Lecture 6: The Myhill-Nerode Theorem and Streaming Algorithms
How could we show whether two regular expressions are equivalent?

Claim: There is an algorithm which given regular expressions R and R', determines whether $L(R) = L(R')$.
The Myhill-Nerode Theorem
In DFA Minimization, we defined an equivalence relation between states of a DFA. We can also define a similar equivalence relation over *strings* in a *language*:

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

Say x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_L is an equivalence relation

Proof is easy!
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of \equiv_L is finite.

Proof (\Rightarrow) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for L.

Define the relation: $x \sim_M y \iff \Delta(q_0, x) = \Delta(q_0, y)$

Claim: \sim_M is an equivalence relation with $|Q|$ classes

Claim: If $x \sim_M y$ then $x \equiv_L y$

Proof: $x \sim_M y$ implies for all $z \in \Sigma^*$, xz and yz reach

the same state of M. So $xz \in L \iff yz \in L$, and $x \equiv_L y$

Corollary: Number of equiv. classes of \equiv_L is at most

the number of equiv. classes of \sim_M (which is $|Q|$)
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

(\iff) If the number of equivalence classes of \equiv_L is k
then there is a DFA for L with k states

Idea: Build a DFA whose states are the equivalence classes of \equiv_L

Define a DFA M where:

- Q is the set of equivalence classes of \equiv_L
- $q_0 = [\varepsilon] = \{ y \mid y \equiv_L \varepsilon \}$
- for all $x \in \Sigma^*$, $\delta([x], \sigma) = [x \sigma]$ \textmd{(well-defined??)}
- $F = \{ [x] \mid x \in L \}$

Claim: M accepts x if and only if $x \in L$
Define a DFA M where:

- Q is the set of equivalence classes of \equiv_L
- $q_0 = [\varepsilon] = \{ y \mid y \equiv_L \varepsilon \}$
- $\delta([x], \sigma) = [x \sigma]$ (well-defined??)
- $F = \{ [x] \mid x \in L \}$

Claim: M accepts x if and only if $x \in L$

Proof: Consider M running on $x_1 \cdots x_n \in \Sigma^*$, where each $x_i \in \Sigma$.

M starts in state $[\varepsilon]$, reads x_1 and moves to $[x_1]$, then $[x_1 x_2]$, ...

... and ends in state $[x_1 \cdots x_n]$.

So, M accepts $x_1 \cdots x_n \iff [x_1 \cdots x_n] \in F$

By definition of F, $[x_1 \cdots x_n] \in F \iff x \in L$
The Myhill-Nerode Theorem gives us a *new* way to prove that a given language is not regular:

L is not regular

if and only if

there are infinitely many equiv. classes of \(\equiv_L \)

L is not regular

if and only if

There are infinitely many strings \(w_1, w_2, \ldots \) so that for all \(w_i \neq w_j \), \(w_i \) and \(w_j \) are distinguishable to \(L \):

there is a \(z \in \Sigma^* \) such that

exactly one of \(w_i z \) and \(w_j z \) is in \(L \)
The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:

Theorem: \(L = \{0^n 1^n \mid n \geq 0\} \) is not regular.

Proof: Consider the infinite set of strings
\[S = \{0, 00, 000, \ldots, 0^n, \ldots\} \]
Take any pair \((0^m, 0^n)\) of distinct strings in \(S \)
Let \(z = 1^m \)
Then \(0^m 1^m \) is in \(L \), but \(0^n 1^m \) is not in \(L \)
So all pairs of strings in \(S \) are distinguishable to \(L \)

Hence there are infinitely many equivalence classes of \(\equiv_L \), and \(L \) is not regular!
Streaming Algorithms
Streaming Algorithms
Streaming Algorithms

Have three components

Initialize:

<variables and their assignments>

When next symbol seen is σ:

<pseudocode using σ and vars>

When stream stops (end of string):

<accept/reject condition on vars>

(or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if

A accepts the strings in L, rejects strings not in L
Streaming Algorithms

01011101

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms could output more than one bit

2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings

3. Could also make multiple passes over the input, could be randomized

Can recognize non-regular languages!
\[L = \{x \mid x \text{ has more 1's than 0's}\} \]

Initialize: \(C := 0 \) and \(B := 0 \)

When next symbol seen is \(\sigma \):
- If \((C = 0) \) then \(B := \sigma, \ C := 1 \)
- If \((C \neq 0) \) and \((B = \sigma) \) then \(C := C + 1 \)
- If \((C \neq 0) \) and \((B \neq \sigma) \) then \(C := C - 1 \)

When stream stops:

\textit{accept} if \(B=1 \) and \(C > 0 \), else \textit{reject}

\(B = \) the majority bit
\(C = \) how many more times that \(B \) appears

| On all strings of length \(n \), the algorithm uses \((\log_2 n) + k \) bits of space (to store \(B \) and \(C \)) |
How to think of memory usage

The program is not part of the memory

Space usage of A:

S(n) = max # of bits needed to store vars in A, over all inputs of length up to n
\[L = \{0^n 1^n \mid n \geq 0\} \]

Initialize: \(z := 0, s := \text{false}, \text{fail} := \text{false} \)

When next symbol seen is \(\sigma \):
- If (not \(s \)) and (\(\sigma = 0 \)) then \(z := z + 1 \)
- If (not \(s \)) and (\(\sigma = 1 \)) then \(s := \text{true}; z := z - 1 \)
- If (\(s \)) and (\(\sigma = 0 \)) then \(\text{fail} := \text{true} \)
- If (\(s \)) and (\(\sigma = 1 \)) then \(z := z - 1 \)

When stream stops:

accept if and only if (not \(\text{fail} \)) and \(z = 0 \)

\(z \) = how many more times 0 appears than 1

\(s \) = “Started reading 1s yet?”

\(\text{fail} \) = “Reject for certain?”

On all strings of length \(n \), algorithm uses \((\log_2 n) + k\) bits of memory
DFAs and Streaming

Theorem: Suppose a language L' can be recognized by a DFA M with $\leq 2^p$ states. Then L' is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Define algorithm A as follows:

Initialize: Encode the start state of M in memory. When next symbol seen is σ:

Update state of M using M’s transition function

When stream stops:

Accept if current state of M is final, else reject
Theorem: Suppose \(L' \) is computable by a streaming algorithm \(A \) using \(\leq f(n) \) bits of space, on all strings of length up to \(n \).

Then for all \(n \), there is a DFA \(M \) with \(< 2^{f(n)+1} \) states such that \(L'_n = L(M)_n \)

That is, for all streaming algorithms \(A \) and all \(n \), there’s a DFA \(M \) of \(\leq 2^{f(n)+1} \) states such that \(A \) and \(M \) agree on all strings of length up to \(n \).
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Suppose L' is computable by a streaming algorithm A using $\leq f(n)$ bits of space, on all strings of length up to n.
Then for all n, there is a DFA M with $< 2^{f(n)+1}$ states such that $L'_n = L(M)_n$

Proof Idea: States of $M =$ all $2^{f(n)+1} - 1$ possible memory configurations of A, over strings of length up to n
Start state of $M =$ Initialized memory of A
Transition function = Mimic how A updates its memory
Final states of $M =$ Subset of memory configurations in which A would accept, if the string ended
Example: L = \{x \mid x \text{ has more 1's than 0's}\}

Initialize: \(C := 0 \) and \(B := 0 \)

When the next symbol \(\sigma \) is read,
- If \(C = 0 \) then \(B := \sigma \), \(C := 1 \)
- If \(C \neq 0 \) and \(B = \sigma \) then \(C := C + 1 \)
- If \(C \neq 0 \) and \(B \neq \sigma \) then \(C := C - 1 \)

When the stream stops,
- accept if \(B=1 \) and \(C > 0 \), else reject

Example: A DFA that agrees with L on all strings of length \(\leq 2 \)
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Suppose L' is computable by a streaming algorithm A using $f(n)$ bits of space, on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{f(n)+1}$ states such that $L'_n = L(M)_n$

Corollary: Suppose for all n, every DFA M with $L'_n = L(M)_n$ needs $\geq 2^{f(n)+1}$ states. Then L' is not computable by a streaming algorithm that uses $f(n)$ bits of space!
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Is there a streaming algorithm for L using much \textit{less than} \((\log_2 n)\) space?

Theorem: Every streaming algorithm for L needs at least \((\log_2 n)-2\) bits of space

We will use:
- Myhill-Nerode Theorem
- The connection between DFAs and streaming
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-2\) bits of space

Proof Idea: Let n be even, and \(L_n = \{x \in L \mid |x| \leq n\}\)

We will give a set \(S_n\) of \(n/2 + 1\) strings such that each pair in \(S_n\) is *distinguishable* to \(L_n\)

Myhill-Nerode Thm \(\Rightarrow\) Every DFA recognizing \(L_n\) needs at least \(n/2+1\) states

\(\Rightarrow\) Every streaming algorithm for L needs at least \((\log n)-2\) bits of memory on strings of length n
\[L = \{ x \mid x \text{ has more 1's than 0's} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) - 2 \) bits of space.

Suppose we partition all strings into their equivalence classes under \(\equiv_{L_n} \)

Construct \(S_n \)

But the number of states in a DFA recognizing \(L_n \) is \textit{at least} the number of equivalence classes under \(\equiv_{L_n} \)
L = \{x \mid x \text{ has more 1's than 0's}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-2\) bits of space

Proof (Slide 1): Let \(S_n = \{0^{n/2-i}1^i \mid i = 0,\ldots,n/2\}\)
Let \(x=0^{n/2-k}1^k\) and \(y=0^{n/2-j}1^j\) be from \(S_n\), with \(k > j\)

Claim: \(z = 0^{k-1}1^{n/2-(k-1)}\) distinguishes \(x\) and \(y\) in \(L_n\)

\(xz\) has \(n/2-1\) zeroes and \(n/2+1\) ones \(\Rightarrow xz \in L_n\)
\(yz\) has \(n/2+(k-j-1)\) zeroes and \(n/2-(k-j-1)\) ones
But \(k-j-1 \geq 0\) ... so \(yz \not\in L_n\)

So the string \(z\) distinguishes \(x\) and \(y\), and \(x \not\equiv_{L_n} y\)