Lecture 5: Minimizing DFAs, Myhill-Nerode Theorem
DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $A = L(M^*)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M^*.
Extending transition function δ to strings

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend δ to a function $\Delta : Q \times \Sigma^* \rightarrow Q$ as follows:

$$
\Delta(q, \varepsilon) = q
$$

$$
\Delta(q, \sigma) = \delta(q, \sigma)
$$

$$
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
$$

$\Delta(q, w) =$ the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \Leftrightarrow M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly one of $\Delta(q_1, w), \Delta(q_2, w)$ is a final state
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State p is *distinguishable* from state q

iff there is $w \in \Sigma^*$ that distinguishes p and q

iff there is $w \in \Sigma^*$ so that

exactly one of $\Delta(p, w), \Delta(q, w)$ is a final state

State p is *indistinguishable* from state q

iff p is not distinguishable from q

iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

(EITHER both $\Delta(p, w), \Delta(q, w)$ are in F, OR both are not in F)

Pairs of indistinguishable states are redundant...
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

$p \sim q$ iff p is indistinguishable from q

Proposition: \sim is an equivalence relation

States of $M_{\text{MIN}} = \text{Equivalence classes of states of } M$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

$L(M) = L(M_{\text{MIN}})$

M_{MIN} has no *inaccessible* states

M_{MIN} is *irreducible*

||

For all states $p \neq q$ of M_{MIN}, p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{(p, q) \mid p, q \in Q \text{ and } p \sim q\}$
2. $\text{EQUIV}_M = \{[q] \mid q \in Q\}$
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$
2. $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that $p \in F$ and $q \not\in F \Rightarrow$ mark $p \sim q$
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$

(2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that $p \in F$ and q not in $F \Rightarrow$ mark $p \not\sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

\[
\delta (p, \sigma) = p' \quad \text{mark} \quad p \not\sim q
\]

\[
\delta (q, \sigma) = q' \quad \not\sim \Rightarrow \quad p \not\sim q
\]

Repeat until no more D's can be added
Can we mark (q_1, q_2) as distinguishable?

Are q_0 and q_1 distinguishable?

Are q_0 and q_2 distinguishable?
Claim: If \((p, q)\) is marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof: By induction on the number of iterations in the algorithm before \((p, q)\) is marked \(D\)

If \((p, q)\) is marked \(D\) in the base case, then one state’s in \(F\) and the other isn’t, so \(\varepsilon\) distinguishes \(p\) and \(q\)

Suppose \((p, q)\) is marked \(D\) in a later iteration.

Then there are states \(p’, q’\) such that:

1. \((p’, q’)\) is marked \(D\) \(\Rightarrow\) \(p’ \sim q’\) (by induction)

 So there’s a string \(w\) s.t. \(\Delta(p’, w) \in F \iff \Delta(q’, w) \notin F\)

2. \(p’ = \delta(p, \sigma)\) and \(q’ = \delta(q, \sigma)\), for some \(\sigma \in \Sigma\)

Then the string \(\sigma w\) distinguishes \(p\) and \(q\)!
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)

Then there is a string \(w\) such that \(|w| > 0\) and:

\[
\Delta(p, w) \in F \iff \Delta(q, w) \not\in F
\]

(Why is \(|w| > 0\)?)

Of all such bad pairs, let \((p, q)\) be a bad pair with a minimum-length distinguishing string \(w\)
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)
Of all such bad pairs, let \((p, q)\) be a bad pair with a \textit{minimum-length} distinguishing string \(w\)
\[
\Delta(p, w) \in F \iff \Delta(q, w) \notin F
\]
We have \(w = \sigma w'\), for some string \(w'\) and some \(\sigma \in \Sigma\)
Let \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\)

Then \((p', q')\) is also a bad pair!
But then \((p', q')\) has a \textit{shorter} distinguishing string, \(w'\)
Contradiction!
Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

1. Remove all inaccessible states from M

2. Run Table-Filling algorithm on M to get:

 $EQUIV_M = \{ [q] \mid q \text{ is an accessible state of } M \}$

3. Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$

 $Q_{MIN} = EQUIV_M$, $q_{0 MIN} = [q_0]$, $F_{MIN} = \{ [q] \mid q \in F \}$

 $\delta_{MIN}([q], \sigma) = [\delta(q, \sigma)]$

Claim: $L(M_{MIN}) = L(M)$
Thm: M_{MIN} is the *unique* minimal DFA equivalent to M

Claim: Let M' be a DFA where $L(M') = L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Suppose we have proved the **Claim** is true. Assuming the **Claim** we can prove the **Thm**:

Proof of Thm: Let M' be any minimal DFA for M. Since M' is minimal, M' has no inaccessible states and is irreducible (*why?*)

By the **Claim**, there is an isomorphism between M' and the DFA M_{MIN} that is output by MINIMIZE(M). That is, M_{MIN} is isomorphic to every minimal M'.
Proof: We recursively construct a map from the states of \(M_{\text{MIN}} \) to the states of \(M' \)

Base Case: \(q_{0\text{MIN}} \mapsto q_{0'} \)

Recursive Step: If \(p \mapsto p' \)

Then \(q \mapsto q' \)
Base Case: \(q_{0_{MIN}} \mapsto q_0' \)

Recursive Step: If \(p \mapsto p' \) then \(q \mapsto q' \)

\[
\begin{array}{c}
q \\
\sigma \\
q'
\end{array}
\quad \begin{array}{c}
p \\
\sigma \\
p'
\end{array}
\quad \text{Then} \quad \begin{array}{c}
q \\
\sigma \\
q'
\end{array}
\]
Base Case: \(q_{0_{\text{MIN}}} \mapsto q_0' \)

Recursive Step: \(\text{If } p \mapsto p' \)

\[
\begin{align*}
\downarrow & \quad \downarrow \\
q & \quad q'
\end{align*}
\]

Then \(q \mapsto q' \)

Claim: Map is an isomorphism. Need to prove:

- The map is **defined** everywhere
- The map is **well defined**
- The map is a **bijection**
- The map **preserves all transitions**:

 If \(p \mapsto p' \) then \(\delta_{\text{MIN}}(p, \sigma) \mapsto \delta'(p', \sigma) \)

 (this follows from the definition of the map!)
The map is defined everywhere

That is, for all states q of M_{MIN} there is a state q' of M' such that $q \mapsto q'$

If $q \in M_{\text{MIN}}$, there is a string w such that $\Delta_{\text{MIN}}(q_{0\text{ MIN}}, w) = q$

Let $q' = \Delta'(q_0', w)$. Then we claim $q \mapsto q'$
(prove by induction on $|w|$)
Suppose there are states q' and q'' such that $q \rightarrow q'$ and $q \rightarrow q''$

Suppose q' and q'' are distinguishable

Contradiction!
The map is well defined

Proof by contradiction.
Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

We show that q' and q'' are indistinguishable, so it must be that $q' = q''$ (why?)
Base Case: $q_{0 \text{MIN}} \mapsto q_{0}'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$

The map is \textit{onto}

\textbf{Want to show:} For all states q' of M' there is a state q of M_{MIN} such that $q \mapsto q'$

For every q' there is a string w such that M' reaches state q' after reading in w

Let q be the state of M_{MIN} after reading in w

Claim: $q \mapsto q'$ \textit{(prove by induction on $|w|$)}
The map is one-to-one

Proof by contradiction. Suppose there are states $p \neq q$ such that $p \mapsto q'$ and $q \mapsto q'$

If $p \neq q$, then p and q are distinguishable.

The map is one-to-one.
How can we prove that two regular expressions are equivalent?