6.045
Lecture 4:
Non-Regular Languages,
Minimizing DFAs
Announcements:
- Pset 2 is up (as of last night)
 - easier, because fewer lectures!
- How was Pset 1?
DEFINITION

DFAs ↔ NFAs

Regular Languages ↔ Regular Expressions
Some Languages Are Not Regular:

Limitations on DFAs
Regular or Not?

\[\Sigma = \{0,1\} \]

C = \{ w | w has equal number of 1s and 0s\}

NOT REGULAR!

D = \{ w | w has equal number of occurrences of 01 and 10 \}

REGULAR!
$\Sigma = \{0,1\}$

$D = \{w \mid w$ has equal number of occurrences of 01 and $10\}$

$= \{w \mid w = 1, w = 0, \text{ or } w = \varepsilon, \text{ or } w \text{ starts with a } 0 \text{ and ends with a } 0, \text{ or } w \text{ starts with a } 1 \text{ and ends with a } 1 \}$

$1 + 0 + \varepsilon + 0(0+1)^*0 + 1(0+1)^*1$

Claim:
A string w has equal occurrences of 01 and 10 $\iff w$ starts and ends with the same bit.
The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

for all strings $w \in L$ with $|w| \geq P$

there are x, y, z where $w = xyz$, and:

1. $|y| > 0$ (that is, $y \neq \varepsilon$)
2. $|xy| \leq P$
3. For all $i \geq 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word w gets *pumped* into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where $w \in L$ and $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$

2. $|xy| \leq P$

3. $xy^iz \in L$ for all $i \geq 0$

Claim: There must exist j and k such that $0 \leq j < k \leq P$, and $q_j = q_k$
Let’s prove that $\text{EQ} = \{ w \mid w \text{ has equal number of 1s and 0s} \}$ is not regular.

By contradiction. Assume EQ is regular.

Let P be as in pumping lemma. Let $w = 0^P1^P$; note $w \in \text{EQ}$.

If EQ is regular, then there is some way to write w as $w = xyz$, $|y| > 0$, $|xy| \leq P$, and for all $i \geq 0$, xy^iz is also in EQ.

Claim: The string y must be all zeroes.

Why? Because $|xy| \leq P$ and $w = xyz = 0^P1^P$

But then $xxyyz$ has more 0s than 1s! Contradiction!
Applying the Pumping Lemma

Let’s prove that
SQ = \{0^{n^2} \mid n \geq 0\} is not regular

Assume SQ is regular. Let \(w = 0^{P^2} \)

If SQ is regular, then we can write \(w = xyz, \ |y| > 0, \ |xy| \leq P \), and for any \(i \geq 0 \), \(xy^iz \) is also in SQ

So \(xyyz \in SQ \). We have: \(xyyz = 0^{P^2+|y|} \)

Observe that \(0 < |y| \leq P \)

So \(|xyyz| = P^2 + |y| \leq P^2 + P < P^2 + 2P + 1 = (P+1)^2 \)

and \(P^2 < |xyyz| < (P+1)^2 \)

Therefore \(|xyyz| \) is not a perfect square!

Hence \(0^{P^2+|y|} = xyyz \notin SQ \), so our assumption must be false.

That is, SQ is not regular!
Minimizing DFAs
Does this DFA have a minimal number of states?

NO
Is this minimal?

How can we tell in general?
DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that $A = L(M^*)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!
Note: There isn’t a uniquely minimal NFA
Extending transition function \(\delta \) to strings

Given DFA \(M = (Q, \Sigma, \delta, q_0, F) \), we extend \(\delta \) to a function \(\Delta : Q \times \Sigma^* \rightarrow Q \) as follows:

\[
\Delta(q, \varepsilon) = q
\]
\[
\Delta(q, \sigma) = \delta(q, \sigma)
\]
\[
\Delta(q, \sigma_1...\sigma_{k+1}) = \delta(\Delta(q, \sigma_1...\sigma_k), \sigma_{k+1})
\]

\(\Delta(q, w) = \) the state of \(M \) reached after reading in \(w \), starting from state \(q \)

Note: \(\Delta(q_0, w) \in F \iff M \) accepts \(w \)

Def. \(w \in \Sigma^* \) distinguishes states \(q_1 \) and \(q_2 \) iff exactly one of \(\Delta(q_1, w) \), \(\Delta(q_2, w) \) is a final state.
Extending transition function δ to strings

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend δ to a function $\Delta : Q \times \Sigma^* \rightarrow Q$ as follows:

$$\Delta(q, \varepsilon) = q$$
$$\Delta(q, \sigma) = \delta(q, \sigma)$$
$$\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})$$

$\Delta(q, w) =$ the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff

$\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F$
Distinguishing two states

Def. \(w \in \Sigma^* \) distinguishes states \(q_1 \) and \(q_2 \) iff exactly one of \(\Delta(q_1, w) \), \(\Delta(q_2, w) \) is a final state.

I’m in \(q_1 \) or \(q_2 \), but which? How can I tell?

Here... read this
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State p is *distinguishable* from state q
iff there is $w \in \Sigma^*$ that distinguishes p and q
iff there is $w \in \Sigma^*$ so that

exactly one of $\Delta(p, w), \Delta(q, w)$ is a final state

State p is *indistinguishable* from state q
iff p is not distinguishable from q
iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

(EITHER both $\Delta(p, w), \Delta(q, w)$ are in F, OR both are not in F)

Pairs of indistinguishable states are redundant...
Which pairs of states are distinguishable?

Are q_0 and q_1 distinguishable?

ε distinguishes all final states from non-final states
The string 10 distinguishes q_0 and q_3.

Are q_0 and q_3 distinguishable?
The string 0 distinguishes q_1 and q_2.

$\text{Are } q_1 \text{ and } q_2 \text{ distinguishable?}$
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation \sim on the states of M:
- $p \sim q$ iff p is indistinguishable from q
- $p \not\sim q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation
- $p \sim p$ (reflexive)
- $p \sim q \implies q \sim p$ (symmetric)
- $p \sim q$ and $q \sim r \implies p \sim r$ (transitive)

Proof?
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Proposition: \sim is an equivalence relation

Therefore, the relation \sim partitions Q into disjoint equivalence classes

$$[q] := \{ p \mid p \sim q \}$$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

\[L(M) = L(M_{\text{MIN}}) \]

M_{MIN} has no inaccessible states

M_{MIN} is irreducible

\[\parallel \]

For all states $p \neq q$ of M_{MIN}, p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M
Intuition:
States of $M_{\text{MIN}} = \text{Equivalence classes of states of } M$

We’ll uncover these equivalent states with a *dynamic programming* algorithm
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{(p, q) \mid p, q \in Q \text{ and } p \sim q\}$
2. $\text{EQUIV}_M = \{[q] \mid q \in Q\}$

Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and *iteration* to find those pairs distinguishable with *longer* strings
- The pairs of states left over will be indistinguishable