Lecture 17: Cook-Levin Theorem, NP-Complete Problems
Is SAT solvable in $O(n)$ time on a multitape TM?

Logic circuits of $6n$ gates for SAT?

If yes, then not only is P=NP, but there would be a “dream machine” that could crank out short proofs of theorems, quickly optimize all aspects of life... recognizing quality work is all you need to produce

THIS IS AN OPEN QUESTION!
Polynomial Time Reducibility

\[f : \Sigma^* \rightarrow \Sigma^* \] is a polynomial time computable function if there is a poly-time Turing machine \(M \) that on every input \(w \), halts with just \(f(w) \) on its tape.

Language \(A \) is poly-time reducible to language \(B \), written as \(A \leq_p B \), if there is a poly-time computable \(f : \Sigma^* \rightarrow \Sigma^* \) so that:

\[w \in A \iff f(w) \in B \]

\(f \) is a polynomial time reduction from \(A \) to \(B \).

Note there is a \(k \) such that for all \(w \), \(|f(w)| \leq |w|^k \).
function f converts any string w into a string $f(w)$ such that $w \in A \iff f(w) \in B$
Theorem: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$
Theorem: If \(A \leq_p B \) and \(B \in P \), then \(A \in P \)

Proof: Let \(M_B \) be a poly-time TM that decides \(B \). Let \(f \) be a poly-time reduction from \(A \) to \(B \).

We build a machine \(M_A \) that decides \(A \) as follows:

\[
M_A = \text{On input } w,
\]

1. Compute \(f(w) \)
2. Run \(M_B \) on \(f(w) \), output its answer

\[
w \in A \iff f(w) \in B
\]
Theorem: If $A \leq_p B$ and $B \in \text{NP}$, then $A \in \text{NP}$

Proof: Analogous...
Theorem: If $A \leq_p B$ and $B \in P$, then $A \in P$

Theorem: If $A \leq_p B$ and $B \in NP$, then $A \in NP$

Corollary: If $A \leq_p B$ and $A \notin P$, then $B \notin P$
Definition: A language B is **NP-complete** if:

1. $B \in \text{NP}$
2. Every A in NP is poly-time reducible to B
 That is, $A \leq_p B$

When this is true, we say “B is NP-hard”

On homework, you showed

A language L is recognizable iff $L \leq_m A_{\text{TM}}$

A_{TM} is “**complete for recognizable languages**”:

A_{TM} is recognizable, and for all recognizable L, $L \leq_m A_{\text{TM}}$
Suppose L is NP-Complete...

If $L \in P$, then $P = NP$!

If $L \notin P$, then $P \neq NP$!
Suppose L is NP-Complete...

Then assuming the conjecture P ≠ NP,

L is not decidable in n^k time, for every k
There are thousands of NP-complete problems!

Your favorite topic certainly has an NP-complete problem somewhere in it.

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!
The Cook-Levin Theorem:
SAT and 3SAT are NP-complete

1. **3SAT ∈ NP**
 A satisfying assignment is a “proof” that a 3cnf formula is satisfiable

2. **3SAT is NP-hard**
 Every language in NP can be polynomial-time reduced to 3SAT (complex logical formula)

Corollary: 3SAT ∈ P if and only if P = NP
Theorem (Cook-Levin): 3SAT is NP-complete

Proof Idea:

(1) $3SAT \in NP$ (done)

(2) Every language A in NP is polynomial time reducible to 3SAT (this is the challenge)

We give a poly-time reduction from A to SAT

The reduction converts a string w into a 3cnf formula ϕ such that $w \in A$ iff $\phi \in 3SAT$

For any $A \in NP$, let N be a nondeterministic TM deciding A in n^k time

ϕ will simulate N on w
Deterministic Computation

- accept or reject

Nondeterministic Computation

- n^k
- accept
- reject

$\exp(n^k)$
Let \(L(N) \in \text{NTIME}(n^k) \). A tableau for \(N \) on \(w \) is an \(n^k \times n^k \) matrix whose rows are the configurations of some possible computation history of \(N \) on \(w \).

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>(q_0)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>\ldots</th>
<th>(w_n)</th>
<th>(\Box)</th>
<th>\ldots</th>
<th>(\Box)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
</tbody>
</table>

Each “cell” contains a \(\sigma \in \mathcal{Q} \cup \Gamma \cup \{ \# \} \)
A tableau is **accepting** if the last row of the tableau is an accepting configuration.

N accepts w **if and only if** there is an **accepting tableau** for N on w.

Given w, we’ll construct a 3cnf formula ϕ with $O(|w|^{2k})$ clauses, describing logical constraints that any accepting tableau for N on w must satisfy.

The 3cnf formula ϕ will be satisfiable **if and only if** there is an accepting tableau for N on w.
Variables of formula ϕ will encode a tableau

Let $C = Q \cup \Gamma \cup \{ \# \}$

Each cell of a tableau contains a symbol from C

$cell[i,j] = \text{symbol in the cell at row } i \text{ and column } j$

$= \text{the } j\text{th symbol in the } i\text{th configuration}$

For every i and j ($1 \leq i, j \leq n^k$) and for every $s \in C$ we make a Boolean variable $x_{i,j,s}$ in ϕ

Total number of variables = $|C|n^{2k}$, which is $O(n^{2k})$

The $x_{i,j,s}$ variables represent the cells of a tableau

We will enforce the condition: for all i, j, s,

$x_{i,j,s} = 1 \iff cell[i,j] = s$
Idea: Make ϕ so that every *satisfying assignment* to the variables $x_{i,j,s}$ corresponds to an *accepting tableau* for N on w (an assignment to all $\text{cell}[i,j]$’s of the tableau).

The formula ϕ will be the AND of four CNF formulas:

$$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$$

ϕ_{cell}: for all i,j, there is a *unique* $s \in C$ with $x_{i,j,s} = 1$

ϕ_{start}: the first row of the table equals the *start* configuration of N on w

ϕ_{accept}: the last row of the table has an accept state

ϕ_{move}: every row is a configuration that yields the configuration on the next row
\[\phi_{\text{start}} : \text{the first row of the table equals the start configuration of } N \text{ on } w \]

\[\phi_{\text{start}} = X_{1,1,\#} \land X_{1,2,q_0} \land X_{1,3,w_1} \land X_{1,4,w_2} \land \ldots \land X_{1,n+2,w_n} \land X_{1,n+3,\square} \land \ldots \land X_{1,n^k-1,\square} \land X_{1,n^k,\#} \]

\[
\begin{array}{cccccccc}
\# & q_0 & w_1 & w_2 & \ldots & w_n & \square & \ldots & \square & \# \\
\# & \# & & & & & & \# & & \# \\
\end{array}
\]

\[\text{O}(n^k) \text{ clauses} \]
ϕ_{accept} : the last row of the table has an accept state

$$
\phi_{\text{accept}} = \bigvee_{1 \leq j \leq n^k} x_{n^k,j, q_{\text{accept}}}
$$

<table>
<thead>
<tr>
<th></th>
<th>q_0</th>
<th>w_1</th>
<th>w_2</th>
<th>...</th>
<th>w_n</th>
<th>\Box</th>
<th>...</th>
<th>\Box</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
</tbody>
</table>

$w_1 w_2 ... w_n \#$
ϕ_{accept}: the last row of the table has an accept state

$$\phi_{\text{accept}} = \bigvee_{1 \leq j \leq n^k} x_{n^k,j, q_{\text{accept}}}$$

How can we convert ϕ_{accept} into a 3-cnf formula?

The clause $(a_1 \lor a_2 \lor \ldots \lor a_t)$ is equivalent to

$$(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land \ldots \land (\neg z_{t-3} \lor a_{t-1} \lor a_t)$$

where z_i are new variables.

This produces $O(t)$ new 3cnf clauses.

$O(n^k)$ clauses
\(\phi_{\text{cell}} \): for all \(i, j \), there is a unique \(s \in C \) with \(x_{i,j,s} = 1 \)

\[
\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s, t \in C, s \neq t} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right]
\]

- for all \(i, j \)
- at least one \(x_{i,j,s} \) is set to 1
- at most one \(x_{i,j,s} \) is set to 1

\(O(n^{2k}) \) clauses
Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!
\(\phi \text{move} \): every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>a</th>
<th>q (_1)</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>q (_1)</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>a</td>
<td>q (_2)</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>#</td>
</tr>
</tbody>
</table>
\(\phi_{\text{move}} \): every row is a configuration that yields the configuration on the next row.

Idea: check that every \(2 \times 3 \) “window” of cells is legal (consistent with the transition function of \(N \)).

\[
\begin{array}{cccccccc}
\# & q_0 & w_1 & w_2 & \ldots & w_n & \blacksquare & \ldots & \blacksquare & \# \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\# & i & & & & & & & & \\
\# & j & & & & & & & & \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\end{array}
\]

the \((i,j)\) window
\[\phi_{\text{move}} = \bigwedge \quad (\text{the (i, j) window is “legal”}) \]
\[1 \leq i, j \leq n^k \]

the (i, j) window is “legal” =

\[\equiv \bigwedge_{(a_1, \ldots, a_6)} \quad (\neg x_{i,j,a_1} \lor \neg x_{i,j+1,a_2} \lor \neg x_{i,j+2,a_3} \lor \neg x_{i+1,j,a_4} \lor \neg x_{i+1,j+1,a_5} \lor \neg x_{i+1,j+2,a_6}) \]

ISN’T “legal”

\[O(n^{2k}) \text{ clauses} \]
Summary. We wanted to prove:
Every A in NP has a polynomial time reduction to 3SAT

For every A in NP, we know A is decided by some nondeterministic n^k time Turing machine N

We gave a generic method to reduce a string w to a 3CNF formula ϕ of $O(|w|^{2k})$ clauses such that
satisfying assignments to the variables of ϕ
directly correspond to
accepting computation histories of N on w

The formula ϕ is the AND of four 3CNF formulas:
$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$
Theorem (Cook-Levin):
SAT and 3SAT are NP-complete

Corollary: SAT ∈ P if and only if P = NP

Given a favorite problem \(\Pi \in \text{NP} \), how can we prove it is NP-hard?

Generic Recipe:
1. Take a problem \(\Sigma \) that you know to be NP-hard (3-SAT)
2. Prove that \(\Sigma \leq_p \Pi \)

Then for all \(A \in \text{NP} \), \(A \leq_p \Sigma \) and \(\Sigma \leq_p \Pi \)
We conclude that \(A \leq_p \Pi \), and \(\Pi \) is NP-hard
Π is NP-Complete
Reading Assignment

Read Luca Trevisan’s notes for an alternative proof of the Cook-Levin Theorem!

Sketch:
1. Define **CIRCUIT-SAT**: Given a logical circuit $C(y)$, is there an input a such that $C(a)=1$?
2. Show that **CIRCUIT-SAT** is NP-hard: The $n^k \times n^k$ tableau for N on w can be simulated using a logical circuit of $O(n^{2k})$ gates
3. Reduce CIRCUIT-SAT to 3SAT in polytime
4. Conclude 3SAT is also NP-hard