6.045

Lecture 7:
Streaming Algorithms and Communication Complexity
Streaming Algorithms
Streaming Algorithms

Have three components

Initialize:
<variables and their assignments>

When next symbol seen is σ:
<pseudocode using σ and vars>

When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if
A accepts the strings in L, rejects strings not in L
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Suppose L' is computable by a streaming algorithm A using $f(n)$ bits of space, on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{f(n)+1}$ states such that $L'_n = L(M)_n$

Corollary: Suppose for all n, every DFA M with $L'_n = L(M)_n$ needs $\geq 2^{f(n)+1}$ states. Then L' is not computable by a streaming algorithm that uses $f(n)$ bits of space!
L = \{x \mid x \text{ has more 1's than 0's}\}

Is there a streaming algorithm for L using much \textit{less than} (\log_2 n) space?

Theorem: Every streaming algorithm for L needs at least (\log_2 n)-2 bits of space

We will use:
• Myhill-Nerode Theorem
• The connection between DFAs and streaming
Let $L = \{x \mid x \text{ has more 1's than 0's}\}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)-2$ bits of space

Proof Idea: Let n be even, and $L_n = \{x \in L \mid |x| \leq n\}$

We will give a set S_n of $n/2 + 1$ strings such that each pair in S_n is distinguishable to L_n

Myhill-Nerode Thm \Rightarrow Every DFA recognizing L_n needs at least $n/2+1$ states

\Rightarrow Every streaming algorithm for L needs at least $(\log n)-2$ bits of memory on strings of length n
L = \{x \mid x \text{ has more 1's than 0's}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-2\) bits of space

Suppose we partition all strings into their equivalence classes under \(\equiv_{L_n}\)

Construct \(S_n\)

But the number of states in a DFA recognizing \(L_n\) is \textit{at least} the number of equivalence classes under \(\equiv_{L_n}\)
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-2\) bits of space

Proof (Slide 1): Let \(S_n = \{0^{n/2-i}1^i \mid i=0,\ldots,n/2\}\)
Let \(x=0^{n/2-k}1^k\) and \(y=0^{n/2-j}1^j\) be from \(S_n\), with \(k > j\)

Claim: \(z = 0^{k-1}1^{n/2-(k-1)}\) distinguishes \(x\) and \(y\) in \(L_n\)

\(xz\) has \(n/2-1\) zeroes and \(n/2+1\) ones \(\Rightarrow xz \in L_n\)

\(yz\) has \(n/2+(k-j-1)\) zeroes and \(n/2-(k-j-1)\) ones

But \(k-j-1 \geq 0\) ... so \(yz \notin L_n\)

So the string \(z\) distinguishes \(x\) and \(y\), and \(x \not\equiv_{L_n} y\)
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-2\) bits of space

Proof (Slide 2):
All pairs of strings in \(S_n\) are distinguishable to \(L_n\)
\[\Rightarrow\] There are at least \(|S_n|\) equiv classes of \(\equiv_{L_n}\)
By the Myhill-Nerode Theorem:
\[\Rightarrow\] All DFAs recognizing \(L_n\) need \(\geq |S_n|\) states
\[\Rightarrow\] There is no streaming algorithm for L using \(f(n) = (\log_2 |S_n|)-1\) bits of space.
Recall \(|S_n| = n/2+1\) ... and we’re done!
Finding Frequent Items

A streaming algorithm for
\(L = \{ x \mid x \text{ has more 1’s than 0’s} \} \)
tells us if 1’s occur more frequently than 0’s.

What if the alphabet is more than just 1’s and 0’s?

And what if we want to find the “top 10” symbols?

FREQUENT ITEMS: Given \(k \) and a string \(x = x_1 \ldots x_n \in \Sigma^n \),
output the set \(S = \{ \sigma \in \Sigma \mid \sigma \text{ occurs } > \frac{n}{k} \text{ times in } x \} \)

(Question: How large can the set \(S \) be?) \(< k \)
Frequent Items: Given k and a string $x = x_1 \ldots x_n \in \Sigma^n$, output the set $S = \{\sigma \in \Sigma \mid \sigma \text{ occurs } > n/k \text{ times in } x\}$

Theorem: There is a two-pass streaming algorithm for Frequent Items using $(k-1) \ (\log |\Sigma| + \log n)$ space.

1st pass: Initialize an set $T \subseteq \Sigma \times \{1,\ldots,n\}$ (originally empty)

When the next symbol σ is read:
If $(\sigma,m) \in T$, then $T := T - \{(\sigma,m)\} + \{(\sigma,m+1)\}$
Else if $|T| < k-1$ then $T := T + \{(\sigma,1)\}$
Else for all $(\sigma',m') \in T$,
\[T := T - \{(\sigma',m')\} + \{(\sigma',m'-1)\} \]
If $m' = 0$ then $T := T - \{(\sigma',m')\}$

Claim: At end, T contains all σ occurring $> n/k$ times in x

2nd pass: Count occurrences of all σ' appearing in T to determine those occurring $> n/k$ times
Number of Distinct Elements

The DE problem
Input: \(x \in \{0,1,\ldots,2^k-1\}^*, \ n = |x| < 2^{k/2} \)
Output: The number of distinct elements appearing in \(x \)

Note: There is a streaming algorithm for DE using \(O(k \ n) \) space

Theorem: Every streaming algorithm for DE requires \(\Omega(k \ n) \) space
Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space

Let $\Sigma = \{0, 1, \ldots, 2^k-1\}$

Define: $x, y \in \Sigma^*$ are *DE distinguishable* if

$$(\exists z \in \Sigma^*) [xz \text{ and } yz \text{ contain a different number of distinct elements}]$$

Lemma: Let $S \subseteq \Sigma^*$ be such that every pair in S is DE distinguishable. Then every streaming algorithm for DE needs $\geq (\log_2 |S|)$ bits of space.

Proof: *Pigeonhole Principle!* If an algorithm A uses $< (\log_2 |S|)$ bits, there are distinct x, y in S that lead A to the same memory state. Consider xz and yz...
Theorem: Every streaming algorithm for DE requires $\Omega(k\ n)$ space

Lemma: Let $S \subseteq \Sigma^*$ be such that every pair in S is DE distinguishable. Then every streaming algorithm for DE needs $\geq (\log_2 |S|)$ bits of space.

Lemma: There is a DE distinguishable S of size $2^{\Omega(k\ n)}$

Proof: For each subset T of Σ of size $n/2$, define x_T to be any concatenation of the symbols in T. For distinct sets T and T', x_T and $x_{T'}$ are distinguishable:

- $x_T x_T$ contains exactly $n/2$ distinct elements
- $x_{T'} x_T$ has more than $n/2$ distinct elements

The total number of such subsets is $2^{\Omega(k\ n)}$, for $n < 2^{k/2}$
Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space

The total number of such subsets is $2^{\Omega(kn)}$, for $2^k > n^2$. What’s the number of subsets of $\{1, \ldots, 2^k\}$ of size $n/2$?

Want to estimate this quantity. Use $(\frac{a}{b})^n \geq \left(\frac{a}{b}\right)^b$

Then $\left(\frac{2^k}{n/2}\right) \geq \left(\frac{2^k}{n/2}\right)^{\frac{n}{2}} \geq \frac{2^{\frac{k}{2}}}{\left(\frac{n}{2}\right)^{\frac{n}{2}}}\cdot$

Since $\left(\frac{n}{2}\right)^{\frac{n}{2}} < \left(\frac{2^k}{2}\right)^{\frac{k}{2}} \cdot 2^{\frac{kn}{4}}$, we have $\left(\frac{2^k}{n/2}\right) \geq \frac{2^{\frac{k}{2}}}{\left(\frac{n}{2}\right)^{\frac{n}{2}}} > 2^{\frac{kn}{4}}$
Theorem: Every streaming algorithm for approximating the number of DE to within +- 20% error also requires $\Omega(kn)$ space!

See Lecture Notes.
Randomized Algorithms Help!

The DE problem
Input: \(x \in \{0,1,...,2^k\}^* \), \(n=|x| < 2^{k/2} \)
Output: The number of distinct elements appearing in \(x \)

Theorem: There is a randomized streaming algorithm that can approximate DE to within 0.1% error, using \(O(k + \log n) \) space!
Randomized Algorithm for DE

Define $h: \{0,1,\ldots,2^k-1\} \rightarrow [0, 1]$ to be a random hash function.

Store a value m, initialized at 1.
For each i, see x_i and update $m \leftarrow \min\{m, h(x_i)\}$.
At the end of the stream, return $1/m$.

Claim: Let L be the number of DE.
With probability > 0.8, $1/m$ is between $L/5$ and $10L$.
Store a value m, initialized at 1. For each i, see x_i and update $m \leftarrow \min\{m, h(x_i)\}$. At the end of the stream, return $1/m$.

Claim: $L = \# \text{ of DE}$. With prob. > 0.8, $1/m$ is between $L/5$ and $10L$.

If h is random, then the algorithm selects m as the minimum of L random numbers in $[0, 1]$.

$$\Pr[\min \text{ of } L \text{ random numbers in } [0,1] < 1/(10L)] \leq L \cdot \Pr[\text{a random number in } [0,1] \text{ is } < 1/(10L)] = 1/10.$$

$$\Pr[\min \text{ of } L \text{ random numbers in } [0,1] \geq 5/L] = (1-5/L)^L = [(1-5/L)^{L/5}]^5 \leq 1/e^5 < 0.007.$$

$$\Pr[\ 1/m \text{ is between } L/5 \text{ and } 10L] > 0.893.$$

Can boost the accuracy by using more hash functions.
Randomized Algorithm for DE

With probability > 0.89 alg. returns a constant approximation to the number of DE.

Space usage: store h, store m.

h – not fully random, but pairwise independent
Can store h in O(k) space.

Use bounded precision reals: precision O(log n) suffices
Randomized Algorithms Help!

Theorem: There is a randomized streaming algorithm that can approximate DE to within 0.1% error, using $O(k + \log n)$ space!

Recall: Deterministic streaming algorithms require $\Omega(kn)$ space.
Communication Complexity
Communication Complexity

A theoretical model of distributed computing

• Function $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
 – Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$
 – We assume $|x| = |y| = n$. Think of n as HUGE

• Two computers: Alice and Bob
 – Alice only knows x, Bob only knows y

• Goal: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We only care about the number of bits communicated.
Alice and Bob Have a Conversation

In every step: A bit is sent, which is a function of the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated = 4 (in the example)

We assume Alice and Bob alternate in communicating, and the last bit sent is the value of $f(x, y)$
Def. A protocol for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0, 1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0$, $b_0 = \varepsilon$.

While ($b_r \neq \text{STOP}$),

$r++$

If r is odd, Alice sends $b_r = A(x, b_1 \ldots b_{r-1})$

else Bob sends $b_r = B(y, b_1 \ldots b_{r-1})$

Output b_{r-1}. Number of rounds $= r - 1$
Def. The cost of a protocol P for f on n-bit strings is
\[
\max_{x,y \in \{0,1\}^n} \text{[number of rounds in } P \text{ to compute } f(x, y)]
\]

The communication complexity of f on n-bit strings is the minimum cost over all protocols for f on n-bit strings
\[
= \text{the minimum number of rounds used by any protocol that computes } f(x, y), \text{ over all } n\text{-bit } x, y
\]
Example. Let $f : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be arbitrary.

There is always a “trivial” protocol:

Alice sends the bits of her x in odd rounds
Bob sends the bits of his y in even rounds
After $2n$ rounds, they both know each other’s input!

The communication complexity of every f is at most $2n$
Example. \(\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2. \)

What’s a good protocol for computing PARITY?

Alice sends \(b_1 = (\sum_i x_i \mod 2) \)
Bob sends \(b_2 = (b_1 + \sum_i y_i \mod 2). \) Alice stops.

\textit{The communication complexity of PARITY is 2}
Example. $\text{MAJORITY}(x, y) = \text{most frequent bit in } xy$

What’s a good protocol for computing MAJORITY?

Alice sends $N_x = \text{number of 1s in } x$

Bob computes $N_y = \text{number of 1s in } y$,

 sends 1 iff $N_x + N_y$ is greater than $(|x| + |y|)/2 = n$

Communication complexity of MAJORITY is $O(\log n)$
Example. $\text{EQUALS}(x, y) = 1 \iff x = y$

What’s a good protocol for computing EQUALS?

$\text{Communication complexity of } \text{EQUALS} \text{ is at most } 2n$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Examples:

$L = \{ x \mid x \text{ has an odd number of 1s} \}$

$$\Rightarrow f_L(x, y) = \text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2$$

$L = \{ x \mid x \text{ has more 1s than 0s} \}$

$$\Rightarrow f_L(x, y) = \text{MAJORITY}(x, y)$$

$L = \{ xx \mid x \in \{0,1\}^* \}$

$$\Rightarrow f_L(x, y) = \text{EQUALS}(x, y)$$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Theorem: If L has a streaming algorithm using $\leq s$ space, then the comm. complexity of f_L is at most $4s + 5$.

Proof: Alice runs streaming algorithm A on x.
Sends the memory content of A: this is s bits of space
Bob starts up A with that memory content, runs A on y.
Gets an output bit, sends to Alice.

(...why $4s + 5$ rounds? Can you do better?)