Lecture 22: PSPACE
VOTE VOTE VOTE

For your favorite course on automata and complexity

Please complete the online subject evaluation for 6.045
Final Exam Information

Who: You
On What: Everything through PSPACE
With What: One sheet (double-sided) of notes are allowed
When: Friday, May 26 1:30PM - 4:30PM
Where: HERE, 04-270
Why: Because you’ll ace it
How: By studying

Practice final exam coming soon!
Definition: \(\text{SPACE}(s(n)) = \{ L \mid L \text{ is decided by a Turing machine with}\)
\[O(s(n))\text{ space complexity}\} \)

Definition: \(\text{NSPACE}(s(n)) = \{ L \mid L \text{ is decided by a } non-deterministic\)
Turing Machine with \(O(s(n))\text{ space complexity}\} \)
Theorem: Let $s : \mathbb{N} \rightarrow \mathbb{N}$ satisfy $s(n) \geq n$, for all n. Then every $s(n)$ space multi-tape TM has an equivalent $O(s(n))$ space one-tape TM.

The simulation of multitape TMs by one-tape TMs achieves this!

Corollary: The number of tapes doesn’t matter for space complexity! One tape TMs are as good as basically any other model!
Theorem:
NSPACE \(S(n) \) computations can also be simulated in at most \(2^{O(S(n))} \) time steps.

\[
\text{NSPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \text{TIME}(2^c \cdot s(n))
\]

Key Idea: Think of the problem of simulating \(\text{NSPACE}(s(n)) \) as a problem on graphs.
Def: The configuration graph of M on x has nodes C for every configuration C of M on x, and edges (C, C') if and only if C yields C'.

$G_{M,x}$

M has space complexity $S(n)$
$\Rightarrow G_{M,x}$ has $2^{c \cdot S(|x|)}$ nodes

M is deterministic
\Rightarrow every node has outdegree ≤ 1

M is nondeterministic
\Rightarrow some nodes may have outdegree > 1

To simulate a non-deterministic M in $2^{O(S(|x|))}$ time: do BFS in $G_{M,x}$ from the initial configuration!
PSPACE = $\bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)$

NPSPACE = $\bigcup_{k \in \mathbb{N}} \text{NSPACE}(n^k)$
Savitch’s Theorem

Theorem: For functions $s(n)$ where $s(n) \geq n$

$$\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)$$

Proof Try:

Let N be a non-deterministic TM with space complexity $s(n)$.

Construct a deterministic machine M that tries every possible branch of N.

Since each branch of N uses space at most $s(n)$, then M uses space at most $s(n)^2$...

There are $2^{2^s(n)}$ branches to keep track of!
Given configurations C_1 and C_2 of a $s(n)$ space machine N, and a number t, want to know if N can get from C_1 to C_2 within $t = 2^k$ steps

Procedure SIM(C_1, C_2, t):

- If $t = 1$ then *accept* iff $C_1 = C_2$ or C_1 yields C_2 within one step.

- If $t > 1$, then for every configuration C_m of size $s(n)$, if SIM(C_1, C_m, $t/2$) and SIM(C_m, C_2, $t/2$) accept then return *accept*
 return *reject* if no such C_m is found

$\text{SIM}(C_1, C_2, t)$ has $O(\log t)$ levels of recursion
Each level of recursion uses $O(s(n))$ additional space.
Therefore $\text{SIM}(C_1, C_2, t)$ uses only $O(s(n) \log t)$ space!
Theorem: For functions $s(n)$ where $s(n) \geq n$

$$\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)$$

Proof:

Let N be a nondeterministic TM using $s(n)$ space

Let $d > 0$ be such that the number of configurations of $N(w)$ is at most $2^d s(|w|)$

Here’s a deterministic $O(s(n)^2)$ space algorithm for N:

M(w): For all configurations C_{acc} of $N(w)$ in the accept state, if $\text{SIM}(q_0, w, C_{\text{acc}}, 2^d s(|w|))$ accepts, then accept else reject

Claim: $L(M) = L(N)$
Theorem: For functions \(s(n) \) where \(s(n) \geq n \)
\[
\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)
\]

Proof:
Let \(N \) be a nondeterministic TM using \(s(n) \) space
Let \(d > 0 \) be such that the number of configurations of \(N(w) \) is at most \(2^d s(|w|) \)

Here’s a deterministic \(O(s(n)^2) \) space algorithm for \(N \):

\(M(w) \): For all configurations \(C_{\text{acc}} \) of \(N(w) \) in the accept state,
If \(\text{SIM}(q_0, w, C_{\text{acc}}, 2^d s(|w|)) \) accepts, then accept
else reject

Why does it take only \(s(n)^2 \) space?
Theorem: For functions \(s(n) \) where \(s(n) \geq n \)

\[
\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)
\]

Proof:

Let \(N \) be a nondeterministic TM using \(s(n) \) space.

Let \(d > 0 \) be such that the number of configurations of \(N(w) \) is at most \(2^d s(|w|) \).

Here's a deterministic \(O(s(n)^2) \) space algorithm for \(N \):

\(M(w) \): For all configurations \(C_{\text{acc}} \) of \(N(w) \) in the accept state,

- If \(\text{SIM}(q_0, w, C_{\text{acc}}, 2^d s(|w|)) \) accepts, then \(\text{accept} \)
- Else \(\text{reject} \)

\(\text{SIM} \) uses \(O(s(n) \log t) \) space to simulate \(t \) steps of \(N \).

Set \(t = 2^d s(|w|) \). Uses \(O(s(n)^2) \) space overall!
$$\text{PSPACE} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)$$

$$\text{NPSPACE} = \bigcup_{k \in \mathbb{N}} \text{NSPACE}(n^k)$$

$$\text{PSPACE} = \text{NPSPACE}$$
PSPACE-complete problems
Definition: Language B is **PSPACE-complete** if:

1. $B \in \text{PSPACE}$
2. Every A in PSPACE is **poly-time reducible** to B (i.e. B is PSPACE-hard)

Why poly-time?

Theorem: If B is PSPACE-complete and B is in P then $P = \text{PSPACE}$

Theorem: If B is PSPACE-complete and B is in NP then $NP = \text{PSPACE}$
Definition:
A fully quantified Boolean formula is a Boolean formula where every variable in the formula is quantified (∃ or ∀) at the beginning the formula. These formulas are either true or false

∃x∃y [x ∨ ¬y]

∀x [x ∨ ¬x]

∀x [x]

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]
TQBF = \{ \phi \mid \phi \text{ is a true fully quantified Boolean formula} \}

- SAT is the special case where all quantifiers are \exists

- TAUTOLOGY is the special case where all quantifiers are \forall

So, SAT \leq_P TQBF and TAUTOLOGY \leq_P TQBF

Theorem (Meyer-Stockmeyer):

TQBF is PSPACE-complete
TQBF is in PSPACE

QBF-SOLVER(\phi):

1. If \phi has no quantifiers, then it is an expression with only constants. Evaluate \phi. Accept iff \phi evaluates to 1.

2. If \phi = \exists x \psi, call QBF-SOLVER on \psi twice: first with x set to 0, then with x set to 1. Accept iff at least one call accepts.

3. If \phi = \forall x \psi, call QBF-SOLVER on \psi twice: first with x set to 0, then with x set to 1. Accept iff both calls accept.
TQBF is PSPACE-hard: Every language A in PSPACE is polynomial time reducible to TQBF

We’ll outline a proof of this. The missing details aren’t necessary, but please ask questions!

For every language A is in PSPACE, there is some k and some deterministic TM M that decides A using space $\leq kn^k$

Our polynomial-time reduction will map every string w to a fully quantified Boolean formula ϕ of $O(n^{2k})$ size that simulates M on w
A **tableau for M on w** is an table whose rows are the configurations of M on input w

\[
\begin{array}{cccccc}
\# & q_0 & w_1 & w_2 & \ldots & w_n & \square & \ldots & \square & \# \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\end{array}
\]

\[2^{O(n^k)}\]
We’ll construct a QBF ϕ that is true if and only if M accepts w of length n.

Let $s(n) = n^k$. Suppose $M(w)$ has $\leq 2^b s(n)$ configs.

Using two blocks of $b \cdot s(n)$ Boolean variables denoted C and D representing two configurations of M on w, and integer $t = 2^k$, we’ll construct a QBF $\phi_{C,D,t}$

$\phi_{C,D,t}$ is true if and only if M starting in config C reaches config D in $\leq t$ steps.

Then we’ll set $\phi = \phi_{C_{\text{start}}, C_{\text{acc}}, h}$, where

$h = 2^b s(n)$, upper bounds the number of configurations of M on w of length n.

C_{start} = initial configuration of M on w,
C_{acc} = (unique) accepting configuration of M.
IDEA:

Work like Savitch’s theorem.

Guess the configuration in the “middle” of the computation, and use recursion!

\[\phi_{C,D,t} \] will informally say:

“there exists a configuration E such that \[\phi_{C,E,t/2} \] is true and \[\phi_{E,D,t/2} \] is true”

Goal: If M uses \(n^k \) space on inputs of length \(n \), then our QBF \(\phi \) will have size \(O(n^{2k}) \)
If $t = 1$, then $\phi_{C,D,t}$ should look like:

$$\phi_{C,D,1} = \text{“C equals D” OR “D follows from C in a single step of M”}$$

How do we logically express “C equals D”?
Write a Boolean formula saying that the block of $b \ s(n)$ variables representing C equals the block of $b \ s(n)$ variables representing D

$$\wedge_{i=1}^{b \ s(n)} (C_i = D_i) = \wedge_i ((C_i \lor \neg D_i) \land (\neg C_i \lor D_i))$$

“D follows from C in a single step of M”?
Use 2 x 3 windows as in the Cook-Levin theorem, and write a CNF formula
For \(t > 1 \), let’s try to construct \(\phi_{C,D,t} \) recursively:

\[
\phi_{C,D,t} = \exists E \left[\phi_{C,E,t/2} \land \phi_{E,D,t/2} \right]
\]

\(\exists e_1 \exists e_2 \ldots \exists e_S \quad \text{where } S = b n^k \)

But how long is this formula??

Every level of the recursion cuts \(t \) *in half* but roughly *doubles* the size of the formula...!

We can get around this. Modify the formula to be:

\[
\phi_{C,D,t} = \exists E \forall X,Y \left[\left((X,Y) = (C,E) \lor (X,Y) = (E,D) \right) \Rightarrow \phi_{x,y,t/2} \right]
\]

This folds the two recursive sub-formulas into one!
\[\phi_{c,D,t} = \exists E \ \forall X,Y \ [((X,Y) = (C,E) \lor (X,Y) = (E,D)) \ \Rightarrow \ \phi_{x,y,t/2}] \]

Set \(\phi = \phi_{c_{\text{start}}, c_{\text{acc}}, h} \) where \(h = 2^{b \cdot s(n)} \)

Each recursive step adds a part that is linear in the size of the configurations, so has size \(O(s(n)) \)

Number of levels of recursion is \(\log h \leq O(s(n)) \)

Therefore the size of \(\phi \) is \(O(s(n)^2) \)
PSPACE is a complexity class for two-player games of perfect information

For formalizations of many popular two-player games, it is PSPACE-complete to decide who has a winning strategy on a game board