Lecture 4:
Non-Regular Languages, Minimizing DFAs
6.045

Announcements:
- Pset 2 is up (as of last night)
 - easier, because fewer lectures!
- How was Pset 1?
DFAs <-> NFAs

Regular Languages <-> Regular Expressions

DEFINITION
Some Languages Are Not Regular:

Limitations on DFAs
Regular or Not?

\[\Sigma = \{0,1\} \]

\[C = \{ w \mid w \text{ has equal number of } 1\text{s and } 0\text{s} \} \]

NOT REGULAR!

\[D = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \} \]

REGULAR!
$$\Sigma = \{0, 1\}$$

$$D = \{w \mid w \text{ has equal number of occurrences of 01 and 10}\}$$

$$= \{w \mid w = 1, w = 0, \text{ or } w = \varepsilon, \text{ or } w \text{ starts with a 0 and ends with a 0, or } w \text{ starts with a 1 and ends with a 1}\}$$

$$1 + 0 + \varepsilon + 0(0+1)^*0 + 1(0+1)^*1$$

Claim:
A string w has equal occurrences of 01 and 10
$\iff w$ starts and ends with the same bit.
The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

for all strings \(w \in L \) with \(|w| \geq P \)
there are \(x, y, z \) where \(w = xyz \), and:

1. \(|y| > 0 \) (that is, \(y \neq \varepsilon \))
2. \(|xy| \leq P \)
3. For all \(i \geq 0 \), \(xy^iz \in L \)

Why is it called the pumping lemma? The word \(w \) gets pumped into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where $w \in L$ and $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^iz \in L$ for all $i \geq 0$

Claim: There must exist j and k such that $0 \leq j < k \leq P$, and $q_j = q_k$
Let’s prove that \(EQ = \{ w \mid w \text{ has equal number of 1s and 0s} \} \) is not regular.

By contradiction. Assume \(EQ \) is regular. Let \(P \) be as in pumping lemma. Let \(w = 0^P1^P \); note \(w \in EQ \).

If \(EQ \) is regular, then there is some way to write \(w \) as \(w = xyz, |y| > 0, |xy| \leq P \), and for all \(i \geq 0 \), \(xy^iz \) is also in \(EQ \).

Claim: The string \(y \) must be all zeroes.

Why? Because \(|xy| \leq P \) and \(w = xyz = 0^P1^P \).

But then \(xy^3z \) has more 0s than 1s! Contradiction!
Applying the Pumping Lemma

Let's prove that
\[SQ = \{0^{n^2} \mid n \geq 0\} \] is not regular

Assume \(SQ \) is regular. Let \(w = 0^{P^2} \)

If \(SQ \) is regular, then we can write \(w = xyz, \ |y| > 0, \ |xy| \leq P, \) and for any \(i \geq 0, \ xy^iz \) is also in \(SQ \)

\[\text{So } xyyz \in SQ. \text{ We have: } xyyz = 0^{P^2 + |y|} \]

Observe that \(0 < |y| \leq P \)

\[\text{So } |xyyz| = P^2 + |y| \leq P^2 + P < P^2 + 2P + 1 = (P+1)^2 \]

and \(P^2 < |xyyz| < (P+1)^2 \)

Therefore \(|xyyz| \) is not a perfect square!

Hence \(0^{P^2 + |y|} = xyyz \notin SQ \), so our assumption must be false.

That is, \(SQ \) is not regular!
Minimizing DFAs
Does this DFA have a minimal number of states?

NO
Is this minimal?

How can we tell in general?
DFA Minimization Theorem:

For every regular language \(A \), there is a unique (up to re-labeling of the states) minimal-state DFA \(M^* \) such that \(A = L(M^*) \).

Furthermore, there is an efficient algorithm which, given any DFA \(M \), will output this unique \(M^* \).

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!
Note: There isn’t a uniquely minimal NFA
Extending transition function δ to strings

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend δ to a function $\Delta : Q \times \Sigma^* \to Q$ as follows:

$$
\Delta(q, \varepsilon) = q
$$

$$
\Delta(q, \sigma) = \delta(q, \sigma)
$$

$$
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
$$

$\Delta(q, w) =$ the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly one of $\Delta(q_1, w), \Delta(q_2, w)$ is a final state
Extending transition function \(\delta \) to strings

Given DFA \(M = (Q, \Sigma, \delta, q_0, F) \), we extend \(\delta \) to a function \(\Delta : Q \times \Sigma^* \rightarrow Q \) as follows:

\[
\begin{align*}
\Delta(q, \varepsilon) &= q \\
\Delta(q, \sigma) &= \delta(q, \sigma) \\
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) &= \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
\end{align*}
\]

\(\Delta(q, w) = \text{the state of } M \text{ reached after reading in } w, \text{ starting from state } q \)

Note: \(\Delta(q_0, w) \in F \iff M \text{ accepts } w \)

Def. \(w \in \Sigma^* \text{ distinguishes states } q_1 \text{ and } q_2 \) iff
\(\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F \)
Distinguishing two states

Def. \(w \in \Sigma^* \textit{ distinguishes} \) states \(q_1 \) and \(q_2 \) iff exactly one of \(\Delta(q_1, w) \), \(\Delta(q_2, w) \) is a final state

I’m in \(q_1 \) or \(q_2 \), but which? How can I tell?

Here... read this
Fix $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State p is *distinguishable* from state q

iff there is $w \in \Sigma^*$ that distinguishes p and q

iff there is $w \in \Sigma^*$ so that exactly one of $\Delta(p, w), \Delta(q, w)$ is a final state

State p is *indistinguishable* from state q

iff p is not distinguishable from q

iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

(EITHER both $\Delta(p, w), \Delta(q, w)$ are in F, OR both are not in F)

Pairs of indistinguishable states are redundant...
Which pairs of states are distinguishable?

Are q_0 and q_1 distinguishable?

ε distinguishes all final states from non-final states
The string 10 distinguishes q_0 and q_3
The string 0 distinguishes q_1 and q_2
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation \sim on the states of M:
\[p \sim q \text{ iff } p \text{ is indistinguishable from } q \]
\[p \nabla q \text{ iff } p \text{ is distinguishable from } q \]

Proposition: \sim is an equivalence relation

\[p \sim p \text{ (reflexive)} \]
\[p \sim q \Rightarrow q \sim p \text{ (symmetric)} \]
\[p \sim q \text{ and } q \sim r \Rightarrow p \sim r \text{ (transitive)} \]

Proof?
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Proposition: \sim is an **equivalence relation**

Therefore, the relation \sim partitions Q into disjoint equivalence classes

$$[q] := \{ p \mid p \sim q \}$$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

$L(M) = L(M_{\text{MIN}})$

M_{MIN} has no \textit{inaccessible} states

M_{MIN} is \textit{irreducible}

\[\]

For all states $p \neq q$ of M_{MIN}, p and q are distinguishable

\[\]

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M
Intuition:

States of M_{MIN} = Equivalence classes of states of M

We’ll uncover these equivalent states with a dynamic programming algorithm
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{(p, q) | p, q \in Q \text{ and } p \sim q \}$
2. $\text{EQUIV}_M = \{ [q] | q \in Q \}$

Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and *iteration* to find those pairs distinguishable with longer strings
- The pairs of states left over will be indistinguishable