

\[p : \Sigma^* \rightarrow \Sigma^* \]

Takes programs as input, and prints their outputs

Definition: Let \(x \in \{0,1\}^* \). The shortest description of \(x \) under \(p \), called \(d_p(x) \), is the lexicographically shortest string \(w \) for which \(p(w) = x \).

Definition: The \(K_p \) complexity of \(x \) is \(K_p(x) := |d_p(x)| \).
Theorem: For every interpreter p, there is a fixed c so that for all $x \in \{0,1\}^*$, $K(x) \leq K_p(x) + c$

Moral: Using another programming language would only change $K(x)$ by some additive constant

Proof: Define TM $M =$ “On w, simulate $p(w)$ and write its output to tape”

Then $<M,d_p(x)>$ is a description of x.

So $K(x) \leq |<M,d_p(x)>|$

$\leq 2|M| + K_p(x) + 1 \leq c + K_p(x)$
There Exist Incomprressible Strings

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \geq n$

“There are incompressible strings of every length”

Proof:

(Number of binary strings of length n) = 2^n

but (Number of descriptions of length $< n$)

\leq (Number of binary strings of length $< n$)

$= 1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1$

Therefore, there is at least one n-bit string x that does not have a description of length $< n$.

Random Strings Are Incompressible!

Theorem: For all n and $c \geq 1$,

$$\Pr_{x \in \{0,1\}^n}[K(x) \geq n - c] \geq 1 - 1/2^c$$

“Most strings are highly incompressible”

Proof:

(Number of binary strings of length n) = 2^n

but (Number of descriptions of length $< n - c$)

\leq (Number of binary strings of length $< n - c$)

= $2^{n-c} - 1$

Hence the probability that a *random* x satisfies $K(x) < n - c$

is at most $(2^{n-c} - 1)/2^n < 1/2^c$.
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000

2. 123581321345589144233377610987

3. 126241207205040403203628803628800
Computing Compressibility?

Can an algorithm perform optimal compression? Can algorithms tell us if a given string is compressible?

\[\text{COMPRESS} = \{ (x,c) \mid K(x) \leq c \} \]

Theorem: COMPRESS is undecidable!

Idea: If decidable, we could design an algorithm that prints the *shortest incompressible string of length n*

But such a string could then be succinctly described, by providing the algorithm code and n in binary!

Berry Paradox: “The smallest integer that cannot be defined in less than thirteen words.”
Computing Compressibility?

COMPRESS = \{(x,c) \mid K(x) \leq c\}

Theorem: COMPRESS is undecidable!

Proof: Suppose it’s decidable. Consider the TM:

\[M = \text{"On input } x \in \{0,1\}^*, \text{ let } N = 2^{|x|}. \]

\[\text{For all } y \in \{0,1\}^* \text{ in lexicographical order, if } (y,N) \notin \text{COMPRESS then print } y \text{ and halt."} \]

\[M(x) \text{ prints the shortest string } y' \text{ with } K(y') > 2^{|x|}. \]

\[<M,x> \text{ is a description of } y', \text{ and } |<M,x>| \leq d + |x| \]

So \[2^{|x|} < K(y') \leq d + |x| . \text{ CONTRADICTION for large } x! \]
Yet Another Proof that A_{TM} is Undecidable!

COMPRESS = $\{(x,c) \mid K(x) \leq c\}$

Theorem: A_{TM} is undecidable.

Proof: Reduction from COMPRESS to A_{TM}.

Given a pair (x,c), our reduction constructs a TM:

$M_{x,c} = \text{On input } w,$

For all pairs $<M',w'>$ with $|<M',w'>| \leq c$,

simulate each M' on w' in parallel.

If some M' halts and prints x, then accept.

$K(x) \leq c \iff M_{x,c}$ accepts ε
Theorem: \(L = \{xx \mid x \in \{0, 1\}^*\} \) is not regular.

Proof: Suppose \(L \) is recognized by a DFA \(D \).
Let \(n \geq 0 \) and choose an \(x \in \{0, 1\}^* \) such that \(K(x) \geq n \).
Let \(q_x \) be the state of \(D \) reached after reading in \(x \).

Define a TM \(M(D, q, n) \):

- Find a path \(P \) in \(D \) of length \(n \) that starts from state \(q \) and ends in a final state.
- Print the \(n \)-bit string along path \(P \), and halt.

Claim: The pair \(<M,(D, q_x, n)> \) is a description of \(x \)!

So \(n \leq K(x) \leq |<M,(D, q_x, n)>| \leq O(\log n) \)

CONTRADICTION!
A formal system F is *interesting* if:

1. Any mathematical statement about computation can also be effectively described within F.
 \[
 \text{For all strings } x \text{ and integers } c, \text{ there is a } S_{x,c} \text{ in } F \text{ that is equivalent to } "K(x) \geq c" \]

2. Proofs are convincing: it should be possible to check that a proof of a theorem is correct
 \[
 \text{This set is decidable: } \{ (S,P) \mid P \text{ is a proof of } S \text{ in } F \} \]
The Unprovable Truth About K-Complexity

Theorem: For every interesting consistent \(F \), there is a \(t \) s.t. for all \(x \), “\(K(x) > t \)” is unprovable in \(F \).

Proof: Define a Turing machine \(M \) as follows:

\[M(y) := \text{Search over all strings } x' \text{ and proofs } P \text{ for a proof } P \text{ in } F \text{ of } K(x') > b(y). \text{ Output } x' \text{ if found} \]

If \(M(y) \) halts, it prints some \(x' \). Then for some \(c \),

\[K(x') = K(<M,y>) \leq c + |y| \leq c + \log(b(y)) \]

Therefore \(K(x') \leq c + \log(b(y)) \) has a proof in \(F \).

But \(K(x') > b(y) \) also has a proof \(P \) in \(F \)!

For \(t \gg b(y) \), have proof of “\(K(x') > t \)” and its negation! Therefore \(M(y) \) does not halt!
Random Unprovable Truths

Theorem: For every interesting consistent \mathcal{F}, there is a t s.t. for all x, “$K(x) > t$” is unprovable in \mathcal{F}.

For a randomly chosen x of length $t+100$, “$K(x) > t$” is true with probability at least $1-1/2^{100}$.

We can randomly generate true statements in \mathcal{F} which have no proof in \mathcal{F}, with high probability!

For every interesting formal system \mathcal{F} there is always some finite integer (say, $t=10000$) so that you’ll never be able to prove in \mathcal{F} that a random 20000-bit string requires a 10000-bit program!